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École Polytechnique de Louvain

Institut de la Matière Condensée et des

Nanosciences

Electronic and optical properties of crystalline
and amorphous silica from first-principles

Dissertation présentée en vue de l’obtention du grade de

Docteur en Sciences de l’Ingénieur

par

David Waroquiers

Membres du jury :

Prof. Xavier Gonze, promoteur

Prof. Pierre Defrance, président

Dr. Fabien Bruneval

Prof. Denis Flandre

Prof. Alfredo Pasquarello

Prof. Gian-Marco Rignanese

Février 2013





Acknowledgments

This thesis is the result of four years of hard work, with their ups and

downs. If I have managed to get here, it is mainly thanks to all the

people who surrounded me and I hope one day I can return the favor.

First, I would like to thank my promoter, Prof. Xavier Gonze, for

his constant availability and kindness. He initiated me to the field of

condensed matter and welcomed me in the group in my last year of study

for my master thesis. I am grateful for his guidance and help in this PhD

work as well as for always motivating me and thrilling my curiosity. I

would not have thought of a better supervisor.

I am also grateful to Prof. Gian-Marco Rignanese. He has always

been of good advice when I was facing some problem. I remember many

of the conversations we had while sharing the car, not only about elec-

trons, holes or excitons but also other, completely unrelated, topics such

as our political views, the weather, holidays or kitchen opinions.

Xavier, Gian-Marco, thank you for all your support !

My thanks also go to all the members of my jury committee for

all their comments and fruitful discussions that allowed me to improve

this thesis : Prof. Pierre Defrance, Dr. Fabien Bruneval, Prof. Denis

Flandre and Prof. Alfredo Pasquarello.

I would like to thank all my colleagues of the SC17 building. Sadia,

Annette, Jean-Michel, Alain, you have always been there when needed, I

will never forget that. Anna, Martin, Geoffroy, Gabriel, Guillermo, Olga,

it was a pleasure to share the thesarium office with you, and I take it as

proof that I will stay two more years with you. Andrès, Aurélien, Bruno,
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Chapter 1

Introduction

Silicon dioxide or silica (SiO2) is a material of particular technology in-

terest for its exceptional combination of properties. Indeed, both its

crystalline forms and amorphous phase are widely used in many elec-

tronic and optoelectronic technologies. Quartz clocks are regulated by

the electronic oscillations of an α-quartz (α-SiO2) crystal. The fre-

quency of these crystal oscillations are very precise and quartz clocks

are amongst the most widely used time measurements standards. The

amorphous form (a-SiO2), also known as fused quartz, vitreous silica

or silica glass, is present in many electronic devices as a gate dielec-

tric in metal-oxide-semiconductor (MOS) transistors [1]. Optical fibers

are mostly made of amorphous silica as it shows a very good optical

transmission over a large range of frequencies [2].

In the applications stated above, defects and impurities constitute

an intrinsic part of the materials used. Indeed, atomic species are in-

troduced in the material — either on purpose or accidentally — during

the manufacturing process and are known to play a crucial role in the

properties of the device. In optical fibers, these impurities can cause

an attenuation of the optical signal and a decrease of the bandwidth.

As shown in Fig. 1.1, several absorption bands can contribute to this

attenuation [3]. Point defects in SiO2 are also induced under parti-

cle irradiation. These radiation-induced defects can be at the origin of

the degradation of its properties. The oxygen deficient center (ODC

in Fig. 1.1) is one of the most harmful defects in silica as it gives rise
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Figure 1.1: Absorption bands in SiO2. NBOHC and ODC stand for
non-bridging oxygen hole center and oxygen deficient center respectively.
Adapted from Ref. [3].

to an absorption band at ∼ 7.6 eV and is the precursor of the E’ cen-

ter after irradiation [1]. The E’ center has been known experimentally

for a long time from absorption and electron spin resonance (ESR) ex-

periments [4, 5], producing the corresponding absorption band at ∼5.7

eV, and has been studied extensively using first-principles computations

[6, 7, 8]. Other fundamental defect centers related to the excess or de-

ficiency of oxygen in silica are responsible for other absorption bands

at a specific energy [1, 3]. These so-called color centers are strongly

influenced by the presence of other impurities in the material, and in

particular of hydrogen species. The latter can have both a positive and

detrimental effect on the targeted properties [9, 10] of the sample.

An accurate understanding of the above-mentioned defects and pro-

cesses thus appears to be essential in the development of quality glasses

and in the improvement of their properties. In this line, first-principles

calculations show up to be a very interesting tool to be combined with

experimental studies. First, they can provide a strong support for the
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interpretation of experimental data in which some unexplained phenom-

ena can then be understood on the basis of theoretical results. Second,

first-principles computations can be used in the prediction of the prop-

erties of a particular combination of impurities and of unknown effects

for which no experimental data is available yet. This in turn can lead to

the discovery of new remedies against the radiation-induced degradation

of the properties in silica.

In this introduction, an overview of the theoretical studies of the

properties in SiO2 is sketched. The state of the art in the computation

of the properties of the pure crystalline and amorphous phases with ab

initio methods is surveyed. Defects in bulk systems and other properties

obtained from first-principles is also reviewed, with a particular emphasis

on those connected to this work. Finally, the outline of this thesis is

presented.

1.1 Computational studies of silica

The first ab initio computation of SiO2 dates back to the late 1980’s

when the electronic structure of α-quartz was obtained using density

functional theory (DFT) [11] in the local density approximation (LDA)

[12] by Chelikowsky and Schlüter [13] as well as by Calabrese and Fowler

[14]. After these two precursory studies on α-SiO2, other crystalline

polymorphs were examined and compared using localized orbitals [15]

and DFT. In particular, Allan and Teter [16] were able to determine

the structural parameters of three polymorphs (α-quartz, α-cristobalite

and stishovite) within less than 2 % of the experimental values. The

structural but also the elastic properties were then obtained for all known

SiO2 polymorphs within LDA by Keskar and Chelikowsky [17] and then

later compared to results with the generalized gradient approximation

(GGA) [18] by Demuth et al. [19]. In this latter work, the GGA was

found to predict an incorrect order of stability for the low-density phases

at low pressures, with α-quartz being energetically less favored than

cristobalite or keatite for example. On the other hand, the high pressure



4 Chapter 1. Introduction

phase transitions are not properly described by the LDA while the GGA

corrects this wrong behavior as also observed by Hamann [20].

With the constant increase in computation power and with the de-

velopment of elaborate methods and algorithms, other electronic and

optical properties have started to be analyzed through first-principles

calculations. Dielectric and vibrational properties of α-quartz were ob-

tained by Gonze et al. [21] using density functional perturbation theory

(DFPT) [22, 23], with a rather good agreement with experimental re-

sults. For an accurate description of excited state and optical properties

such as the band gap and absorption spectra, other theories are required

in order to better reflect the electronic correlations than in the mean-field

approach provided by DFT. Many-body perturbation theory (MBPT)

[24, 25] brings up the framework for the description of such properties.

It is important to stress that the value of the band gap in SiO2 is still

a matter of debate, both theoretically and experimentally [26, 27]. Fig-

ure 1.2 illustrates published values for the band gap in α-quartz (green)

and amorphous silica (blue). The band gap and the optical absorption

spectrum of α-quartz were first computed by Chang et al. [28] using the

GW approximation and the Bethe-Salpeter equation [29]. This study

can be considered as one of the main findings in the field of crystalline

silica as the excitonic character of the absorption spectrum was clearly

proved, based on theoretical arguments. The excitonic properties and

the self-trapping mechanism in α-quartz were then further investigated

by Ismail-Beigi and Louie [30].

Concerning the vitreous phase, the atomistic description of the amor-

phous structure itself is a subject on its own. Structural models can be

obtained using a classical molecular dynamics approach in which the

classical potentials are constructed on the basis of ab initio calculations

as was done by van Beest et al. [31] and Carré et al. [32]. Many studies

have concentrated on the description of the amorphous structure using

periodic supercells of relatively small size [33, 34, 35, 36]. Ginhoven et

al. [37] showed that the properties obtained from a sufficient number

of small models with 72 atoms were equivalent to those obtained with

larger supercells containing ∼1500 atoms. We have thus chosen to work



1.1. Computational studies of silica 5

19
60

19
70

19
80

19
90

20
00

20
10

Publication year

6

7

8

9

10

11

12
B

an
d

g
a
p

va
lu

e
(i

n
eV

)

α-quartz (Expt.)

α-quartz (Theor.)

Amorphous silica (Expt.)

Amorphous silica (Theor.)

Figure 1.2: Values published for the experimental (squares) and theo-
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with such small models in this thesis. Other cluster-based approaches

have been used to model amorphous silica, in particular for the descrip-

tion of the defect centers [38]. In such techniques, the problem is solved

in a basis made of localized functions (atomic orbitals, gaussians, . . . ).

Apart from the fact that the computed properties are basis-dependent,

the excited states are problematic due to their intrinsically high degree

of non-locality [39].

The first ab initio (periodic) model of amorphous silica was produced

by Sarnthein et al. [40, 41]. This model was successively used for the

computation of several properties of amorphous silica. It was proven to

reproduce the experimental neutron scattering properties by Pasquarello

et al. [42] as well as the infrared absorption spectrum by Pasquarello

and Car [43]. Further investigations on the vibrational properties showed

that the presence of small rings in the sample was responsible for the ap-

pearance of specific lines in the Raman spectrum [44]. The same model

was also used to obtain the dielectric properties and Raman spectrum

by Umari et al. [45, 46]. The ultra-violet optical absorption was studied

within DFT by Sadigh et al. [47] for varying temperatures and showed

that the temperature dependence of the fundamental absorption edge
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in amorphous silica approximately follows the Urbach rule [48]. The

band gap and the effect of small disorder in amorphous silica has also

been extensively studied by Martin-Samos et al. [27, 49]. To the best of

my knowledge, the optical properties of amorphous silica have not yet

been studied within the Bethe-Salpeter formalism including the effects

of excitons.

Turning to more realistic systems with the presence of defects and

impurities, the computation of the resulting properties using periodic

supercells is a delicate matter. Indeed, the defect itself can interact

with its neighboring images and strongly affect the properties obtained

if the supercell used is too small. Several correction schemes have been

devised in order to account for the finite-size effects in DFT [50, 51, 52]

and a good review for other methods beyond DFT can be found in

Ref. [53].

Defects in amorphous silica have been studied using DFT and the

GW method by several groups. In particular, the charged states of

hydrogen were investigated by Godet and Pasquarello [54]. The neu-

tral hydrogen species was found to be less stable than its positive and

negative charged states. The mechanism of diffusion of the positive

hydrogen has then been shown to be dominantly cross-ring [55]. Other

hydrogen-related defects were also studied by Benoit et al. [56]. Oxygen-

related defects have been described extensively in the literature using

DFT [36, 57, 58, 59]. The oxygen self-interstitial has also been studied

using MBPT by Martin-Samos et al. [60]. The diffusion mechanism of

the O self-interstitial is a process for which the standard DFT approach

fails badly. The agreement with experiment could be recovered by using

a combined DFT/GW scheme [61].

1.2 Scope and outline

Although many of the electronic and optical properties of silica are

known, a thorough description of the radiation-induced defects and their

effects on the properties of the raw material are still not clearly estab-

lished. This particularly ambitious objective lines up the motivations
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for this thesis. Indeed, the properties of pure and defective silica are

investigated using different levels of theory and the results obtained in

the following chapters are a step towards a better understanding of the

physical processes occurring in devices containing silica. Emphasis is

placed on the choice of the methods and approximations used as well

as on their accuracy and reliability to predict the electronic and opti-

cal properties. Several techniques are indeed used, each of them having

their advantages and limits. The results presented encompass a rather

broad scope with possible applications in other fields and opens to per-

spectives of future work. The outline of this thesis is sketched in the

following.

In Chapter 2, the methods used in this thesis are reviewed. Clas-

sical molecular dynamics is presented as an approximation to the full

many-body problem. For systems in their ground-state, the Schrödinger

equation is shown to be more easily solved using density functional the-

ory (DFT) by reformulating the electronic problem in terms of the elec-

tronic density instead of the total wavefunction. As a ground-state the-

ory, DFT is unable to predict excited states properties and MBPT is

presented as a cure to accurately describe band gaps and optical prop-

erties.

The properties of pure silica are presented in Chapter 3. First,

the amorphous silica models are presented and their structural prop-

erties are analyzed. The electronic properties in amorphous silica are

then compared to those of the α-quartz crystal. The value of the band

gap in both the amorphous and crystalline forms is determined by com-

bining Bethe-Salpeter computations and experimental optical spectra,

suggesting. A publication is in preparation.

Hydrogen-containing silica is investigated in Chapter 4. The pos-

itive, neutral and negative charged states of hydrogen in silica are first

introduced. The defect energy levels obtained from DFT and GW com-

putations are then presented. Formation energies for the three charged

states are calculated using the DFT formalism. Preliminary results are

also obtained for GW -corrected formation energies, with some discrep-
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ancies which led to reexamine, in the following chapters, the approxi-

mations used until now.

In Chapter 5, the supercell-size dependence of the GW corrections

of defect energy levels is investigated. The neutral oxygen vacancy in

ideal β-cristobalite is used as a test case. The comparison of a simple

quantity arising from the GW computations in the pure and defective

samples is proposed as a minimal requirement for the supercell size con-

vergence. A publication is in preparation.

The frequency dependence of the microscopic dielectric function is

examined in Chapter 6. In particular, the plasmon-pole approxima-

tion of Godby and Needs is shown to be a very good estimate of the

quasiparticle energies obtained with a full frequency treatment, for the

states close to the Fermi level.

Finally, an alternative to the computationally demanding GW me-

thod is analyzed in Chapter 7. The Tran and Blaha (TB09) exchange-

correlation potential was recently proposed to overcome the well known

“band gap problem” in DFT. It will be shown that indeed the band gaps

are better reproduced with this functional but at the cost of a systematic

degradation of the valence band structure. Further GW corrections

starting from TB09 DFT electronic structure solve this problem and

seem to be rather close to quasiparticle self-consistent GW schemes.

Part of this work has been accepted for publication in Physical Review B

as Ref. [62].

Final conclusions are addressed at the end of this manuscript.



