User menu

Addressing rank degeneracy in constraint-reduced interior-point methods for linear optimization

Bibliographic reference Winternitz, Luke B. ; Tits, André L. ; Absil, Pierre-Antoine. Addressing rank degeneracy in constraint-reduced interior-point methods for linear optimization. In: Journal of Optimization Theory and Applications, Vol. 160, no. 1, p. 127-157 (2013)
Permanent URL http://hdl.handle.net/2078.1/127852
  1. Wright Stephen J., Primal-Dual Interior-Point Methods, ISBN:9780898713824, 10.1137/1.9781611971453
  2. Tits André L., Absil P. A., Woessner William P., Constraint Reduction for Linear Programs with Many Inequality Constraints, 10.1137/050633421
  3. Winternitz Luke B., Nicholls Stacey O., Tits André L., O’Leary Dianne P., A constraint-reduced variant of Mehrotra’s predictor-corrector algorithm, 10.1007/s10589-010-9389-4
  4. He Meiyun Y., Tits André L., Infeasible constraint-reduced interior-point methods for linear optimization, 10.1080/10556788.2011.589056
  5. Winternitz, L.: Primal–dual interior point algorithms for linear programs with many inequality constraints. Ph.D. thesis, University of Maryland (2010)
  6. Bertsimas, D., Tsitsiklis, J.: Introduction to Linear Optimization. Athena, Belmont (1997)
  7. Dantzig, G., Ye, Y.: A build-up interior-point method for linear programming: Affine scaling form. Working paper, Department of Management Science, University of Iowa (1991)
  8. Saunders, M.A., Tomlin, J.A.: Solving regularized linear programs using barrier methods and KKT systems. Technical report, Stanford University, Department of EES (1996)
  9. Friedlander M. P., Orban D., A primal–dual regularized interior-point method for convex quadratic programs, 10.1007/s12532-012-0035-2
  10. Friedlander, M.P., Orban, D.: Exact primal–dual regularization of linear programs. Presentation given at ICCOPT Hamilton, Ontario (2007)
  11. Tits, A.L., Absil, P.A., O’Leary, D.P.: Constraint reduction for certain degenerate linear programs. In: 19th ISMP, July 30–August 4 (2006)
  12. Dikin, I.: On convergence of an iterative process. Upr. Syst. 12, 54–60 (1974). In Russian
  13. Stewart G.W., On scaled projections and pseudoinverses, 10.1016/0024-3795(89)90594-6
  14. Saigal Romesh, A simple proof of a primal affine scaling method, 10.1007/bf02206821
  15. Mehrotra Sanjay, On the Implementation of a Primal-Dual Interior Point Method, 10.1137/0802028
  16. Netlib linear programming test problems. See http://www-fp.mcs.anl.gov/OTC/Guide/TestProblems/LPtest/