User menu

Glucose acutely decreases pH of secretory granules in mouse pancreatic islets. Mechanisms and influence on insulin secretion

Bibliographic reference Stiernet, Patrick ; Guiot, Yves ; Gilon, Patrick ; Henquin, Jean-Claude. Glucose acutely decreases pH of secretory granules in mouse pancreatic islets. Mechanisms and influence on insulin secretion. In: Journal of Biological Chemistry, Vol. 281, no. 31, p. 22142-22151 (2006)
Permanent URL
  1. Sato Y., Henquin J. C., The K+-ATP channel-independent pathway of regulation of insulin secretion by glucose: in search of the underlying mechanism, 10.2337/diabetes.47.11.1713
  2. Henquin J. C., Ravier M. A., Nenquin M., Jonas J. C., Gilon P., Hierarchy of the beta-cell signals controlling insulin secretion, 10.1046/j.1365-2362.2003.01207.x
  3. Deeney Jude T., Gromada Jesper, Høy Marianne, Olsen Hervør L., Rhodes Christopher J., Prentki Marc, Berggren Per-Olof, Corkey Barbara E., Acute Stimulation with Long Chain Acyl-CoA Enhances Exocytosis in Insulin-secreting Cells (HIT T-15 and NMRI β-Cells), 10.1074/jbc.275.13.9363
  4. Yajima H., Komatsu M., Yamada S., Straub S. G., Kaneko T., Sato Y., Yamauchi K., Hashizume K., Sharp G. W., Aizawa T., Cerulenin, an inhibitor of protein acylation, selectively attenuates nutrient stimulation of insulin release: a study in rat pancreatic islets, 10.2337/diabetes.49.5.712
  5. Ivarsson R., Quintens R., Dejonghe S., Tsukamoto K., in 't Veld P., Renstrom E., Schuit F. C., Redox Control of Exocytosis: Regulatory Role of NADPH, Thioredoxin, and Glutaredoxin, 10.2337/diabetes.54.7.2132
  6. Eliasson Lena, Renström Erik, Ding Wei-Guang, Proks Peter, Rorsman Patrik, Rapid ATP-Dependent Priming of Secretory Granules Precedes Ca2+-Induced Exocytosis in Mouse Pancreatic B-Cells, 10.1111/j.1469-7793.1997.399bh.x
  7. Takahashi N., Kadowaki T., Yazaki Y., Ellis-Davies G. C. R., Miyashita Y., Kasai H., Post-priming actions of ATP on Ca2+-dependent exocytosis in pancreatic beta cells, 10.1073/pnas.96.2.760
  8. J. Cell Sci., 114, 2145 (2001)
  9. ABRAHAMSSON HÅKAN, GYLFE ERIK, Demonstration of a proton gradient across the insulin granule membrane, 10.1111/j.1748-1716.1980.tb06573.x
  10. Am. J. Physiol., 242, C382 (1982)
  11. Hutton John C., The internal pH and membrane potential of the insulin-secretory granule, 10.1042/bj2040171
  12. Orci L., Conversion of proinsulin to insulin occurs coordinately with acidification of maturing secretory vesicles, 10.1083/jcb.103.6.2273
  13. Detimary Philippe, Van den Berghe Georges, Henquin Jean-Claude, Concentration Dependence and Time Course of the Effects of Glucose on Adenine and Guanine Nucleotides in Mouse Pancreatic Islets, 10.1074/jbc.271.34.20559
  14. Orci L., pH-independent and -dependent cleavage of proinsulin in the same secretory vesicle, 10.1083/jcb.126.5.1149
  15. J. Biol. Chem., 262, 10712 (1987)
  16. Diabetologia, 35, S41 (1992)
  17. Tompkins L. S., Nullmeyer K. D., Murphy S. M., Weber C. S., Lynch R. M., Regulation of secretory granule pH in insulin-secreting cells, 10.1152/ajpcell.01066.2000
  18. Am. J. Physiol., 285, E262 (2003)
  19. Lin Hai-Jui, Herman Petr, Kang Jung Sook, Lakowicz Joseph R., Fluorescence Lifetime Characterization of Novel Low-pH Probes, 10.1006/abio.2001.5155