Chapter 2

Methodology

2.1 The quantum many-body problem

In the early decades of the 20th century, an impressive amount of new

progresses has been made in physics and chemistry, in particular in the

knowledge of the composition of matter, molecules and atoms as well

as the physical laws that determine their evolution. When the micro-

and nano-worlds are considered, the laws of classical physics turn out

to be insufficient because of the electronic nature of matter [63, 64,

65]. Indeed, for these length scales and their corresponding energies,

the Planck’s constant h cannot be neglected such that the atoms and

electrons show both particle and wave characteristics. This is known

as the theory of particle-wave duality, originally introduced by Louis de

Broglie in 1924 in his doctoral thesis. As a consequence, the properties

of the electrons cannot be described using classical mechanics. These

findings have inspired the development of the quantum theory of many-

particle systems [66].

In this section, the important concepts of many-body quantum me-

chanics are sketched. First the Schrödinger equation [67] and its

formidable difficulty are presented. The Born-Oppenheimer approxi-

mation [68] is then introduced as a simplification of the full quantum

many-body problem. This important advance alleviates the complicated

many-body problem and will actually be used in all this thesis.

9
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2.1.1 Schrödinger equation

In quantum mechanics, the state of a physical system is completely

described by its many-body wavefunction ΨMB
i . For systems at equilib-

rium, this wavefunction and its associated eigenvalue can be obtained

through the time-independent Schrödinger equation

ĤMBΨMB
i = EiΨ

MB
i (2.1)

where the many-body Hamiltonian ĤMB is the sum of the kinetic energy

T̂ and potential energy V̂ :

T̂ = −
N∑

i=1

~
2mi
∇2

ri (2.2)

V̂ =
1

4πε0

N∑

i=1

N∑

j>i

qiqj
|ri − rj |

(2.3)

where mi and qi are the mass and the charge of particle i.

The two terms of the Hamiltonian stated above are known exactly.

The wavefunction ΨMB
i of the system can thus in principle be determined

exactly but in practice, the solution is far from being computationally

tractable except for trivial cases. Indeed, all the particle’s motions are

correlated through the potential energy operator such that the many-

body wavefunction is a complicated mathematical representation of the

system including the effects of this correlation. The aim of finding the

wavefunction that satisfies Schrödinger’s equation is thus almost impos-

sible to achieve.

As a consequence, it is not quite surprising that a large part of this

field of physics has been focused on trying to find approximations to

the many-body Hamiltonian ĤMB and wavefunction ΨMB
i that can be

managed in a reasonable human and/or computer time, while preserving

the proper physics, or at least keeping the desired accuracy and physical

understanding.
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2.1.2 The Born-Oppenheimer approximation

The complexity of the Schrödinger equation and its consequences led

Born and Oppenheimer [68] (BO) to rationalize the full many-body

problem. As the masses of the nuclei are at least 3 orders of magni-

tude larger than the electron mass, their dynamics are much slower than

those of electrons. Born and Oppenheimer suggested that the motion of

nuclei and electrons could be decoupled such that the full many-body

wavefunction takes the following form :

ΨMB({ri}, {Rj}) = Ψel
{Rj}({ri})Φ({Rj}) (2.4)

The full Hamiltonian can be separated as a sum of electronic T̂el

and atomic T̂nucl contributions to the kinetic energy operator plus the

electrostatic interactions between electrons V̂el−el, between nuclei and

electrons V̂nucl−el and between nuclei V̂nucl−nucl

ĤMB = T̂el + T̂nucl + V̂el−el + V̂nucl−el + V̂nucl−nucl (2.5)

From now on and unless otherwise stated, atomic units will be as-

sumed in the rest of this manuscript such that the electron mass me,

the electron charge e, the reduced Planck constant ~ and the Coulomb

constant 1
4πε0

are all set to one. All the components of the Hamiltonian

in equation 2.5 are then defined as
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T̂el = −
Ne∑

i=1

1

2
∇2

ri (2.6)

T̂nucl = −
Nn∑

i=1

1

2Mi
∇2

Ri
(2.7)

V̂el−el =

Ne∑

i=1

Ne∑

j>i

1

|ri − rj |
(2.8)

V̂nucl−el = −
Ne∑

i=1

Nn∑

j=1

Zj
|ri −Rj |

(2.9)

V̂nucl−nucl =

Nn∑

i=1

Nn∑

j>i

ZiZj
|Ri −Rj |

(2.10)

where Ne and Nn are the numbers of electrons and nuclei, ri is the

position of electron i, Ri is the position of nucleus i, Mi is the mass of

atom i in atomic units and Zi is the atomic number of nucleus i.

The slow dynamics of nuclei as compared to the electron’s lead to

consider that the electrons evolve in a potential created by nuclei that

are fixed. In that case, the nucleic kinetic energy term in Eq. 2.5 can

be neglected as the nuclei do not move and the electrostatic interactions

between nuclei is a constant. As a result, the electronic Hamiltonian

Ĥel is expressed as

Ĥel
{Rj} = T̂el + V̂el−el + V̂nucl−el (2.11)

The Schrödinger equation involving this electronic Hamiltonian then

reads

Ĥel
{Rj}Ψ

el
{Rj}({ri}) = Eel

{Rj}Ψ
el
{Rj}({ri}) (2.12)

where Eel
{Rj} is the electronic energy of the system with the fixed posi-

tions {Rj} for the nuclei.

The total wavefunction of the system, including the nuclei, can in

turn be obtained by reintroducing the atomic kinetic energy term :
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[
T̂ nucl + Eel

{Rj}
]

Φi({Rj}) = EBO
i Φi({Rj}) (2.13)

Though the BO approximation substantially simplifies the many-

body problem by reducing the size of the problem, it is clear that solving

Eq. 2.12 remains a burden as many electrons are involved in the elec-

tronic Hamiltonian. The individual motions of the electrons are indeed

correlated through the electron-electron interaction V̂el−el. In order to

solve this problem, other approximations are needed. In the following

sections, different methods for solving this problem will be presented.

The different approaches are introduced in order of increasing com-

plexity. The approach presented in Sect. 2.2 proposes to handle the

complicated electronic interactions by simply including it in an effective

potential that also comprises the nucleic interactions. The problem is

thus reduced to a classical mechanical one. In Sect. 2.3, density func-

tional theory deals with electronic interactions in an average way where

the electronic density is used as the central variable for setting up the

effective (electronic) potential. Finally, many-body perturbation the-

ory in the GW approximation (Sect. 2.4) and Bethe-Salpeter approach

(Sect. 2.5) uses perturbation expansion series of independent interac-

tions to model the fully interacting electronic system, still within the

realm of the BO approximation.

2.2 Classical Molecular Dynamics

Molecular Dynamics (MD) is the study of the evolution of the atomic

configuration of a complex physical system by means of computer sim-

ulations. The movement of the atoms in the system is determined by

numerically integrating Newton’s equations of motion [69]. The BO ap-

proximation is used such that the electrons instantaneously adapt their

dynamics to the atomic displacements. In its classical version, the hamil-

tonian is derived from an effective potential or force field which contains

all the electronic, ionic and electron-ion interactions and depends only

on the atomic positions.
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In this section, the basic theory of classical MD is reviewed. First,

the relevant equations and algorithms used to simulate the motion of

the system’s atoms are introduced. Then the empirical potentials for

silica used in this thesis are presented. Finally, the tools used to analyze

the results and compare to available experimental data are described.

2.2.1 Basic theory

Equations of motion and discretization

The trajectories of the N atoms are described by the laws of motion

or equations of motion (EOM). Newton’s second law is precisely the

equation that describes the relationship between the force Fi acting

on an object with mass Mi (the atom) and its acceleration Ai. The

evolution of the N atoms in the system is thus described using a set of

N equations :

Fi = MiAi = Mi
d2Ri

dt2
with i = 1 . . . N (2.14)

The forces on the atoms are calculated from the derivative of a given

effective potential (see Sec. 2.2.2)

Fi = −∇RiV (R1, . . . ,RN ) (2.15)

For the numerical study of the system, the N second-order differ-

ential equations 2.14 are rewritten as a set of 2N first-order equations

involving the velocity Vi of each atom :





dRi

dt
= Vi

Mi
dVi

dt
= Fi

(2.16)

(2.17)

These two equations are then integrated by discretizing in time as

t = t0, t1, . . . using a constant time step τ = tn+1 − tn. Each time tn is

then obtained as t0 + nτ .
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The MD algorithm

The basic MD algorithm follows a standard procedure :

0. The initial configuration of the system at t = t0 is first set up

: positions {Ri}0 and velocities {Vi}0 of all the particles in the

system.

1. All the forces Fi on each atom are then computed using Eq. 2.15

from which the new velocities can be derived using Eq. 2.17.

2. The configuration is then updated by integrating Eq. 2.16 with the

new velocities.

3. Steps 1 and 2 are then iterated for the required number of steps

or until some stationary state is achieved.

Several schemes exist for the integration of equations 2.16 and 2.17.

The algorithm used here (the leap-frog algorithm) is described in the

following.

The leap-frog algorithm In the leap-frog algorithm [70], which is

represented schematically in Fig. 2.1, the positions and velocities of the

particles are evaluated at time tn and tn+ 1
2

respectively, where tn+ 1
2

=

tn + τ
2 :

R (tn+1) = R(tn) + τV
(
tn+ 1

2

)
(2.18)

V
(
tn+ 1

2

)
= V

(
tn− 1

2

)
+
τ

m
F(tn) (2.19)

This algorithm has the advantage that it is time-reversible. This

guarantees the conservation of energy or any other conservable quantity

and hence provides a robust algorithm to be used for NVT ensembles

[71].

The NVT ensemble

The direct application of equations 2.15-2.17 produces quantities in the

NVE or micro-canonical ensemble (constant number of particles, con-



16 Chapter 2. Methodology

Time ttn tn+1 tn+2 tn+3

tn+ 1
2

tn+ 3
2

tn+ 5
2

R R R

V V

Figure 2.1: Schematic view of the leap-frog algorithm. The configura-
tions R of the particles are evaluated at each integer time step tn using
Eq. 2.18 using the velocities V evaluated at the preceding half-integer
time step tn− 1

2
.

stant volume and constant energy). However, the properties that are

investigated are most often from the NVT or canonical ensemble where

the number of atoms N , the volume V and the temperature T are fixed.

For that purpose, the system is coupled to an external heat bath with

the target temperature T target.

In the Nosé-Hoover temperature coupling, which is the thermostat

that has been used in this thesis, a friction term is added to equation

2.17 :

Mi
dVi

dt
= Fi −

ξ

M i
Vi (2.20)

where the friction parameter ξ has its own equation of motion :

1

2
Q

dξ

dt
=

1

2

N∑

i=1

MiV
2
i −

1

2
(Nf + 1)kBT

target (2.21)

where Nf = 3(N − 1) is the number of degrees of freedom of the

system, kB is the Boltzmann constant and the mass parameter Q of the

heat bath determines the coupling strength of the thermostat.

When the kinetic energy of the system (first term in Eq. 2.21) is

larger than the target kinetic energy of the system (second term in

Eq. 2.21), the friction parameter ξ is increased such that more energy

is extracted from the system in order to cool it down. On the opposite,

when the system’s temperature is lower than the target one, ξ is negative

and the friction term causes the system to heat up.
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Actually, the coupling strength changes when the target temperature

is varied. For that reason, the Q parameter is usually expressed in terms

of the period τNH of the kinetic energy oscillations :

Q =
τ2

NHT
target

4π2
(2.22)

Using τNH as the parameter for the thermostat is thus more justi-

fied, in particular when annealing, melting or quenching is simulated.

In this thesis, a melt-and-quench procedure has been used to prepare

amorphous silica models (see Sec. 3.1).

2.2.2 Effective potentials

In a molecular dynamics simulation, one very important decision is the

choice of the force field. Different types of force fields exist : bonded,

non-bonded and electrostatic potentials. Usually for a given system, the

total force field is a combination of bonded, non-bonded and electrostatic

potentials.

Bonded interactions assume a predefined topology for the system

which is then described using 2-, 3- and 4-body interactions. A given

particle will usually have few bonded interactions mainly corresponding

to its chemical bonds. These interactions are defined precisely from a

fixed list of atoms. In contrast, non-bonded interactions are defined

for all particles. These are typically the Lennard-Jones potential or

other model pair-potentials. In principle, their range is infinite but in

practice, the long-range part is usually small such that the interactions

are computed only for the atoms within a certain radius. The Coulomb

interaction is a particular case of non-bonded interactions as their range

is much longer. For this reason, the are commonly dealt with using

Ewald sums (see Sec. 2.2.2). Finally, specific constraints can also be

defined with respect to the actual coordinate system.

Effective potentials for silica

Simple two-body unpaired potentials (CHIK) from Carré et al.[32] have

been used in this thesis for the generation of the silica models. These
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potentials have the same form as the old van Beest, Kramer and van

Santen (BKS) potentials [31] but have revealed to yield more accu-

rate static and dynamical properties. In particular, the partial pair-

correlation functions and angular distribution functions show results in

closer agreement with experiment than the BKS potentials. The CHIK

potentials are expressed as the sum of a Coulomb term and a short-range

term in the Buckingham [72] form :

Vαβ(R) =
qαqβe

2

R
+Aαβ e−BαβR−Cαβ

R6
(2.23)

where R = |Ri −Rj | is the distance between particles i and j and

the coefficients qα, qβ, Aαβ, Bαβ and Cαβ depend on the types α and β

of species i and j.

As it can be seen in Fig. 2.2 (in which the inset shows the longitu-

dinal force obtained by applying equation 2.15 to the potentials), the

potentials thus defined (thin lines) have a nonphysical behavior at low

separation such that if two particles appear to be too close to each other

during the simulation, they might collapse due to the infinitely attrac-

tive potential. A strong repulsive part V RP
αβ (R) has thus been added to

each of the potentials for distances under which the resulting force starts

to decrease (branching point). This term has been chosen proportional

to the inverse fourth power of the distance :

V RP
αβ (R) = v0

αβ +Kαβ(R−R0
αβ)−4 (2.24)

The strengths Kαβ of the hard repulsive parts were set to 1022

erg/cm4 (∼ 33 eV/Bohr) while the parameters v0
αβ and r0

αβ were chosen

in order to match the CHIK potentials and their first derivatives at the

corresponding branching points.

Long-range electrostatic interactions and Ewald sums

Electrostatic interactions in a system correspond to the combination

of all Coulomb repulsion or attraction of all pairs of particles with an

(effective) charge. As already mentioned previously, this kind of interac-

tion has long-range effects such that for periodic systems, the number of
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Figure 2.2: Effective potentials used for the generation of the amorphous
silica models (thin lines). For low separation of species, for which the
resulting force starts to decrease (see inset), a repulsive part has been
added (thick lines).
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terms in the electrostatic potential acting on a given atom is very large.

