User menu

A continuous characterization of the maximum-edge biclique problem

Bibliographic reference Gillis, Nicolas ; Glineur, François. A continuous characterization of the maximum-edge biclique problem. In: Journal of Global Optimization, Vol. 58, no. 3, p. 439-464 (2014)
Permanent URL http://hdl.handle.net/2078.1/127804
  1. Alexe Gabriela, Alexe Sorin, Crama Yves, Foldes Stephan, Hammer Peter L., Simeone Bruno, Consensus algorithms for the generation of all maximal bicliques, 10.1016/j.dam.2003.09.004
  2. Bomze Immanuel M., 10.1023/a:1008230200610
  3. Ding, C., Li, T., Jordan, M.: Nonnegative matrix factorization for combinatorial optimization: spectral clustering, graph matching, and clique finding. In: IEEE International Conference on Data Mining, pp. 183–192 (2008)
  4. Ding, C., Zhang, Y., Li, T., Holbrook, S.: Biclustering protein complex interactions with a biclique finding algorithm. In: IEEE International Conference on Data Mining, pp. 178–187 (2006)
  5. Dolan, E., Moré, J.: Benchmarking optimization software with performance profiles. Math. Prog. Ser. A 91, 201–213 (2002)
  6. Gibbons Luana E., Hearn Donald W., Pardalos Panos M., Ramana Motakuri V., Continuous Characterizations of the Maximum Clique Problem, 10.1287/moor.22.3.754
  7. Gillis, N.: Nonnegative Matrix Factorization: Complexity, Algorithms and Applications. Ph.D. Thesis, Université catholique de Louvain (2011)
  8. Gillis, N., Glineur, F.: Nonnegative Factorization and The Maximum Edge Biclique Problem (2008). CORE Discuss. pap. 2008/64
  9. Golub, G., Van Loan, C.: Matrix Computation, 3rd edn. The Johns Hopkins University Press, Baltimore (1996)
  10. Grippo L., Sciandrone M., On the convergence of the block nonlinear Gauss–Seidel method under convex constraints, 10.1016/s0167-6377(99)00074-7
  11. Gurobi Optimization, I.: Gurobi Optimizer Reference Manual (2012). http://www.gurobi.com
  12. Lehmann Sune, Schwartz Martin, Hansen Lars Kai, Biclique communities, 10.1103/physreve.78.016108
  13. Liu, G., Sim, K., Li, J.: Efficient Mining of Large Maximal Bicliques, Lect. Notes in Comput. Sci. pp. 437–448. Springer, Berlin (2006)
  14. Motzkin T. S., Straus E. G., Maxima for graphs and a new proof of a theorem of Turán , 10.4153/cjm-1965-053-6
  15. Peeters René, The maximum edge biclique problem is NP-complete, 10.1016/s0166-218x(03)00333-0
  16. Prelić Amela, Bleuler Stefan, Zimmermann Philip, Wille Anja, Bühlmann Peter, Gruissem Wilhelm, Hennig Lars, Thiele Lothar, Zitzler Eckart, A systematic comparison and evaluation of biclustering methods for gene expression data, 10.1093/bioinformatics/btl060
  17. Stewart, G., Sun, J.G.: Matrix Perturbation Theory. Academic Press, San Diego (1990)
  18. Zhong Shi, Ghosh Joydeep, Generative model-based document clustering: a comparative study, 10.1007/s10115-004-0194-1