User menu

Effect of speed on the energy cost of walking in unilateral traumatic lower limb amputees

Bibliographic reference Genin, Joakim ; Bastien, Guillaume ; Franck, Bernard ; Detrembleur, Christine ; Willems, Patrick. Effect of speed on the energy cost of walking in unilateral traumatic lower limb amputees. In: European Journal of Applied Physiology, Vol. 103, no. 6, p. 655-663 (2008)
Permanent URL http://hdl.handle.net/2078.1/12567
  1. Bastien GJ, Heglund NC, Schepens B (2003) The double contact phase in walking children. J Exp Biol 206:2967–2978
  2. Bastien GJ, Willems PA, Schepens B, Heglund NC (2005) Effect of load and speed on the energetic cost of human walking. Eur J Appl Physiol 94(1-2):76–83
  3. Cavagna G A, Franzetti P, The determinants of the step frequency in walking in humans., 10.1113/jphysiol.1986.sp016044
  4. Cavagna G. A., Kaneko M., Mechanical work and efficiency in level walking and running, 10.1113/jphysiol.1977.sp011866
  5. Cavagna G A, Thys H, Zamboni A, The sources of external work in level walking and running., 10.1113/jphysiol.1976.sp011613
  6. De Jaeger D, Willems PA, Heglund NC (2001) The energy cost of walking in children. Pflugers Arch 441:538–543
  7. Detrembleur C, Vanmarsenille JM, De Cuyper F, Dierick F (2005) Relationship between energy cost, gait speed, vertical displacement of the centre of body mass and efficiency of pendulum-like mechanism in unilateral amputee gait. Gait Posture 21(3):333–340
  8. Fisher SV, Gullickson G Jr (1978) Energy cost of ambulation in health and disability: a literature review. Arch Phys Med Rehabil 59(3):124–133
  9. Frigo C, Tesio L (1986) Speed-dependent variations of lower-limb joint angles during walking. Am J Phys Med 65(2):51–62
  10. Fusi S, Campailla E, Causero A, di Prampero PE (2002) The locomotory index: a new proposal for evaluating walking impairments. Int J Sports Med 23:105–111
  11. Gonzalez EG, Corcoran PJ, Reyes RL (1974) Energy expenditure in below-knee amputees: correlation with stump length. Arch Phys Med Rehabil 55:111–119
  12. Hausswirth C, Brigard AX, Le Chevalier JM (1997) The Cosmed K4 telemetry system as an accurate device for oxygen uptake measurements during exercise. Int J Sports Med 18(6):449–453
  13. Hillary SC, Wallace ES (2000) Trans-tibial amputee gait adaptations as a result of prosthetic inertial manipulation. Disabil Rehabil 22(8):383–386
  14. Hof AL, van Bockel RM, Schoppen T, Postema K (2007) Control of lateral balance in walking. Experimental findings in normal subjects and above-knee amputees. Gait Posture 25(2):250–258
  15. Inman VT, Ralston HJ, Todd F (1981) Human walking. William & Wilkins, Baltimore, pp 24, 102–103
  16. Margaria R (1938) Sulla fisiologia e specialmente sul consumo energetico della marcia e della corsa a varie velocità ed inclinazioni del terreno. Atti Reale Accad Naz Lincei 7:299–368
  17. McArdle WD, Katch FI, Katch VL (1996) Exercise physiology, energy, nutrition and human performance. Williams & Wilkins, Baltimore, p 147
  18. Molen NH (1973) Energy–speed relation of below-knee amputees walking on a motor-driven treadmill. Int Z Angew Physiol 31:173–185
  19. Passmore R, Durnin JV (1955) Human energy expenditure. Physiol Rev 35:801–840
  20. Ralston HJ (1958) Energy–speed relation and optimal speed during level walking. Int Z Angew Physiol 17:277–283
  21. Robinson JL, Smidt GL, Arora JS (1977) Accelerographic, temporal and distance gait factors in below knee amputees. Phys Ther 57(8):898–904
  22. Saunders JB, Inman VT, Eberhart HD (1953) The major determinants in normal and pathological gait. J Bone Joint Surg 35-A:543–558
  23. Scherer RF, Dowling JJ, Frost G, Robinson M, McLean K (1999) Mechanical and metabolic work of persons with lower-extremity amputations walking with titanium and stainless steel prostheses: a preliminary study. J Prosthet Orthot 11:38–42
  24. Schmalz T, Blumentritt S, Jarasch R (2002) Energy expenditure and biomechanical characteristics of lower limb amputee gait: the influence of prosthetic alignment and different prosthetic components. Gait Posture 16:255–263
  25. Sin SW, Chow DH, Cheng JC (2001) Significance of non-level walking on transtibial prosthesis fitting with particular reference to the effects of anterior–posterior alignment. J Rehabil Res Dev 38:1–6
  26. Sulzle H, Pagliarulo M, Rodgers M, Jordan C (1978) Energetics of amputee gait. Orthop Clin North Am 9:358–362
  27. Tesio L, Roi GS, Möller F (1991) Pathological gaits: inefficiency is not a rule. Clin Biomech 6:47–50
  28. Tesio L, Lanzi D, Detrembleur C (1998) The 3-D motion of the centre of gravity of the human body during level walking. II. Lower limb amputees. Clin Biomech 13:83–90
  29. Torburn L, Powers CM, Guiterrez R, Perry J (1995) Energy expenditure during ambulation in dysvascular and traumatic below-knee amputees: a comparison of five prosthetic feet. J Rehabil Res Dev 32(2):111–119
  30. Waters RL, Perry J, Antonelli D, Hislop H (1976) Energy cost of walking of amputees: the influence of level of amputation. J Bone Joint Surg Am 58(1):42–46
  31. Willems PA, Cavagna GA, Heglund NC (1995) External, internal and total work in human locomotion. J Exp Biol 198:379–393
  32. Zarrugh MY, Todd FN, Ralston HJ (1974) Optimization of energy expenditure during level walking. Eur J Appl Physiol Occup Physiol 33:293–306