Indeed a given atom interacts with all the other atoms in the unit cell as

well as with all the periodically replicated images of all atoms. Defining

n = (nx, ny, nz) as the index of the cell, the total Coulomb energy reads

UCoul =
1

2

∑

nx

∑

ny

∑

nz

∑

i

∑

j′

qiqj
Rij,n

(2.25)

in which Rij,n is the distance between particle i in the origin cell

n0 = 0 and particle j in cell n = (nx, ny, nz) and the prime in the sum

over j means that the i = j term has to be omitted when n = n0.

Using the technique of Ewald summation [73, 74], this slowly con-

verging sum is split into the sum of two rapidly converging ones and a

constant term :

UCoul = Udir + U rec + U0 (2.26)

Udir =
1

2

∑

nx

∑

ny

∑

nz

∑

i

∑

j′
qiqj

erfc(αRij,n)

Rij,n
(2.27)

U rec =
1

2πVcell

∑

mx

∑

my

∑

mz

∑

i

∑

j′
qiqj

e(−(πm/α)2+2πim·(Ri−Rj))

m2
(2.28)

U0 = − α√
π

N∑

i

q2
i (2.29)

The direct term Udir is calculated in real space and is rapidly converg-

ing in Rij,n due to the complementary error function

erfc(αRij,n) while the Fourier term U rec is calculated in reciprocal space

and converges rapidly due to the decreasing exponential e(−(πm/α)2 and

the 1
m2 dependence.

2.2.3 Conclusion

Classical molecular dynamics provides an efficient and fast way to de-

scribe molecular and solid state systems. As the electronic interactions

are completely included in the effective classical potentials, it consider-

ably reduces the complexity of the system. On the other hand, these
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effective potentials are empirical. Consequently, they have to be chosen

carefully and vary from system to system. Another drawback of CMD

lies in the underlying assumption of classical potentials. As quantum

effects are not explicitly used in the theory, electronic properties cannot

be obtained from CMD.

The CHIK potentials presented in Sect. 2.2.2 yield structural prop-

erties for amorphous silica in good agreement with experiment. Primary

models can thus be generated using CMD and these CHIK potentials

and used as starting point for further refinement. The next section

presents density functional theory that allows for a more accurate and

more suited description of a system composed of nuclei and electrons.

2.3 Mean field approaches and density functional

theory

In this section, the basic ideas of mean field approaches, such as the

Hartree-Fock method and density functional theory are sketched. First

the concept of independent particles is introduced as well as the Hartree

and Hartree-Fock approximations. The ground basis of density func-

tional theory is then presented, namely the Hohenberg-Kohn theorems

and the Kohn-Sham equations. The exchange-correlation approxima-

tions that were used throughout this thesis are then laid out. Finally,

the notions of reciprocal space, basis sets and pseudopotentials are re-

viewed.

2.3.1 Independent particles

Using Born-Oppenheimer approximation the atomic and electronic mo-

tions are separated, the electronic wavefunction of the system can be

determined for a given arrangement of the atoms :

Ĥel|Ψm〉 = Eel
m|Ψm〉 (2.30)

where Ĥel = T̂e + V̂ee + V̂eN{r} is the electronic Hamiltonian oper-

ator. In this operator, T̂e, V̂ee and V̂eN{R} correspond respectively to
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the electronic kinetic energy, the electron-electron interaction and the

electron-nuclei interaction.

T̂e =

Ne∑

i=1

−∇
2
ri

2

V̂ee =

Ne∑

(i,j)

i<j

1

|ri − rj |

V̂eN =

Ne∑

i

NN∑

j

−Zj
|ri −Rj |

=

Ne∑

i

Vext(ri)

If we consider the electrons as non-interacting, the V̂ee is neglected.

The N -electrons problem can then be solved by using Slater determi-

nants :

Ψn(r1, r2, ..., rN ) =
1√
N

∣∣∣∣∣∣∣∣∣∣

ψ1(r1) ψ2(r1) . . . ψN (r1)

ψ1(r2) ψ2(r2) . . . ψN (r2)
...

...
. . .

...

ψ1(rN ) ψ2(rN ) . . . ψN (rN )

∣∣∣∣∣∣∣∣∣∣

(2.31)

where the one-electron orbitals ψi(r) are eigenfunctions of the one-

electron Schrödinger equation :

(
−1

2
∇2 + V (r)

)
ψi(r) = εiψi(r) (2.32)

The total electronic energy is then obtained as the sum of the energies

of each orbital. Similarly, the electronic density corresponds to the sum

of the electronic density of each orbital.

2.3.2 The Hartree and Hartree-Fock approximations

While verifying the Pauli exclusion principle, the solutions 2.31 com-

pletely neglect the electron-electron interaction. In the Hartree approx-

imation, the many-body wavefunction is written as a product of the

one-electron wavefunctions
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Ψ(r1, r2, . . . , rN ) = ψ(r1)ψ(r2) . . . ψ(rN ) (2.33)

and the electrons interact via the mean-field electrostatic potential aris-

ing from the other electrons. The effective potential Veff is thus defined

as the superposition of the external potential Vext created by the ions

and the Hartree potential VH

Veff(r) = VH(r) + Vext(r) (2.34)

The Hartree potential is a functional of the electronic density :

VH(r) =

∫
n(r′)
|r′ − r|dr

′ (2.35)

The electronic density is in turn obtained from the one-electron

Schrödinger wavefunctions :

n(r) =
∑

j

ψ∗j (r)ψj(r) (2.36)

The wavefunctions are obtained from the solution of the one-electron

Schrödinger equations 2.32 where V (r) is replaced by Veff(r) :

(
−1

2
∇2 + Veff(r)

)
ψj(r) = εjψj(r) (2.37)

In this way, a Self-Consistent Field (SCF) cycle is defined as illus-

trated in Fig. 2.3 (a). From a starting electronic density, the correspond-

ing effective potential is calculated and used to obtain the wavefunctions.

From these wavefunctions, a new electronic density can be calculated.

This can be iterated until all the elements of the cycle reach a stationary

solution.

In the Hartree approximation stated above, the Pauli exclusion prin-

ciple is clearly not satisfied as the wavefunction should be antisymmetric

upon interchange of two electrons :
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{ψj}

n(r) VH|X(r)

(a)

n0(r) VKS [n0](r)

ψi(r)ψ0(r)

(b)

Figure 2.3: Self-Consistent Field cycle (a) in the Hartree approximation
and (b) within Density Functional Theory.

Ψ(r1, r2, . . . , ri, . . . , rj , . . . , rN ) = −Ψ(r1, r2, . . . , rj , . . . , ri, . . . , rN )

(2.38)

In the Hartree-Fock method, the wavefunction is expressed as Slater

determinants as in Eq. 2.31. The Pauli exclusion principle is then satis-

fied trivially by including an exchange term in the one-particle Hartree-

Fock equations :

(
−1

2
∇2 + Veff(r)

)
ψj(r)−

∑

k

∫
ψ∗k(r

′)ψ∗j (r
′)ψk(r)

|r′ − r| dr′ = εjψj(r)

(2.39)

The Hartree-Fock equations do not contain any electronic correla-

tion. Indeed, by assuming a single determinant for the electronic wave-

function, the dimensional space of possibilities for the total electronic

wavefunction is reduced. This is indeed a strong hypothesis that can

lead to poor electronic structures.

2.3.3 Density Functional Theory

In the Hartree and Hartree-Fock methods, electronic correlation is ne-

glected such that the computed properties can largely deviate from the
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real ones. One possibility relies in Density Functional Theory (DFT) in

which the electronic exchange and correlation effects are taken into ac-

count by means of a model local potential. In this section, the underlying

theorems of DFT will first be presented. The fundamental approxima-

tions used in DFT are then laid out. Finally, some important aspects of

practical calculations are set down.

Density as the fundamental variable : the Hohenberg-Kohn

theorems

In 1964, Hohenberg and Kohn [11] (HK) published a paper on the in-

homogeneous electron gas that would appear to be a very important

step into the possibility to solve the Schrödinger equation for real sys-

tems. They proposed to address the complicated and fully interacting

electronic problem by replacing it by a much more tractable one. The

electronic density n(r) is considered as the fundamental variable of the

problem and hence the space in which the problem is solved is reduced

by a factor N . This section presents the two main theorems that come

with this idea.

Theorem 1. The ground-state electronic density n(r) of a system of

interacting electrons uniquely determines the external potential Vext(r)

in which the electrons evolve.

Conversely, the external potential Vext(r) is a universal functional of

the density within some additive constant. It follows that any property

of the system is in fact a functional of the ground-state density n0(r).

In particular, the total energy is obtained as

E[n(r)] = F [n(r)] +

∫
n(r)Vext(r)dr (2.40)

where F [n(r)] is a universal (unknown) functional of the density.

Theorem 2. The universal functional for the energy E[n(r)] is defined

in terms of the electronic density n(r). The ground-state is obtained for

the density n0(r) that minimizes this functional.
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As a consequence, the ground-state of the system (and its total en-

ergy) can be obtained using conjugate gradient methods or other itera-

tive minimization procedures [75].

The Kohn-Sham formulation

All the beauty of DFT resides in the existence of a universal functional

F [n(r)] of the density defined in Eq. 2.40 and in the reduction of the

complexity of the problem from a wavefunction in 3N dimensions to the

density in 3 dimensions. However, the functional F [n(r)] is unknown.

Kohn and Sham [12] split up this functional into three terms so that the

energy functional E[n(r)] is rewritten as

E[n(r)] = Ts[n(r)] + EH[n(r)] + EXC[n(r)]︸ ︷︷ ︸
F [n(r)]

+

∫
n(r)Vext(r)dr (2.41)

where

Ts[n(r)] = −1

2

N∑

i=1

∫
ψ∗i (r)∇2ψi(r)dr (2.42)

EH[n(r)] =
1

2

∫
n(r)VH(r)dr =

1

2

∫
n(r)n(r′)
|r− r′| dr (2.43)

are the kinetic energy of the non-interacting electron gas with density

n(r) and the Hartree energy of the same density. These two terms are

known exactly while the last term EXC[n(r)] is the

exchange-correlation (XC) energy of the system and is formally defined

by Eq. 2.41. This XC energy functional contains all the many-body ef-

fects of the interacting system and is in general not known. In fact, it

has been calculated exactly only for simple model systems such as the

homogeneous electron gas [76].

Using the second HK theorem (Theorem 2) with the additional con-

straint that the total number of electrons Ne has to remain constant

under any variation of the density, the ground-state density of the sys-

tem is found by minimizing the energy :



2.3. Density functional theory 27

δ

δn(r)

[
E[n(r)]− λ

(∫
n(r)dr−Ne

)]
= 0 (2.44)

δE[n(r)]

δn(r)
= λ (2.45)

in which λ plays the role of a Lagrange multiplier for the constraint on

the number of electrons. Equation 2.45 can then be rewritten as :

δTs[n(r)]

δn(r)
+ VKS(r) = λ (2.46)

where the Kohn-Sham potential VKS(r) is an effective potential ex-

pressed as

VKS(r) = Vext(r) + VH(r) + VXC(r) (2.47)

The two first terms in Eq. 2.47 have already been defined in Sect. 2.3.2.

The exchange-correlation potential VXC(r) is derived from the exchange-

correlation energy EXC[n(r)] :

VXC(r) =
δEXC[n(r)]

δn(r)
(2.48)

With the equations and quantities stated above, the ground-state

energy and density are obtained by solving equations 2.36 and 2.47 to-

gether with the following one-particle Schrödinger equations with the

KS potential as the effective potential :

(
−1

2
∇2 + VKS(r)

)
ψi(r) = εiψi(r) (2.49)

This set of equations define a self-consistent cycle (SCF) as illus-

trated in Fig. 2.3 (b). This cycle has to be iterated until a station-

ary state is obtained for all the quantities involved. The Kohn-Sham

equations thus give the theoretical basis for the description of a ground-

state’s system provided that the exchange-correlation energy EXC[n(r)]

in Eq. 2.48 is known, which is usually not the case. Because of that,

approximations for this functional have to be used in practice.
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Exchange-correlation functionals

Many exchange-correlation functionals exist in the scientific community.

In fact, plenty of them have been devised for many specific purposes.

In an ideal world, the exchange-correlation functional should work for

any system and for any property. In practice, this perfect exchange-

correlation does not exist and one then needs to choose one amongst

all the possible approximations on the market. In this thesis, the local

density approximation[77] (LDA) has been used for most of the results

presented. Another functional proposed by Tran and Blaha [78] has also

been tested in this work for the electronic properties.

Local density approximation In the local density approximation,

the exchange-correlation energy is obtained by assuming that it depends

locally on the exchange-correlation energy density

εHEG
XC (n) of the homogeneous electron gas with the same density n =

n(r), which is known exactly from quantum Monte-Carlo simulations

[76] and has been parametrized by Perdew and Wang [77] for any con-

stant density n. The total exchange-correlation energy is then obtained

by integrating the exchange-correlation energy density over the volume

of the system :

EXC
LDA[n(r)] =

∫
εHEG

XC (n(r))dr (2.50)

Surprisingly and despite of its simplicity, LDA has been shown to

give reasonable structral properties such as bond lengths, lattice param-

eters and atomic positions within 1 or 2 % over a large range of systems

[79]. The computation of other energy-derived properties obtained from

finite differences or from the more elegant density functional perturba-

tion theory [22, 80, 81] within LDA can also be achieved with a relative

accuracy of less than 5 % [82] for many systems.

Unfortunately, this approximation is not reliable for all the proper-

ties. Excited states and, in particular, the band gap energy are poorly

described within LDA [83, 84]. In fact, except for the highest occupied

and lowest unoccupied states, the eigenvalues obtained from the solution
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Figure 2.4: Jacob’s ladder of density functional approximations, from
Perdew and Schmidt[85].

of the KS equations cannot in principle be interpreted as quasiparticle

energies. They are indeed just Lagrange multipliers used to solve a min-

imization problem of a fictitious system of non-interacting particles that

mimics the fully interacting one. This is not specific to LDA though and

attempts are made to design new functionals capable of describing such

properties.

Other functionals and Jacob’s Ladder Many other approxima-

tions for the exchange-correlation functional exist in the literature be-

sides the LDA. These range from local gradient expansion of the density

[18] to more elaborate schemes involving semi-local or orbital-dependent

terms [39]. Depending on the system and properties as well as on the

desired accuracy one aims to look at, some type of functional might be

preferred, keeping in mind that usually, a better accuracy implies a more

complicated and more computationally demanding approximation.