  20. Holopainen Juha M., Saarikoski Juhani, Kinnunen Paavo K. J., Järvelä Irma, Elevated lysosomal pH in neuronal ceroid lipofuscinoses (NCLs) : Elevated lysosomal pH in NCLs, 10.1046/j.0014-2956.2001.02530.x
  21. Perez J. F., Ruiz M. C., Michelangeli F., Simultaneous measurement and imaging of intracellular Ca2+ and H+ transport in isolated rabbit gastric glands, 10.1113/jphysiol.2001.012869
  22. Gerbino Andrea, Hofer Aldebaran M., McKay Breda, Lau Bonnie W., Soybel David I., Divalent cations regulate acidity within the lumen and tubulovesicle compartment of gastric parietal cells, 10.1053/j.gastro.2003.10.068
  23. Bankers-Fulbright J. L., Platelet-activating factor stimulates cytoplasmic alkalinization and granule acidification in human eosinophils, 10.1242/jcs.01498
  24. Aguilar-Bryan L., Molecular Biology of Adenosine Triphosphate-Sensitive Potassium Channels, 10.1210/er.20.2.101
  25. Hermans Michel P., Gérard Michel, Henquin Jean-Claude, Role of the decrease in ionized calcium in the inhibition of insulin release by chloride-free solutions, 10.1016/0167-4889(86)90112-6
  26. Seghers Victor, Nakazaki Mitsuhiro, DeMayo Franco, Aguilar-Bryan Lydia, Bryan Joseph, Sur1Knockout Mice : A MODEL FOR KATPCHANNEL-INDEPENDENT REGULATION OF INSULIN SECRETION, 10.1074/jbc.275.13.9270
  27. Diabetes, 47, 1266 (1998)
  28. Jonkers Françoise C., Jonas Jean-Christophe, Gilon Patrick, Henquin Jean-Claude, Influence of cell number on the characteristics and synchrony of Ca2+oscillations in clusters of mouse pancreatic islet cells, 10.1111/j.1469-7793.1999.00839.x
  29. Jonkers Françoise C, Guiot Yves, Rahier Jacques, Henquin Jean-Claude, Tolbutamide stimulation of pancreatic β-cells involves both cell recruitment and increase in the individual Ca2+response, 10.1038/sj.bjp.0704108
  30. Hauge-Evans A. C., Squires P. E., Persaud S. J., Jones P. M., Pancreatic beta-cell-to-beta-cell interactions are required for integrated responses to nutrient stimuli: enhanced Ca2+ and insulin secretory responses of MIN6 pseudoislets, 10.2337/diabetes.48.7.1402
  31. Shepherd Ruth M., Henquin Jean-Claude, The Role of Metabolism, Cytoplasmic Ca2+, and pH-regulating Exchangers in Glucose-induced Rise of Cytoplasmic pH in Normal Mouse Pancreatic Islets, 10.1074/jbc.270.14.7915
  32. Watkins Simon, Geng Xuehui, Li Lehong, Papworth Glenn, Robbins Paul D., Drain Peter, Imaging Secretory Vesicles by Fluorescent Protein Insertion in Propeptide Rather Than Mature Secreted Peptide, 10.1034/j.1600-0854.2002.30703.x
  33. Henquin J.-C., Nenquin M., Stiernet P., Ahren B., In Vivo and In Vitro Glucose-Induced Biphasic Insulin Secretion in the Mouse: Pattern and Role of Cytoplasmic Ca2+ and Amplification Signals in  -Cells, 10.2337/diabetes.55.02.06.db05-1051
  34. Heding Lise G., Determination of total serum insulin (IRI) in insulin-treated diabetic patients, 10.1007/bf01225569
  35. J. Biol. Chem., 267, 20713 (1992)
  36. J. Exp. Biol., 200, 1 (1997)
  37. Schnell Landström A.H., Andersson A., Borg L.A.H., Lysosomes and pancreatic islet function: Adaptation of β-cell lysosomes to various metabolic demands, 10.1016/0026-0495(91)90151-l
  38. De Clercq Lieve, Delaere Pia, Remacle Claude, The aging of the endocrine pancreas of the rat. II. Cytoplasmic parameters of the B-cell, including insulin synthesis and secretion, 10.1016/0047-6374(88)90095-4
  39. Geng X., Li L., Watkins S., Robbins P. D., Drain P., The Insulin Secretory Granule Is the Major Site of KATP Channels of the Endocrine Pancreas, 10.2337/diabetes.52.3.767