This multitude of functionals can be classified into different groups

by their level of simplicity or reversely by their level of accuracy. These

groups can be represented in Fig. 2.4 in a so-called Jacob’s ladder of

density functional approximations after Perdew and Schmidt[85].
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In this Jacob’s ladder, the highest rung corresponds to the best ac-

curacy that can be achieved from an exact treatment of exchange and

partial correlation. This kind of technique is very demanding and can-

not be applied to real large systems with the present status of computer

and hardware. On the contrary, the lowest rung represents the LDA ap-

proximation, which is conceptually easy and computationally tractable

for relatively large systems. The other rungs between these two are

other levels in the theory, such as GGA functionals and other Meta- and

Hyper-GGA’s, with their own pros and cons.

Describing the bandgap with a semi-local functional : the Tran-

Blaha exchange-correlation One of the main failure in DFT is the

well known band gap problem and the correct description of excited

states. Indeed, DFT is formally a ground-state theory and this issue has

been known for years [83, 84]. In order to get reliable electronic struc-

tures, one needs to go to many-body perturbation theory (see Sect. 2.4)

but with a considerable increase in computational time. For that rea-

son, many attempts have been made to obtain better band gaps and to

improve the quality of the excited states without using any computa-

tionally demanding many-body techniques. The ∆SCF method [39] for

atoms and molecules, further generalized to solids by Chan and Ceder as

∆-sol,[86] leads to fundamental band gaps in closer agreement with ex-

periment. However, the full band structure of the excited states remains

quite approximate. Hybrid functionals [87, 88, 89] can have a positive

effect on the accuracy of the bandgap and the position of higher excited

states[90] but are more computationally demanding than standard XC

functionals as they include some part of exact exchange.

In a recent letter by Tran and Blaha [78], a modified version of the

Becke-Johnson exchange potential[91] combined with an LDA (Perdew-

Wang [77]) correlation part was proposed to improve band gap predic-

tions in DFT. This new XC functional (referred to as TB09) has already

been applied to a large variety of systems[92, 93, 94, 95, 96, 97] and was

able to predict bandgaps in close agreement with experiment.
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The TB09 exchange-correlation potential is composed of a modified

version of the Becke-Johnson[91] exchange potential and an LDA corre-

lation part. The exchange part V TB09
X (r) takes the following form :

V TB09
X (r) = cV BR

X (r) + (3c− 2)
1

π

√
5

12

√
2ts(r)

n(r)
, (2.51)

where V BR
X (r) is the Becke-Roussel potential [98] modeling the Coulomb

potential created by the exchange hole (see Appendix A for the exact

expression) and the parameter c results from the following equation :

c = α+ β

(
1

Vcell

∫

cell
dr′
|∇n(r′)|
n(r′)

)1/2

, (2.52)

where Vcell is the unit cell volume and where α and β were fitted to

experimental gaps in the original paper using a least-square procedure.

The kinetic energy density ts(r) reads

ts(r) =
1

2

N∑

i=1

∇ψ∗i (r) · ∇ψi(r) (2.53)

Limitations of this functional have been pointed out by some au-

thors. First, there is no energy functional from which the potential is

derived [99, 100], which prevents the description of any energy-related

properties, such as defect formation energies or phase stability. Sec-

ondly, it is not intended to be used for systems without an electronic

gap and indeed seems to be an issue for such systems[101]. Finally,

effective masses are reported to be overestimated [97, 102], with an ac-

companying narrowing of the bands. There are other known drawbacks

to the TB09 functional, namely the fact that it is not size consistent

and that it is not gauge invariant.[103]. In this thesis, the band gaps

and electronic structures of several compounds obtained with the TB09

functional will be compared to results obtained with LDA and the more

accurate GW method.
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2.3.4 DFT in practice

All the theory presented here above is very general. The actual im-

plementation of the Kohn-Sham equations and the way the different

quantities are represented depend on the physical system under study.

For atomic or molecular systems, one usually takes localized basis sets

such as atom-centered gaussians or spherical harmonics. In this thesis,

crystalline and amorphous solids are concerned. As it will be shown

later on, amorphous structures can be described using a periodic su-

percell approach. The most appropriate type of basis set for periodic

quantities is then made of plane waves. In this section, some important

aspects for practical calculations in periodic systems such as the Bloch

theorem and the use of pseudopotentials will be presented.

Periodicity and the Bloch theorem

In a solid, the electronic problem is a very complicated one as there is

an infinitely large number of electrons. In practice, the solid is idealized

as a perfect crystal where the atoms are periodically repeated in space.

Because of this periodic arrangement of ions, the electrons evolve in an

effective potential that has the same periodicity as the crystal. The

physical system is completely characterized by the coordinates of the

atoms in the primitive unit cell and the primitive translation vectors

(a1,a2,a3) that determine how the unit cell is replicated.

By definition of the periodic crystal, any real space property f(r)

of the system such as its electronic density or the potential is invariant

under any translation of the primitive translation vectors and integer

combinations of them :

f(r + R) = f(r) (2.54)

with R = n1a1 + n2a2 + n3a3 and n1, n2, n3 ∈ Z3.

As a periodic quantity, f(r) can be expressed as a Fourier series

f(r) =
∑

G

fG eiG·r (2.55)
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in which G = m1b1 + m2b2 + m3b3 (m1, m2, m3 ∈ Z) is a reciprocal

space vector and (b1,b2,b3) are the reciprocal space primitive vectors

defined as

b1 =
a2 × a3

Vcell
, b2 =

a3 × a1

Vcell
and b3 =

a1 × a2

Vcell
(2.56)

where Vcell = a1 · (a2 × a3) is the volume of the primitive unit cell.

The Fourier coefficients fG in Eq. 2.55 are obtained as

fG =
1

Vcell

∫

Vcell

f(r) e−iG·r dr (2.57)

The periodicity of the effective potential of the system implies that

it must verify the condition of Eq. 2.54. A direct consequence of this

lies in the Bloch theorem [104] :

Theorem 3. In a perfect crystal, one can choose the eigenfunctions of

a Schrödinger equation in a periodic potential V (r) to be written as the

product of a plane wave part eikr and a periodic function unk(r) with the

same periodicity as the potential :

ψnk(r) = eikr unk(r) (2.58)

where

unk(r + R) = unk(r) (2.59)

and k is a reciprocal space vector which can be seen as a quantum number

arising from the translational symmetry of the potential.

In addition to the periodicity of the potential, the function unk(r) is

periodic in k such that the electronic problem is entirely characterized

if unk(r) is known for all k in the first Brillouin zone.

Using the Bloch theorem and a Fourier representation of the periodic

function unk(r) leads to rewrite the wavefunction of a system as :

ψnk =
1

Vcell

∑

G

cnk+G ei(k+G)r (2.60)
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In principle the sum in Eq. 2.60 is infinite but in practice, the basis

set defined by the set of G vectors used is truncated and include plane

waves up to a given kinetic energy cut-off Ecut :

|k + G|2
2

< Ecut (2.61)

The truncation in the set of G vectors induces errors in the com-

puted properties. In practice, this error can be reduced by increasing

the kinetic energy cut-off defined in Eq. 2.61 until the desired accuracy

is achieved. In particular, the total electronic energy of the system com-

puted with a given E1
cut will always be smaller or equal to the total

energy obtained with a smaller E2
cut < E1

cut.

It is important to note that the all-electron wavefunction of a system

has a very large oscillatory behavior close to the nuclei, implying a large

kinetic energy cut-off and hence a large computational cost. Therefore,

one usually makes another assumption about the separation of core and

valence electrons leading to the pseudopotential approximation.

Pseudopotentials

In the frozen core approximation, we take advantage of the fact that the

core electrons of the atoms are strongly localized and separated in space

and energy from the other (valence) electrons. Indeed, as their binding

energy is usually much lower, their properties are not much modified by

the surrounding environment. On the contrary, the valence electrons are

the ones participating in the bonding between atoms. Many properties

of a given material thus depend mainly on the dynamical properties of

these valence electrons.

The number of electrons explicitly included in the simulation is thus

decreased. In addition to that, the pseudopotential are constructed in

order to smooth the oscillatory behavior of the wavefunctions close to

the nuclei, as illustrated in Fig. 2.5. This leads to a strong cut-down in

the size of the basis sets needed. The actual procedure to generate a

reliable pseudopotential is not trivial and will not be discussed further

here.
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Figure 2.5: Pseudopotential approximation. The all-electron and
pseudo-wavefunctions for the silicon 3s-state are shown in the dashed
blue and full green lines respectively. The corresponding pseudopoten-
tial for the s-angular momentum is shown as a full red line. The effective
(with Zion = 4) Coulomb potential is also shown on the figure. For large
radii, the pseudopotential is superimposed onto the effective Coulomb
tail, meaning that far from the nucleus, the effective charge perceived
by an electron is that of the ion with Zion = Zatom − Zcore.
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2.3.5 Conclusion

The physics of a many-electron system is often very complicated due to

the correlated motion of the individual particles on all the other parti-

cles. These so-called exchange and correlation effects are present in all

quantum systems and are almost impossible to account for exactly. Even

though, for many cases, such as ground-state properties, a mean field ap-

proach such as density functional theory, where the exchange-correlation

effects are approximated in an average way, is suitable. DFT is a re-

formulation of the full quantum many-body problem into a much more

tractable one. Ground-state properties are usually obtained with a rela-

tively good accuracy and hence, DFT is often used to compute equilib-

rium lattice parameters, total energy differences, phase diagrams, . . . On

the other hand, electronic properties are not well described, in partic-

ular the band gap. In order to get accurate electronic band structures,

exchange-correlation effects should be included in a more appropriate

way and this will be the subject of the next section.

2.4 Electronic structure within many-body per-

turbation theory and the GW approxima-

tion

The band gaps of semiconductors and insulators are often strongly un-

derestimated within DFT and the standard exchange-correlation ap-

proximations. In order to get an accurate description of the electronic

structure, one has to go beyond mean field theories and consider all the

interactions between electrons. In the Many-Body Perturbation Theory

(MBPT), the energies and wavefunctions of the system are obtained by

solving the quasiparticle (QP) equation :

(
−1

2
∇2 + Vext(r) + VH(r)

)
ψQP
i (r)

+

∫
dr′Σ(r, r′;ω = εQP

i )ψQP
i (r) = εQP

i ψQP
i (r) (2.62)
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This equation is very similar to Eq. 2.49 where the self-energy Σ, a

non-local, energy-dependent and non-hermitian operator, takes the role

of the XC potential Vxc. The solution to the Many-Body problem is

direct if the expression for the self-energy is known but for practical

applications, the self-energy is always approximated as its complexity is

of the same order as the many-electron wavefunction. The challenging

part is to find such approximations that are accurate enough for the

property we aim to look for. In particular, DFT assumes that Σ is

energy-independent and depends only on the density of the system.

In this section, the main ingredients of Many-Body Perturbation

Theory are presented. First, the fundamental response functions of a

system to a given perturbation are defined. Next, the concept of Green’s

functions and quasiparticles are introduced. The general equations from

Hedin needed to obtain the Green’s functions and self-energy are then

laid out. The GW approximation as well as the particular methods and

technicalities used in this thesis to obtain accurate electronic structure

are then described.

2.4.1 Response functions

When a material is subject to an external potential Vext, the ground-

state density n is affected. This perturbation δnind of the density causes

itself another induced potential Vind as shown in Fig. 2.6. The total

potential is then the sum of these two potentials Vtot(r) = Vext(r) +

Vind(r).

Let δVext be a small change in the external potential, the change in

the total potential is simply expressed as :

δVtot = δVext + δVind (2.63)

where the induced potential is given by

δVind = vδnind (2.64)

in which v is the Coulomb interaction.

The dielectric function and its inverse are then defined as
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Figure 2.6: Response of a material to a macroscopic external potential.
The total potential Vtot(r) at some position r is the sum of the external
potential Vext(r) and the induced potential Vind(r).

ε =
δVext

δVtot
= 1− vP̃ (2.65)

ε−1 =
δVtot

δVext
= 1 + vP (2.66)

in which the irreducible polarizability P̃ = δnind
δVtot

and the reducible po-

larizability P = δnind
δVext

describe the linear response of the density with

respect to a change in the total and external potential respectively. The

same physics is contained in these two polarizabilities and the connec-

tion between them is easily obtained by combining Eqs. 2.65 and 2.66

:

P = P̃ + P̃ vP (2.67)

From the dielectric function, one can define the screened Coulomb

interaction W as

W = ε−1v (2.68)

The response functions described in this section provide the theo-

retical basis for a perturbative expansion of the many-body problem.

Before setting up the actual equations needed to solve this problem, one

needs to define the central variable that is used in MBPT.



2.4. MBPT and GW 39

2.4.2 Green’s functions and the quasiparticle concept

In MBPT, the electronic problem is solved in terms of Green’s functions

or propagators. In the zero temperature limit, the one-particle Green’s

function G is defined in the Heisenberg representation as

G(x1, t1,x2, t2) = −i 〈Ψ0|T
[
ψ(x1, t1)ψ†(x2, t2)

]
|Ψ0〉 (2.69)

where xi = (ri, σi) stands for space and spin coordinates, Ψ0 is the

many-body ground-state wavefunction, T is the time ordering operator1

and ψ(x1, t1)/ψ†(x2, t2) are the annihilation/creation operators. The

physical interpretation of the Green’s function can be understood in

terms of particle’s propagation. For t1 > t2, the Green’s function is the

probability amplitude of finding an electron at point x1 at time t1 which

was added to the system at point x2 and time t2. For t1 < t2 instead,

the Green’s function is the probability amplitude of the propagation of

a hole from point x1 at time t1 to point x2 at time t2.

The Green’s function G is the fundamental variable in MBPT, in

the same manner the electronic density is in DFT. All the properties

of the interacting system can thus be extracted from G if it is known

exactly. The electronic density itself is obtained as −iG(11+), where the

number abbreviation for the space, spin and time coordinates is used,

in which 1 = (r1, σ1, t1), 1+ = limτ→0+(r1, σ1, t1 + τ) and τ is a positive

infinitesimal, . When the Green’s function is expressed in a spectral

representation, the electron affinities and ionization potentials appear

to be the poles of G :

G(r, r′, ω) =
∑

i

Ψi (r, ω)Ψ†i (r
′, ω)

ω − Ei(ω)
(2.70)

The spectral function A(ω) (schematically shown in Fig. 2.7), which

is the quantity that is measured in photoemission experiments, is ob-

tained from the one-particle Green’s function as

1T
[
ψ(x1, t1)ψ†(x2, t2)

]
= θ(t1−t2)ψ(x1, t1)ψ†(x2, t2)−θ(t2−t1)ψ†(x2, t2)ψ(x1, t1)

in which θ(t) is the step function.
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Figure 2.7: Spectral function of the one-particle Green’s function.

A(ω) =
1

π
ImG(ω) (2.71)

Figure 2.7 illustrates some features of the spectral function. The full

red line is the spectral function of the fully interacting Green’s function.

The vertical thick blue line is the spectral function of an independent

(KS) particle. What is usually called the quasiparticle energy corre-

sponds to the main contribution in the spectral function. The width of

this main peak in the spectral function is related to the inverse of the

quasiparticle lifetime. It should be emphasized here that if the spec-

tral function is not clearly peaked as in Fig. 2.7, then the quasiparticle

concept might loose its physical meaning.

Another intuitive picture of the quasiparticle concept is illustrated in

Fig. 2.8. The Coulomb potential v(r, r′) at point r′ arising from a bare

electron at position r is shown in (a). In a real material, the electron

gets surrounded by a positive charge cloud due to its negative charge

as shown in Fig. 2.8 (b). More precisely, this cloud correspond to an

induced charge nind(r, r′′) at all points r′′ due to the electron in r. The

screened Coulomb potential W (r, r′) at point r′ arising from a quasi-

electron at position r is the sum of the bare Coulomb potential v(r, r′)

and all the small (opposite) contributions v(r′′, r′) due to the induced

(positive) charge of the cloud.
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Figure 2.8: Illustration of a the Coulomb interaction v for bare electrons
and the screened Coulomb interaction W for quasielectrons.

This can also be inferred from the expression of the screened Coulomb

interaction. Omitting the frequency dependence, the

screened Coulomb interaction reads

W (r, r′) =

∫
ε−1(r, r′′)v(r′′, r′)dr′′ (2.72)

= v(r, r′) +

∫ (
ε−1(r, r′′)− 1

)
︸ ︷︷ ︸∫
v(r,r′′′)P (r′′′,r′′)dr′′′

v(r′′, r′)dr′′ (2.73)

where the underbraced term in Eq. 2.73 can be identified as an approxi-

mate mean induced charge. Moreover, by assuming that the values for ε

are on average larger than 1, so that the term (ε−1 − 1) ranges between

-1 and 0, the integral in Eq. 2.73 will be comprised between −v(r, r′)

and 0. The extreme case of an electron in vacuum, where ε = 1, leads

to (ε−1 − 1) = 0 such that the screened Coulomb interaction is exactly

equal to the bare Coulomb interaction (no screening cloud as there is no

available charge density).

The total energy of the system can also be extracted from the Green’s

function, by means of the Galitskii-Migdal formula [105] or the Luttinger-

Ward formalism [106]. However, these approaches are extremely diffi-
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cult to apply for real systems due to their large computational costs

[105] and mean-field theories such as DFT usually lead to total energies

and other ground-state properties in good agreement with experiment.

The present theory will thus mainly be used for the electronic structure.

In the following, the theory and methods used to solve the many-body

problem are laid out.

2.4.3 Hedin’s equations or how to get the self-energy

In a completely general theory, the Green’s function G and similarly the

self-energy Σ are obtained by solving a set of five self-consistent integro-

differential equations which were originally introduced by Hedin [24] as

illustrated schematically in Fig. 2.9 (a). Hedin’s equations read

Σ(12) = i

∫
G(13)Γ(324)W (41)d34 (2.74)

G(12) = G0(12) +

∫
G0(13)Σ(34)G(42)d34 (2.75)

Γ(123) = δ(12)δ(13)+
∫

δΣ(12)

δG(45)
G(46)G(75)Γ(673)d4567 (2.76)

P̃ (12) = −i
∫
G(13)G(41)Γ(342)d34 (2.77)

W (12) = v(12) +

∫
v(13)P̃ (34)W (42)d34 (2.78)

in which Γ(123) is the vertex function, W is the dynamical screened

interaction and P̃ is the irreducible polarizability.

In this way, the many-body problem is expressed in a form that casts

up the essential physics. The polarizability P̃ , which is the response

of the system to the addition of an electron or hole, is set up from

the creation at 1 = (r1, t1) of an electron and a hole (the two Green’s

function) that will propagate respectively to 3 and 4. The propagation

depends on how the electron and the hole interact with each other, which

is described by the vertex function Γ(342).
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Figure 2.9: (a) Schematic view of the set of integro-differential equations
from Hedin. (b) The GW approximation to Hedin’s equations neglecting
vertex corrections.

2.4.4 The GW approximation

Solving the full set of self-consistent Eqs 2.74-2.78 is practically impossi-

ble for real systems. For this reason, it is customary to neglect the vertex

term, i.e. Γ(123) = δ(12)δ(13) in Eq. 2.76. Using this approximation,

the Hedin’s pentagon of Fig. 2.9 (a) reduces to the schematic view of

Fig. 2.9 (b). In particular, the self-energy is written as the product of

the Green’s function G and the dynamical screened Coulomb potential

W , leading to the so-called GW approximation

Σ(r, r′, ω) =
i

2π

∫
G(r, r′, ω + ω′)W (r, r′, ω′)eiω

′δ+dω′ (2.79)

Getting back to the physical interpretation of Hedin’s equations, it

is not quite surprising that the GW approximation has been successfully

applied for charged electronic excitations. Indeed, experimental photoe-

mission (PES) and inverse photoemission spectra (IPES) are rather well

described within the GW method. For charged excitations, when a hole

is created in the valence band while the electron is ejected from the sys-

tem, the latter is completely out of the system such that its interaction

with the hole (described by the vertex Γ) can be neglected as a first ap-

proximation. Conversely, when an electron is added to the conduction

band of a system, a hole is created in some other external system and
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the interaction between these two particles can also be considered as in-

significant. It follows that the response of the system actually depends

only on the propagation of the hole in the valence (for a N → N−1 elec-

tronic excitation) or of the electron in the conduction (for a N → N + 1

electronic excitation).

Non self-consistent GW

Although the system of GW equations sketched in Fig. 2.9 (b) should

in principle be solved self-consistently, most calculations hitherto have

been carried out in a non self-consistent way leading to the so-called one-

shot GW or G0W0. The idea of this one-shot approach is to stop after

one cycle, provided that the starting point is close to the final result.

In this thesis, the screened interaction W0 is calculated from a DFT-

LDA bandstructure calculation, unless otherwise noted. This screened

interaction W0 is in turn used to obtain the self-energy Σ0 = iG0W0.

It is important to stress here that while self-consistent GW is supposed

to give the same results whatever the starting point is, the one-shot

approach depends by essence on the initial Green’s function G0.

Assuming that ψQP
i ≈ ψKS

i , the G0W0 method is usually applied

within a perturbative approach. The first-order perturbation is obtained

from the expectation value of the difference between the self-energy Σ

and the XC potential Vxc :

εQP
i = εKS

i +
〈
ψKS
i

∣∣Σ(r, r′; εQP
i )− Vxc(r)δ(r− r′)

∣∣ψKS
i

〉
(2.80)

In principle, Eq. 2.80 should be solved self-consistently as the self-

energy has to be evaluated at the corresponding QP energy εQP
i . Noting

that the difference between QP and KS energies is relatively small, a

first-order Taylor expansion of the self-energy around εKS
i is used to

obtain its value at εQP
i :

Σ(r, r′; εQP
i ) ≈ Σ(r, r′; εKS

i ) + (εQP
i − εKS

i )
∂Σ(r, r′, ω)

∂ω

∣∣∣∣
ω=εKS

i

(2.81)
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Figure 2.10: Frequency dependence of Σ.

This leads to rewrite Eq. 2.80 as

εQP
i = εKS

i + Zi
〈
ψKS
i

∣∣Σ(r, r′; εKS
i )− Vxc(r)δ(r− r′)

∣∣ψKS
i

〉
(2.82)

with Zi being the renormalization constant :

Zi =

[
1−

〈
ψKS
i

∣∣ ∂Σ(r, r′, ω)

∂ω

∣∣∣∣
ω=εKS

i

∣∣ψKS
i

〉
]−1

(2.83)

This procedure is sketched in Fig. 2.10 and has been shown to yield

very good results [107] for many applications.

Plasmon-pole models

The frequency dependence of the screened interaction W requires a large

sampling of points on the frequency axis. When a plasmon-pole model

(PPM) is used, all the spectral weight of the imaginary part of ε−1
GG′(q, ω)

is assumed to be concentrated at the plasmon frequency ω̃GG′(q) with

amplitude AGG′(q) :

Im ε−1
GG′(q, ω) = AGG′(q)× [δ(ω − ω̃GG′(q))] (2.84)
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Using the Kramers-Kronig relations, the real part of the dielectric

function is then obtained as

Re ε−1
GG′(q, ω) = δGG′ +

Ω2
GG′(q)

ω2 − ω̃2
GG′(q)

(2.85)

with Ω2
GG′ = −AGG′(q)ω̃2

GG′(q).

This parametrized form for the dielectric function allows to reduce

the computational cost for the calculation of the screened interaction.

Indeed, the PPM parameters defined above are obtained from the di-

electric function evaluated at one or two frequencies depending on the

strategy used, while a full frequency treatment requires its computa-

tion for a large number of frequencies. The first approach, proposed

in the famous GW implementation by Hybertsen and Louie [108], is

to choose the PPM parameters in order to reproduce the static limit

ε−1
GG′(q, ω = 0) and to enforce Johnson’s frequency sum (f -sum) rule

∫ ∞

0
ωIm ε−1

GG′(q, ω)dω = 2π2 (q + G) · (q + G′)

|q + G|2
nG−G′ (2.86)

In the Godby and Needs [109] model, the parameters are fixed so that

the static limit and another imaginary frequency iωgn (usually taken as

the plasma frequency ωP =
√

4πn0) are both reproduced. Even though

both procedures are crude approximations, the latter has been proved to

yield results in much better agreement with a full-frequency treatment

for states close to the Fermi level [110, 111, 112].

2.4.5 Interpolation of GW eigenvalues

The computation of an accurate density of states requires a dense sam-

pling of k-points in the Brillouin zone. From a computational point of

view, such large meshes are prohibitive when using the G0W0 method.

For optical properties, randomly shifted k-point meshes are usually pre-

ferred as the optical spectra converge more quickly but their computa-

tion in GW is not straightforward. Therefore it is preferable to avoid
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a full calculation by interpolating the GW eigenvalues on a very dense

mesh from the results obtained on a coarser k-point grid.

One possible technique is the Wannier interpolation [113, 114]. For

valence states, this technique is reasonably easy to apply. Indeed, the

valence wavefunctions are well localized and the generation of the Wan-

nier functions is almost instantaneous. On the other hand, applying this

procedure for the conduction states is not an easy task as these states

are usually more delocalized. For this reason a different and much more

straightforward procedure has been implemented here and used through-

out this thesis.

The polyfit energy approximation

For simple materials such as SiO2, the GW corrections are mainly a

function of the energy. The fluctuations due to wave vector and state

dependencies are present but can be neglected when the computation

of band structures and densities of states are performed for plotting

purposes. Moreover, it provides a more accurate interpolation than the

scissor approximation (simple rigid shift of the conduction bands) that

is usually assumed for sp semiconductors.

The QP corrections ∆εGWi to the Kohn-Sham eigenvalues εKS
i for

state i = (n,k) obtained in the GW approach are obtained from Eq. 2.82

as

∆εGWi = εQP
i − εKS

i (2.87)

In the polyfit energy approximation, the eigenvalues are interpolated

using a least-squares polynomial fit by parts on the energies. In this

way, the dependence of the GW correction ∆εGWi on the band index

and k-point i = (n,k) is replaced by a function of the KS eigenvalues

only :

∆εGWi −→ ∆GW (εKS
i ) (2.88)
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First, the electronic bands are split intoN separate groups depending

on their energy range, using forbidden energy bands for the N −1 limits

of the different intervals (so-called energy pivots) :

I1 = [−∞, ξ1]

. . .

Iα = [ξα, ξα+1] (2.89)

. . .

IN = [ξN−1,∞]

For each interval Iα, a polynomial of order mα is employed as a fit

for the GW corrections :

∆GW (εKS
i ) = pmαα (εKSi ) for εKSi ∈ Iα (2.90)

The polynomial can be constrained to go through the endpoints of

each group of bands in order to preserve the bandwidths. An example

of this fitting procedure is given in Fig. 2.11 for the case of α-SiO2 with

third-order polynomials. The upper panel shows the polynomial fits

obtained for the GW corrections.

This interpolation scheme is obviously not perfect. The error θi made

for each state i gives an estimate of the overall error of the fit. For each

explicitly calculated state, it is evaluated as the difference between the

polyfit and the real correction ∆εGWi from Eq. 2.87 :

θi = ∆GW (εKS
i )−∆εGWi (2.91)

The errors for α-SiO2 are given in the lower panel of Fig. 2.11. For

the valence states, this error is always smaller than 0.1 eV whereas for

the highest excited states displayed in the figure, the error goes up to

0.25 eV. As previously stated, this procedure is expected to give this

kind of errors for sp semiconductors. For other compounds where strong

hybridization occurs, such as in transition metal oxides or other complex
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Figure 2.11: Interpolation of GW corrections to the KS eigenvalues with
the polyfit energy approximation. Example for α-SiO2 in LDA. Upper
panel : G0W0 corrections for the valence (blue crosses) and conduc-
tion (red circles) states with respect to DFT eigenvalues. The vertical
dashed green lines corresponds to the energy pivots chosen to separate
the different groups of bands. The black lines are the polynomial fits
obtained for each group of band. Lower panel : Error made by the polyfit
approximation used in the upper panel.
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systems, the error can be much larger as the GW corrections are usually

different depending on the character of the state considered.

GW band structures The polyfit approximation provides a very fast

method to obtain GW band structures without the need of constructing

localized Wannier functions or using other human-demanding method.

The band structures are easily obtained by application of the energy

interpolation defined in Eq. 2.90. The exact same process is applied in

order to get GW -corrected randomly shifted k-point grids used in the

computation of optical properties.