  40. Diabetologia, 48, A175 (2005)
  41. HENQUIN J. C., MEISSNER H. P., The Ionic, Electrical, and Secretory Effects of Endogenous Cyclic Adenosine Monophosphate in Mouse Pancreatic B Cells: Studies with Forskolin*, 10.1210/endo-115-3-1125
  42. Gilon P., Mechanisms and Physiological Significance of the Cholinergic Control of Pancreatic  -Cell Function, 10.1210/er.22.5.565
  43. Gomis R., Deleers M., Malaisse-Lagae F., Sener A., Garcia-Morales P., Rovira A., Valverde I., Malaisse W. J., Metabolic and secretory effects of methylamine in pancreatic islets, 10.1002/cbf.290020309
  44. Diabetes, 51, S33 (2002)
  45. Aspinwall Craig A., Brooks Sunday A., Kennedy Robert T., Lakey Jonathan R. T., Effects of Intravesicular H+and Extracellular H+and Zn2+on Insulin Secretion in Pancreatic Beta Cells, 10.1074/jbc.272.50.31308
  46. Rorsman P., Renstr�m E., Insulin granule dynamics in pancreatic beta cells, 10.1007/s00125-003-1153-1
  47. Wollheim Claes B., Maechler Pierre, 10.1038/45280
  48. Yamasaki Michiko, Masgrau Roser, Morgan Anthony J., Churchill Grant C., Patel Sandip, Ashcroft Stephen J. H., Galione Antony, Organelle Selection Determines Agonist-specific Ca2+Signals in Pancreatic Acinar and β Cells, 10.1074/jbc.m311088200
  49. Bungay P J, Potter J M, Griffin M, The inhibition of glucose-stimulated insulin secretion by primary amines. A role for transglutaminase in the secretory mechanism, 10.1042/bj2190819
  50. Lebrun P., Atwater I., Rosario L.M., Herchuelz A., Malaisse W.J., Dissociation by methylamine of insulin release from glucose-induced electrical activity in isolated mouse islets of Langerhans, 10.1016/0026-0495(85)90157-x
  51. Pace Caroline S., Tarvin John T., pH modulation of glucose-induced electrical activity in B-cells: Involvement of Na/H and HCO3/Cl antiporters, 10.1007/bf01870339
  52. Am. J. Physiol., 244, C188 (1983)
  53. Sehlin Janove, Meissner Hans Peter, Effects of Cl− deficiency on the membrane potential in mouse pancreatic β-cells, 10.1016/0005-2736(88)90253-2
  54. Somers Guido, Somer Abdullah, Devis Ghislain, Malaisse Willy J., The stimulus-secretion coupling of glucose-induced insulin release : XLV. The anion-osmotic hypothesis for exocytosis, 10.1007/bf00658490
  55. Tamagawa T., Henquin J.-C., Chloride Modulation of Insulin Release, 86Rb+ Efflux, and 45Ca2+ Fluxes in Rat Islets Stimulated by Various Secretagogues, 10.2337/diab.32.5.416
  56. Rhodes C. J., Newly synthesized proinsulin/insulin and stored insulin are released from pancreatic B cells predominantly via a regulated, rather than a constitutive, pathway, 10.1083/jcb.105.1.145
  57. Seino S., Iwanaga T., Nagashima K., Miki T., Diverse roles of K(ATP) channels learned from Kir6.2 genetically engineered mice, 10.2337/diabetes.49.3.311
  58. Gembal M, Gilon P, Henquin J C, Evidence that glucose can control insulin release independently from its action on ATP-sensitive K+ channels in mouse B cells., 10.1172/jci115714
  59. KOMATSU MITSUHISA, SATO YOSHIHIKO, AIZAWA TORU, HASHIZUME KIYOSHI, KATP Channel-Independent Glucose Action: An Elusive Pathway in Stimulus-Secretion Coupling of Pancreatic .BETA.-cell., 10.1507/endocrj.48.275
  60. Straub Susanne G., Sharp Geoffrey W. G., Glucose-stimulated signaling pathways in biphasic insulin secretion, 10.1002/dmrr.329