GW density of states The use of the polyfit approximation is also

very convenient for a direct calculation of the GW density of states from

the DFT density of states. The density of states g(E) is defined as

g(E) =
dN<(E)

dE
(2.92)

where N<(E) is the number of states in the system whose energy is

lower than E. Let NDFT
< (E) be the number of states lower than energy

E in DFT. Provided that the GW corrections expressed by a poly-

fit approximation ∆GW (E) do not give rise to any permutation, i.e.
d∆GW (E)

dE
> −1, it is clear that

NDFT
< (E) = NGW

< (E + ∆GW (E)) (2.93)

By taking the derivative of Eq. 2.93 with respect to E and rear-

ranging the terms, the GW density of states gGW (E′) at the energy

E′ = E + ∆GW (E) is obtained straightforwardly as a function of the

DFT density of states gDFT(E) :

gGW (E′) =
gDFT(E)

1 + d∆GW (E)

dE

(2.94)

The same technique can be used to obtain GW partial (angular and

atom projected) densities of states. This procedure is of course assuming

that the ratio’s of state characters are unchanged by the GW corrections.
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GW effective masses If the effective mass m∗KS from a Kohn-Sham

calculation is known, the computation of the GW effective masses with

the polyfit is also straightforward. The effective mass of a hole (elec-

tron) whose energy is close to a maximum (minimum) of the valence

(conduction) band is obtained as :

m∗KS =

[
d2εKS

dk2

]−1

(2.95)

The effective mass using QP energies εQP = εKS + ∆GW (εKS) from

a GW polyfit interpolation can be thus derived as

m∗GW =

[
d2εQP

dk2

]−1

(2.96)

=




d2εKS

dk2
+

d2∆GW (εKS)

dk2︸ ︷︷ ︸
correction term




−1

(2.97)

Using Faà di Bruno’s formula [115] for the second derivative of a

composite function, the correction term in Eq. 2.97 is obtained as :

d2∆GW (εKS)

dk2
=

d∆GW

dε

∣∣∣∣
εKS

d2εKS

dk2
+

d2∆GW

dε2

∣∣∣∣
εKS

(
dεKS

dk

)2

(2.98)

where the second term vanishes from the fact that we are close to a

minimum or maximum. Finally, the GW effective mass is obtained as :

m∗GW =

[
d2εKS

dk2
+

d∆GW

dε

∣∣∣∣
εKS

d2εKS

dk2

]−1

(2.99)

=

[
d2εKS

dk2

(
1 +

d∆GW

dε

∣∣∣∣
εKS

)]−1

(2.100)

=
m∗KS

1 + d∆GW

dε

∣∣∣
εKS

(2.101)
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2.4.6 Conclusion

The GW method described in this section provides an accurate method

to compute reliable quasiparticle electronic structure of materials. In

particular, the band gap, which is well underestimated within DFT, is

corrected by the GW technique, leading to values in much closer agree-

ment with experiment. The main advantage of the method is that the

quasiparticle eigenvalues are obtained as a first-order perturbation of a

previous Kohn-Sham set of eigenvalues. The polyfit approximation, a

very efficient and straightforward procedure to interpolate GW eigen-

values and densities of states, was developed and used in many parts of

this thesis.

In spite of the considerable improvement in the computation of the

band gap, the GW method is unsuitable for excitations involving two

particles such as optical absorption. Indeed, it does not include any

two-particle interaction term in its derivation. Electron-hole or exci-

tonic interactions are thus neglected and optical spectra are not well

reproduced for materials in which these are important, such as SiO2.

The following section describes the theory needed in order to correctly

include excitonic effects.

2.5 Optical properties and the Bethe-Salpeter

equation

In an absorption process, an electron is promoted to a conduction band,

leaving a hole in the valence band and creating an interacting electron-

hole pair. The one-particle Green’s functions used are not sufficient to

describe the evolution of the coupled electron-hole pair as their motions

are correlated. In the Bethe-Salpeter (BS) formalism, the response of the

system is described in terms of two-particles propagators involving four-

point quantities. In this section, the main ingredients needed to obtain

accurate optical spectra by means of the BS equation are presented.
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2.5.1 The 2 -particles propagator

Whereas the one-particle Green’s function defined in Eq. 2.69 describes

the propagation of one particle (electron or hole), the 2 -particles Green’s

function G(1′2′12) is the mathematical object describing the probability

amplitude for two particles to go from one starting configuration to

another :

initial configuration︷ ︸︸ ︷
(1, 2)

G(1′2′12)−−−−−−→
final configuration︷ ︸︸ ︷

(1′, 2′)

where the time coordinate of (1′, 2′) and (1, 2) are t′ and t respectively2.

Formally, it is defined as

G(1′2′12) = (−i)2 〈Ψ0|T
[
ψ(1′)ψ(1)ψ†(2)ψ†(2′)

]
|Ψ0〉 (2.102)

The two-particle excitations (coupled electron-hole pair) can be ob-

tained from the poles of the the two-particle Green’s function. Now that

the mathematical object containing all the physical information useful

for two-particles excitations is defined, all what is left is to find the

equation that describes the concurrent motion of the electron and hole.

2.5.2 The Bethe-Salpeter equation

The key quantity for this purpose is the four-point or electron-hole po-

larizability polarizability L

L(1234) = L0(1234)−G(1234) (2.103)

L0(1234) = iG(13)G(42) (2.104)

The independent electron-hole polarizability L0 in Eq. 2.103 namely

describes the evolution of an electron and a hole separately. The 4-point

2This way of specifying the time coordinates implies that the Green’s function is
in fact the particle-hole Green’s function, as needed for the computation of optical ab-
sorption. Other time orderings can exist, defining particle-particle Green’s functions
used for example in the description of Auger processes.
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polarizability comes from the solution of the so-called Bethe-Salpeter

equation (BSE) :

L(1234) = L0(1234) +

∫
L0(1256)K(5678)L(7834)d5678 (2.105)

with the BS kernel K being defined as

K(1234) = δ(12)δ(34)v(13) + i
dΣ(13)

dG(24)
(2.106)

The modified Coulomb interaction v is equal to :

v(q) =

{
0 for G = 0

v(q) for G 6= 0

(2.107)

(2.108)

The BS kernel in Eq. 2.106 is made up of two terms. The first one

corresponds to the Coulomb interaction between the electron and the

hole. The second represent the change in the self-energy with respect to

a change of the Green’s function. As the self-energy is usually unknown,

some approximation has to be used for this last term. Using the GW

approximation for which the self-energy is expressed as Σ = iGW , the

second term of Eq. 2.106 becomes

i
dΣ

dG
= −dGW

dG
(2.109)

= −W +G
dW

dG
(2.110)

≈ −W (2.111)

Going from Eq. 2.110 to Eq. 2.111 follows from the fact that the term

GdW
dG

, which can be seen as the excitation self-screening (the change in

the screening due to the excitation itself), is expected to be small [116].

Finally the BS equation reduces to
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L(1234) = L0(1234)+
∫
L0(1256)(δ(56)δ(78)v(57)− δ(57)δ(68)W (56))L(7834)d5678

(2.112)

2.5.3 Formulation as an eigenvalue problem

In order to solve the BS equation 2.112, it is easier to reformulate the

problem as an effective eigenvalue problem. As the purpose of the prob-

lem is the description of electron-hole pairs, a clever idea is to use a basis

made of the wavefunctions obtained from the solution of a one-particle

Hamiltonian. The elements in the basis of this transition space are then

built from the product of two single-particle wavefunctions ψiψj such

as, for example, products of KS ψKS
i or QP ψQP

i wavefunctions obtained

from a prior DFT or GW calculation. It is expected that a relatively

small number of wavefunctions will be sufficient to form a complete set

for the range of solutions that are looked for. Any four-point function

F (1234) is then expanded in this basis as :

F (1234) =
∑

(n1n2)(n3n4)

ψ∗n1
(1)ψn2(2)F(n1n2)(n3n4)ψn3(3)ψ∗n4

(4) (2.113)

where the ni’s stand for spin, k-point and band index and F(n1n2)(n3n4)

is given by

F(n1n2)(n3n4) =

∫
F (1234)ψn1(1)ψ∗n2

(2)ψ∗n3
(3)ψn4(4)d1234 (2.114)

The independent electron-hole polarizability in Eq. 2.104 can then

be expressed in transition space as

L0
(n1n2)(n3n4)(ω) =

fn2 − fn1

(εn2 − εn1 − ω)
δn1n3δn2n4 (2.115)

and is diagonal in this representation.
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By defining an effective or excitonic two-particle hamiltonian Hexc :

Hexc
(n1n2)(n3n4) = (εn2 − εn1)δn1n3δn2n4 + (fn1 − fn2)K(n1n2)(n3n4)

(2.116)

the BS equation 2.105 can be rewritten in this transition space as

L(n1n2)(n3n4) =
[
Hexc

(n1n2)(n3n4) − Iω
]−1

F (2.117)

where I is the identity matrix and F is given by

F =




(n1n2) ↓ | (n3n4)−−−−→ (v′c′k′) (c′v′k′)

(vck) 1 0

(cvk) 0 −1


 (2.118)

Supposing that the material under study is a spin-unpolarized semi-

conductor and considering we are only interested in the long wavelength

(q→∞), the excitonic hamiltonian has the following block structure :

Hexc =




(n1n2) ↓ | (n3n4)−−−−→ (v′c′k′) (c′v′k′)

(vck) Hres Hcoupl

(cvk) −Hcoupl∗ −Hres∗


 (2.119)

The matrix elements of the resonant part are obtained as

Hres
(vck)(v′c′k′) = (εck − εvk)δvv′δcc′δkk′

+ 2v(vck)(v′c′k′) −W(vck)(v′c′k′) (2.120)

where the elements of v and W are defined as
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v(vck)(v′c′k′) =

∫∫
ψv(r)ψ∗c (r)v(r, r′)ψ∗v′(r

′)ψc′(r
′)drdr′ (2.121)

W(vck)(v′c′k′) =

∫∫
ψv(r)ψ∗v′(r)W (r, r′, ω = 0)ψ∗c (r

′)ψc′(r
′)drdr′

(2.122)

in which the static approximation (ω = 0) to the screened Coulomb

interaction is used.

For bulk systems, the coupling terms are usually neglected, leading to

the so-called Tamm-Dancoff approximation [117]. This approximation

to the BS kernel is known to accurately describe optical absorption in

solids while largely reducing the computational cost [118].

Once the solution of Eq. 2.117 is obtained, the macroscopic dielec-

tric function can be computed from the two-point contraction χ̂(12) =

L(1122) of the resulting 4-point polarizability :

εM (ω) = 1− lim
q→0

v(q)χ̂00(q, ω) (2.123)

whose imaginary part is the absorption spectrum.

The solution of Eq. 2.117 requires a diagonalization of a very large

matrix in order to get the excitonic eigenvalues and wavefunctions. As

our concern is to get optical spectra, an iterative method based on the

Haydock algorithm [118, 119] is used instead. This technique provides a

much faster way to compute the optical spectra but does not explicitly

solve Eq. 2.117 such that the excitonic wavefunctions are not obtained.

The convergence of the BS technique with respect to the k-point grid

is crucial. In fact, accurate optical spectra require a large sampling. This

in turn implies that the screened Coulomb interaction should be calcu-

lated with this dense mesh. This is very computationally demanding

and can be avoided by using a model dielectric function [120, 121] in

which the static dielectric constant is used as a parameter.
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2.5.4 Conclusion

In the Bethe-Salpeter formalism, accurate optical properties can be

achieved from first-principles calculations. The problem is solved in

a so-called transition space made of products of wavefunctions. This

allows to rewrite the BS equation as an eigenvalue problem. The opti-

cal spectra are then obtained from a solution of this eigenvalue problem

either from a full diagonalization or from an iterative algorithm (the

Haydock technique).



Chapter 3

Pure silica

Since the publication of the random network theory of glass structure

by Zachariasen [122] and the early X-ray studies of Warren and co-

workers[123, 124] in the 1930s, the structure of amorphous silicon diox-

ide (a-SiO2) is known to form a network of randomly interconnected

tetrahedra. These tetrahedra are composed of one silicon atom at the

center and four oxygen atoms at the corners where each oxygen atom is

shared by two tetrahedral units such that the total number of O atoms

is twice that of the number of Si atoms. This short-range (SR) arrange-

ment is illustrated for two corner-sharing tetrahedra in Fig. 3.1 in which

the main SR structural properties such as bond lengths and angles can

be identified.

Before studying the electronic and optical properties, an essential

preliminary step is to generate a-SiO2 models that are representative

of a real vitreous structure. It has been shown that a sufficiently large

set of small models is able to reproduce the structural features of exper-

imental glass samples [37]. This chapter presents the results gathered

from several a-SiO2 models. First, the procedure used to generate the

models combining classical MD (CMD) and ab initio refinement within

DFT is presented. An extensive analysis of the structural properties is

then performed in order to assess the quality of the models. The models

are then used for electronic structure analysis in DFT and GW . Finally,

the optical properties are presented.

59
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Figure 3.1: Tetrahedral structure of a-SiO2.

3.1 Generation of amorphous silica models

The amorphous silica models used in this thesis were prepared in two

steps [35]. In the first step, an amorphous system is obtained within

classical molecular dynamics using a melt-and-quench procedure. The

resulting structure is then relaxed using DFT. The models thus obtained

will be shown to describe the overall structural properties with a good

accuracy.

The initial configurations for each model needed at the beginning

of the MD simulations are set up by arranging randomly the atoms

in a box whose volume is fixed to reproduce the experimental density

ρ = 2.2g/cm3. Twenty different models each containing 72 atoms have

been prepared using CMD and then further relaxed within DFT. Ten

additional models with 648 atoms have also been produced with CMD

in order to compare their structural properties to the smaller models.

The CHIK potentials and the additional repulsive part for small radii

presented in sect. 2.2.2 were used for the MD simulations. The inte-

gration of the EOMs is done using the leap-frog algorithm and a time

step τ = 1 fs. For the temperature coupling, the Nosé-Hoover thermo-

stat has been used with a time constant τNH = 0.02 ps for the coupling

strength. The melting and quenching is performed using the following

temperature profile as illustrated by the solid red line in Fig. 3.2
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Figure 3.2: Melting and quenching of a-SiO2. Temperature profile.

• The samples are melted at high temperature (5000 K) for 100 ps

(I in Fig. 3.2).

• The system is then quenched down to 300 K at a cooling rate

γ1=10 K/ps from 5000 K to 1000 K and γ2=5 K/ps from 1000 K

to 300 K (II and III in Fig. 3.2).

• The system is then annealed at 300 K during 160 ps (IV in Fig. 3.2).

Figure 3.2 also shows the real temperature of the system as obtained

in Eq. 2.21. The inset of the figure shows the evolution of the total

energy of the system. At the end of the simulation, the configuration is

taken as an input for further ab initio refinement of the structure.

The internal coordinates of the atoms have been relaxed in DFT

using the Broyden-Fletcher-Goldfarb-Shannon (BFGS) algorithm until

the forces on all the atoms were less than 1.10−5 Ha/Bohr. Other com-

putational and technical details concerning the parameters for the DFT

calculations are described in the next section. This first-principles relax-
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Figure 3.3: Supercell of a-SiO2. The silicon and oxygen atoms are shown
in green and red respectively. The purple and light blue highlighted
atoms spot the presence of small rings of size n = 3-4.

ation resulted in slight changes in the structure, the overall connectivity

of the network being unchanged. One of these models is illustrated in

Fig. 3.3.

From the twenty models generated, 5 have been rejected because of

a wrong coordination of some silicon and/or oxygen atoms or because of

the presence of two edge-sharing tetrahedra. In the following sections,

statistics are collected on the 15 remaining models. Appendix B gathers

the properties of all the models generated in this work.

3.2 Structural properties

Before going further in the analysis of the electronic and optical proper-

ties of pure a-SiO2, it is necessary to validate the models obtained from

the combined CMD+DFT approach. For that purpose, the properties

of the samples are compared to available experimental data. Basically,

the structural properties in amorphous solids can be separated in four
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ranges : I. the structural unit (tetrahedron), II. the connection between

these units (bond angles, . . . ), III. the overall network connectivity and

IV. the long range density fluctuations. In this section, the two first

ranges will be analyzed through the radial distribution functions, the

bond lengths, the angular distribution functions and the bond angles

whereas the rings statistics will be used to characterize the network

connectivity. The last range will not be discussed in this thesis as it

involves inhomogeneities that are on a more macroscopic scale.

3.2.1 Radial distribution functions and bond

lengths

The total g(r) and partial radial distribution functions (RDF)

gSi−O(r), gSi−Si(r) and gSi−O(r) of pure a-SiO2 are shown in Fig. 3.4.

The CMD RDF is given by the dashed orange line while the ab initio

relaxed one is the full black line. Obviously, the CMD already yields a

very good initial configuration for the models and DFT does not bring

any major change in the RDF’s.

Bond lengths can be extracted from Fig. 3.4 and can be compared

to experimental values [125]. For each pair Si-O, Si-Si and O-O, the two

first peaks are clearly identified and are attributed to first and second

neighbors. The results for both the CMD and ab initio relaxed (LDA)

values are reported in Table 3.1.

The distances obtained are within 1−2% of the experimental values

and in good agreement with previously reported theoretical values [33,

35, 36, 40]. This is already a first validation of the models generated.

The first neighbor distances mainly characterize the short-range order

while second neighbors give some information about the connectivity

between the tetrahedral units.

3.2.2 Angular distribution functions and bond angles

Another important aspect in the structure of an amorphous model con-

sists in the bond angles. In a binary compound such as SiO2, six different

types of bond angles can be identified and the corresponding angle distri-

bution functions are represented in Fig. 3.5. For the O-Si-O (inside the
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Figure 3.4: Total and partial radial distribution functions in a-SiO2.

Table 3.1: Bond lengths in a-SiO2 (in Å). The average r Si-O, Si-Si and
O-O distances for the first and second neighbors are given for the CMD
simulations as well as for the ab initio relaxed models. The standard
deviation σ is also reported.

MD LDA Expt. [125]

r σ r σ

Si-O 1st 1.63 0.04 1.61 0.02 1.62

2nd 4.09 0.47 4.05 0.45 4.15

Si-Si 1st 3.12 0.11 3.16 0.12 3.12

2nd 5.20 0.53 5.15 0.53 5.18

O-O 1st 2.65 0.10 2.60 0.09 2.65

2nd 5.07 0.35 4.98 0.34 4.95
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Figure 3.5: Angle distribution functions in a-SiO2.

tetrahedral unit) and Si-O-Si (between two tetrahedra) distributions,

there is only one main peak in the distribution. The other bond angles

clearly have two peaks in their distributions. Each peak can be identified

to a particular angle in Fig. 3.1. For example, the first (blue) O-O-O

peak corresponds to angles with the three atoms belonging to the same

tetrahedron (O1-O2-O3) whereas the second one (green) appears to be

connected to angles with the oxygen atoms in two adjacent tetrahedra

(O1-O2-O5).

Table 3.2 reports the mean and standard deviation of the different

bond angles illustrated in Fig. 3.5. For the Si-Si-Si, the small peak at

about 60◦ is attributed to models where small rings (n = 3 − 4) as

already noted in [126]. The agreement is good with the experimental

values and other CMD/DFT values.

3.2.3 Rings statistics

The medium-range structure (network connectivity) can be character-

ized by analyzing the rings in the amorphous structure. Many different

types of rings can be defined. The type of rings analyzed here follows

the shortest path criterion [128] : a ring is the shortest path between two

of the nearest neighbors of a given atom. This definition differs slightly

from the King’s criterion [129] in which a ring is the shortest path that
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Table 3.2: Mean and standard deviation of bond angles in a-SiO2 (in
◦).

peak MD LDA Expt./Theor.

θ σ θ σ

O-Si-O main 109.4 6.4 109.4 5.5 109.5 [125]

Si-O-Si main 148.8 13.7 149.3 14.3 147.9-151 [125, 127]

Si-Si-Si main 108.1 19.9 108.5 19.3 107.7 [36]

O-O-O a 59.0 5.4 59.0 5.1 60 [126]

b 120.3 25.4 121.3 25.4

O-O-Si c 35.3 3.3 35.2 2.8 35 [126]

d 124.7 26.8 126.1 26.5

O-Si-Si e 15.5 7.0 15.3 7.2

f 108.8 15.0 109.0 14.2

comes back to a given atom starting from one of its neighbors. In that

case, some rings in the network might not be taken into account (see

[128] for a detailed discussion).

The number of rings of each size is shown in Fig. 3.6. The number

of rings has been normalized to one tetrahedron. The five small panels

correspond to five different models that were generated and the main

panel is the average ring size distribution of the fifteen 72-atom models

generated and the average ring size distribution of ten 648-atom mod-

els. It is clear that separately, the small models do not reproduce the

ring size distribution of the larger models but averaging over the fifteen

small models leads to satisfactory agreement and reproduces previously

published results [128].

3.2.4 Conclusion

Fifteen models have been prepared and validated in this section. These

models will be used in the following sections to investigate the electronic

and optical properties of amorphous silica.
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Figure 3.6: Rings statistics in a-SiO2. Each of the small figures cor-
respond to a particular 72-atom model while the larger is the average
distribution of the fifteen 72-atom models generated (in blue) and of ten
648-atom models generated (in orange).

3.3 Electronic structure

Electronic structure calculations have been performed on the relaxed

models presented in the previous sections. The ground-state densities

have been computed using DFT. Using Bader analysis, the charge trans-

fer from silicon to oxygen has been obtained and the Bader charges were

used to compute atom and angular momentum projected densities of

states. The band gap and the excited states have been computed us-

ing the GW approximation. Comparisons with crystalline SiO2 in the

α-quartz structure (α-SiO2) have also been performed for some of the

above-mentioned properties.

In all the calculations of this chapter, norm-conserving pseudopo-

tentials (see Sect. 2.3.4) have been employed and the LDA has been

used as the exchange-correlation functional in DFT. The wavefunctions

were expanded using plane waves up to 40 Ha energy cut-off. The re-

laxations in the previous section were done with the Γ-point only. The

GW calculations have been performed using the Godby and Needs (GN)
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plasmon-pole model (see Chapter 6 for a detailed analysis of the model

in the case of α-SiO2) for the frequency dependence of the dielectric

function. This dielectric matrix was expanded using plane waves with a

maximum energy cut-off of 6 Ha. The extrapolar method [130, 131] has

been used with a compensation energy of 2 Ha in order to reduce the

number of empty states included in the computation of the polarizability

and the self-energy.

3.3.1 Valence density of states

The valence density of states (DOS) has been obtained for the 15 models

selected previously and compared to X-ray photoemission spectra [132].

Two different methods were used and are illustrated in Fig. 3.7. The

DOS obtained with the tetrahedron method [133] on a 2×2×2 k-point

mesh followed by a gaussian smearing is given by the filled blue curve for

DFT and by the filled orange curve for GW (obtained using Eq. 2.94)

while a simple gaussian smearing on a Γ-point only computation is rep-

resented by the full blue line (DFT only). A good agreement between

the two DFT DOS is achieved, which corroborates the sufficient conver-

gence on the number of k-points. Both the DFT and GW DOS agree

reasonably well with experimental curves in black and red (enlarged for

the higher valence states) though GW tends to broaden the DOS and

push the states further from the Fermi level.

Except for a much more peaked structure, the DOS of α-SiO2 is

essentially similar to the a-SiO2 one. One can identify mainly three

groups of electronic states : the first group ranges from -20 eV to -16

eV and totalizes 4 electrons, the second, from -5 eV to -10 eV, with 4

electrons also, and the upper valence group, from the Fermi level to -5

eV, summing up the last 8 electrons. These groups will be analyzed in

more detail from the projected DOS.

3.3.2 Charge transfer

The valence electronic charges have been reported in Table 3.3. The

Hirshfeld [135] and Bader [136] analysis have both been computed from

the ground-state densities. As expected from the electronegativities of
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Figure 3.7: Valence density of states (DOS) and integrated density of
states (IDOS) of a-SiO2 and α-SiO2 in DFT (filled blue curve) and GW
(filled orange curve). The DOS are normalized to one SiO2 unit. The
DOS have been obtained with the tetrahedron method (2×2×2 k-point
mesh for a-SiO2 and 4×4×4 k-point mesh for α-SiO2,) smeared with a
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70 Chapter 3. Pure silica

Table 3.3: Valence Bader and Hirshfeld electronic charges in a-SiO2

and α-SiO2 (in electrons).

Bader Hirshfeld

a-SiO2 α-SiO2 a-SiO2 α-SiO2

Silicon 0.89 0.91 3.56 3.58

Oxygen 7.55 7.55 6.22 6.21

the oxygen and silicon atoms, there is a transfer of electrons from the

silicon atoms to the oxygen atoms. The Bader charges lead to a much

larger transfer than the ones obtained with the Hirshfeld method. This

large quantitative difference is a known effect of the two analysis.

The atomic charges for a-SiO2 and α-SiO2 differ by a very small

amount (on the order of the errors of the methods). Indeed, the local

environments of the atoms in both solids are very similar : both share

the same tetrahedral unit and the Si-O bond length (1.61 Å) in α-SiO2 is

almost equal to the average value in a-SiO2. One can note that the Bader

electronic charges are close to the usual assumption of the Si4+ and O2−

configurations in SiO2 (Si∼3.2+ and O∼1.55− from Bader). These Bader

charges have thus been used to define an equivalent Bader radius for each

atom for which the integrated charge inside the corresponding sphere is

equal to the Bader charge. For the silicon atom, this radius is ∼ 1.56

Bohr in both α-SiO2 and a-SiO2 . For the oxygen atom, the equivalent

Bader radius is ∼ 2.53 Bohr and ∼ 2.57 Bohr in α-SiO2 and a-SiO2

respectively. The angular projected DOS have been computed inside

the spheres defined by these equivalent Bader radii.

3.3.3 Partial densities of states

The partial densities of states (pDOS) are shown in Fig. 3.8. They have

been normalized to each atom’s Bader volume in which the projections

were performed. In this case, the pDOS are then given per unit of

volume and can be superimposed with the DOS per volume, for a better

comparison. On the other hand, this normalization increases the scale
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for the silicon by a factor ∼ 9 and cuts out some information about the

real proportion of silicon/oxygen states.

The projected densities of states allows to better identify the three

groups in the valence. The lowest lying group has a strong oxygen

s-character and a very small amount of silicon s- and p-states and is

clearly identified as the oxygen 2s. The states between -5 eV and -10

eV are mainly composed of oxygen p- and some silicon s- and p-orbitals

(sp3 hybrid states) and correspond to bonding O2p-Sisp3 states. The

remaining group between -5 eV and the Fermi level is almost entirely

made of oxygen p-states and is attributed to O2p non-bonding orbitals.

3.3.4 Band gap and excited states

The experimental band gap in a-SiO2 and α-SiO2 is still a matter of

debate [26, 137] with values ranging from 7.5 to 11.5 eV [138, 139, 140,

141] (see Table 3.4). While it is generally accepted that the optical

absorption in a-SiO2 is slightly red-shifted (0.1-0.5 eV) with respect to

α-SiO2 [137, 142], no strong evidence has been put forward about the

difference between their respective band gaps [27, 49].

The theoretical band gaps obtained within DFT and the GW ap-

proximation are reported in Table 3.4. As expected, DFT strongly un-

derestimates the band gaps of both materials. The GW corrections open

the gap to values closer to the experimental ones. In both cases, the GW

correction amounts to approximately 3.2 eV. This is not in agreement

with what is shown in [49], where the GW correction for amorphous

structures is larger than for α-quartz. They explain this difference from

the presence of small rings (3- and 4-membered) in a-SiO2, which are

not found in α-SiO2 (which only contains 6- and 8-membered rings).

This straight conclusion is surprising and indeed, the large diversity of

ring sizes and the presence of small rings (see the highlighted atoms in

Fig. 3.3) in the amorphous models presented here do not lead to signif-

icant differences in the GW corrections. The discrepancy between the

values obtained and the experimental values is rather to be found in one

of the approximation used, namely the use of a one-shot GW instead of
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Table 3.4: Theoretical and experimental (direct) band gaps in a-SiO2

and α-SiO2 (in eV).

LDA G0W0 Theor. Expt.

a-SiO2 ∼ 5.3 ∼ 8.5
5.6a, 5.36b,9.3c 9.3d, 11e, 11-11.5f

9.4-9.6g,10.1h 8.8-8.9i, 7.64-9.56j

α-SiO2 6.06 9.27 5.8k, 5.9l, 9.4m,10.1n 8.29-9.55o, 8.9p

a DFT-LDA [40] and [27] b DFT-LDA [60] cG0W0@LDA [60] d [139] e [26]
f [138] gG0W0@LDA [49] h COHSEX [27] i [140] j [141] k DFT-LDA [60]
l DFT-LDA [27] mG0W0@LDA [60] nG0W0@LDA [28], COHSEX [27] and

QPscGW [97] o [141] p [140]

a fully or partially self-consistent scheme. This is unfortunately out of

reach for large systems with the present computational resources.

As shown in Table 3.4 and from the above discussion, the value of

the quasiparticle band gap of a-SiO2 is not yet clearly determined. This

issue will be put forward again when discussing the optical properties in

the next section. As a matter of fact, a good description of the excited

states, and in particular of the band gap, is a prerequisite for optical

calculation.

The electronic structure for the excited states is also obtained within

the GW method. The GW density of states has already been presented

in Fig. 3.7 and 3.8. The overall energy dependence of theGW corrections

obtained using the polyfit energy approximation is shown in Fig. 3.9 for

one model with two different sets of k-points : (a) the Γ-point (referred

to as PfitΓ) and (b) a 2×2×2 mesh (referred to as Pfit222). The rigid-

shift approximations ScissΓ and Sciss222 from the two k-point sets are

also shown in the figure as the dashed lines in (a) and (b). The error

arising from using the polyfit on these two k-point sets is shown in (c)

and the corresponding GW DOS aligned to the Fermi level are plotted

in (d). The inset in (d) is an enlarged view of the conduction DOS. As

shown in (c), the error amounts to maximum 0.1 eV for valence states
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and 0.2 eV for conduction states and the use of the PfitΓ as compared

to the Pfit222 leads to a red shift of the conduction DOS by ∼0.1 eV.

From the GW DOS obtained from the previous polyfits, one can

calculate a joint density of states J(ω) (JDOS) as :

J(ω) =

∫
Nv(E)Nc(E + ω)dE (3.1)

where Nv(E) and Nc(E) are the valence and conduction DOS respec-

tively. As a very rough approximation, the optical absorption spectrum

can be considered proportional to this JDOS (neglecting oscillator ma-

trix elements and excitonic effects). It corresponds to the density of

possible independent transitions of a given energy and is illustrated in

Fig. 3.10 (a).

The inset in Fig. 3.10 (a) shows that the JDOS obtained from PfitΓ is

red-shifted by ∼0.1 eV, as expected from the conduction shift mentioned

previously. The lower panel (b) illustrates the minimum, maximum and

mean errors in the transition energies obtained from the two polyfits

where the mean error for each polyfit is roughly constant. This justifies

the use of the polyfit interpolation of the quasiparticle energies used in

the electron-hole basis sets for the computation of optical properties.

Additionally, the use of a polyfit obtained from a GW calculation at

the Γ-point gives rise to a small and constant lowering of the transition

energies and can thus be corrected for a posteriori.

3.4 Optical properties

The joint density of states presented in the previous section provides

an approximation for the imaginary part of the dielectric constant, ne-

glecting excitonic effects and transition probabilities (also called optical

matrix elements). Instead, by using the JDOS weighted by these opti-

cal matrix elements, one can define the non-interacting or random-phase

approximation (RPA) of the dielectric function. As clearly illustrated

in Fig. 3.11 (b) for α-SiO2, the RPA macroscopic dielectric function

do not reproduce the experimental spectra (black line) when using the

DFT eigenvalues (full red line). Adding the GW corrections using a
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respectively.
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Figure 3.11: (a) Schematic illustration of the rigid-shift and polyfit
approximations (b) Independent-particle approximation of ε2(ω) in α-
quartz. The full red line corresponds to the RPA approximation using
the Kohn-Sham (LDA) levels while the dashed green and full blue curve
corresponds to the RPA approximation using the GW -corrected levels
obtained respectively from a rigid shift of the KS conduction states and
from a polyfit interpolation. The experimental spectrum is shown in
black.

rigid-shift (dashed green line) or a polyfit approximation (full blue line)

does not improve the agreement with the experiments. As mentioned in

Sect. 2.5, this discrepancy is due to the lack of electron-hole interaction

in the computation of the dielectric function.

In this section, the optical properties are obtained from the solution

of the Bethe-Salpeter equation. The optical spectra of crystalline and

amorphous silica will be presented. Emphasis will be put on the differ-

ent levels of approximations that can be used. Results obtained with

a rigid shift of the unoccupied states are compared to those obtained

with the polyfit interpolation. Additionally, the use of a model dielec-

tric function [120, 121] for the static screening matrix in the BS kernel

is found to yield very satisfactory results as compared to a computa-

tion performed with the exact dielectric function. Finally, it is shown
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that the actual quasiparticle band gaps of a-SiO2 and α-SiO2 can be

deduced through reverse engineering by comparing the theoretical and

experimental spectra.

3.4.1 Optical spectra of α-quartz

Using the formalism introduced in Sect. 2.5, the absorption spectra of

α-SiO2 are in a much better agreement with the experimental ones.

This has already been shown for the crystalline form in previous studies

[28, 30, 97]. First, these results for α-SiO2 are reproduced analyzed

in details. In particular, the rigid-shift approximation is found to be

insufficient and a more decent approximation for the electron-hole basis

set as given by the polyfit interpolated values leads to a much better

agreement with experiment. The procedure is used to obtain optical

spectra for the amorphous phase, which has not yet been done to our

knowledge.

The imaginary part of the macroscopic dielectric function of α-SiO2

computed with the quasiparticle eigenstates from a rigid shift (in red)

and from a polyfit interpolation is illustrated in Fig. 3.12 where the

experimental spectrum [143] is given as the thick black line. In the

same figure, the corresponding RPA dielectric function obtained using

the same QP eigenstates is given by the dot-dashed lines. The results

were obtained with a 4×4×4 randomly shifted k-point grid including 18

occupied and 24 unoccupied states in the electron-hole basis set. The

BS kernel has been constructed using the DFT-RPA screened Coulomb

interaction.

First of all, the inclusion of excitonic effects by using the BS equa-

tion clearly improves upon RPA but the overall structure appears to be

slightly too low in energy. This is most probably due to the QP gap

which is underestimated with respect to its (not so well known) exper-

imental value. Indeed, Kresse et al. [97] obtained a value of 10.1 eV

for the direct gap at Γ by using quasiparticle self-consistent GW [144]

(sc-QPGW ). On the other hand, Chang et al. came up with the same

value for the gap from a one-shot GW but using a plasmon-pole that

artificially increases the band gaps [111, 112] (see also Chapter 6). Using
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Figure 3.12: Macroscopic dielectric function ε2(ω) in α-SiO2 : rigid-
shift (in red) and polyfit (in green) approximations (BS spectra : full
lines. RPA spectra : dot-dashed lines). The black line corresponds to
the experimental spectrum [143].

an additional scissor for both the rigid-shift and polyfit approximations

in order to get this same value for the direct gap (results referred to as

Sciss+ and Pfitsciss) lead to the optical spectra in Fig. 3.13.

When this additional correction for the QP gap is used, the agree-

ment with experiments in much better for Pfitsciss. In particular, the

position of the peaks are much closer to the experimental ones and to

other reported theoretical results as shown in Table 3.5. For the Sciss+

results, the agreement is as good for the first peak but worsens for the

other peaks. This follows from the fact that the energy dependence of

the GW particle corrections is not taken into account. This results in a

red-shift of the transition energies as previously shown in the joint den-

sity of states for a-SiO2 in Fig. 3.10 which in turn leads to the squeezing

observed in the dielectric spectrum.

The comparison of the dielectric function obtained with the Pfitsciss

approximation with and without excitonic effects reveals that the two

first peaks are clearly excitonic, as already mentioned by Chang et

al. [28]. However, they also described the third and fourth peaks as
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Figure 3.13: Macroscopic dielectric function ε2(ω) in α-SiO2 : rigid-
shift (Sciss+, in red) and polyfit (Pfitsciss, in green) approximations plus
scissor (BS spectra : full lines. RPA spectra : dot-dashed lines). The
black line corresponds to the experimental spectrum.

Table 3.5: Position of the peaks of ε2(ω) in α-SiO2 (in eV). The relative
positions of the 2nd, 3d and 4th peaks with respect to the first one is given
between parenthesis. Theoretical results obtained by Chang et al. [28]
and Kresse et al. [97] are also reported.

nth peak 1st 2nd 3d 4th

Pfitsciss 10.55 11.5 (0.95) 14.15 (3.6) 16.8 (6.25)

Sciss+ 10.3 11.2 (0.9) 13.65 (3.35) 16 (5.7)

Chang et al. 10.1 11.3 (1.2) 13.5 (3.4) 17.5 (7.4)

Kresse et al. 10.3 11.45 (1.15) 14.0 (3.7) 17 (6.7)

Expt. [142, 145] 10.45 11.55 (1.1) 14.2 (3.75) 16.7 (6.25)
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being largely excitonic while this is not so clear in Fig. 3.13. Indeed,

in the range from 13 to 18 eV, the GW -RPA spectrum show features

that are very similar to the BS spectrum. An analysis of the excitonic

wavefunctions would certainly help the interpretation but goes beyond

the scope of this thesis.

In the work by Chang et al., the set of QP eigenvalues used to con-

struct the electron-hole basis set has been obtained from a one-shot GW

calculation starting from a DFT-LDA calculation, as in this work. On

the contrary, they used the Hybertsen and Louie (HL) plasmon-pole

model [108] and included some kind of self-consistency in the BS com-

putation while the Godby and Needs model [109] has been used here.

The former has been shown to artificially increase the band gap with

respect to a full-frequency GW computation [110, 111, 112] (see also

Chapter 6). As a matter of fact, the one-shot GW is unable to deter-

mine the correct QP gap of α-SiO2 while self-consistent GW with vertex

corrections seems to remedy this problem as shown by Kresse et al. [97].

The HL model also leads to an overestimation of the dispersion of the

quasiparticle eigenvalues, which could explain the necessity to include

self-consistency in their BS approach. Here, though the GW gap itself

is underestimated, the relative position of the peaks is well described.

This indicates that the dispersion is fairly well represented, without any

self-consistency in the BS computation, similar to what was done in

Kresse et al. [97].

Table 3.6 reports the values of the macroscopic dielectric constants

and the birefringence value ∆n = ne − no '
√
εe −

√
εo (e and o stands

for the extraordinary and ordinary rays, along and perpendicular to the

trigonal axis respectively) obtained with the different approximations.

The KS-RPA values are surprisingly close to the experimental values.

On the contrary, the GW -RPA (whatever the scheme used for the inter-

polation of the QP eigenvalues) leads to a large underestimation while

the BSE recovers a good agreement, the best interpolation scheme being

the Pfitsciss.

As already mentioned previously, the RPA screened Coulomb in-

teraction W from the Kohn-Sham DFT eigenvalues has been used in
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Table 3.6: Electronic contribution to the macroscopic dielectric con-
stants and birefringence ∆n in α-SiO2 using the different approxi-
mations mentioned in the text, as compared to experiment [146] and
to results obtained using density functional perturbation theory with
(DFPTsciss) and without (DFPT) a scissor correction of 1.8 eV [21].
The two components εxx∞=εyy∞ and εzz∞ correspond to the the dielectric
constant in the hexagonal plane and in the z direction (along the trigonal
axis) respectively.

εxx∞=εyy∞ εzz∞ ∆n

KS-RPA 2.377 2.403 0.0084

GW -RPA Pfitsciss 2.052 2.067 0.0052

Sciss+ 2.079 2.095 0.0055

Pfit 2.097 2.113 0.0055

BSE Pfitsciss 2.335 2.365 0.0098

Sciss+ 2.387 2.417 0.0097

Pfit 2.419 2.451 0.0103

Expt 2.356 2.383 ∼0.009

DFPT 2.527 2.566 0.0122

DFPTsciss 2.353 2.385 0.0104



3.4. Optical properties 83

8 10 12 14 16 18
Energy ω (in eV)

0

1

2

3

4

5

6

7
ε 2

(ω
)

Experiment

Without MDF

With MDF

RPA

Figure 3.14: Macroscopic dielectric function ε2(ω) in α-SiO2 with (in
green) and without (in blue) using a model dielectric function. The
experimental spectrum is shown in black.

the construction of the excitonic hamiltonian (see Eq. 2.120). This is a

customary procedure whose justification lies in the fair agreement with

experiment of the KS-RPA value of the static (electronic) dielectric con-

stant ε∞ = ε1(ω = 0). Another commonly used approximation for the

screened Coulomb interaction used in the BS equation is to derive it

from a model dielectric function [120, 121] (MDF). The only (external)

parameter for the MDF is precisely the value of the static dielectric

constant ε∞ =∼ 2.39 (chosen here as the average of the two compo-

nents in Table 3.6). One then avoids the computation of the full RPA

dielectric function for each q-point and reduces drastically the compu-

tational time. The results with a MDF-derived (blue line) and with the

full KS-RPA (green line) screened Coulomb interaction are compared in

Fig. 3.14. The agreement is very good, in particular for the position of

the peaks which are almost unaffected.

Using a MDF, the convergence with respect to the number of k-

points is much easier. Up to here, all the spectra presented were obtained

using a randomly shifted 4×4×4 k-point grid. As shown in Fig. 3.15,

the macroscopic dielectric function is not completely converged with this
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Figure 3.15: Convergence in k-points of the macroscopic dielectric func-
tion ε2(ω) in α-SiO2. The red, green and blue curves correspond respec-
tively to a 2×2×2, a 4×4×4 and a 6×6×6 k-point grid.

grid but the position of the peaks is only slightly affected, even for the

smaller k-point grid. The first peak is pretty much the same with the two

larger grids while the lowest one leads to a cutting-down in amplitude.

On the other hand, the second peak shows some structured variation at

∼ 13.2 eV in the 4×4×4 grid that are not present in the experimental

spectrum while the third and fourth peaks are pretty much converged.

These observations will serve as a basis for the amorphous models as

these imply a much larger cost in computational time and memory and

for which BS calculations are performed with only one k-point.

The results obtained in this section shed some light on the actual

value of the direct gap in α-SiO2. It is based on the comparison of

the experimental spectrum of ε2(ω) with the theoretical one, solution of

the BS equation. The relative peak positions are fairly well reproduced

as observed in Table 3.5 and this constitutes some indirect evidence of

the reliability of the overall energy dispersion of the G0W0 eigenvalues of

both the valence and conduction states though the value of the band gap

is clearly underestimated. The band gap can thus in turn be obtained by

shifting the spectrum in order to reflect the absolute peak positions. Its
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actual value appears to be approximately equal to the sc-QPGW value

of 10.1 eV. Of course, in the process discussed above, several approxi-

mations are used, but based on the errors in the relative positions of the

peaks, one can reasonably estimate the error on the band gap inferred

here to be about 0.2 eV. This is consistent with recent experimental

results in a-SiO2 and α-SiO2 [26] and thus partially solves the problem

of the band gap in quartz. A full analysis of the excitonic wavefunctions

should indeed be performed in order to confirm these findings and is

thus a possible route for future work.

3.4.2 Optical spectra of amorphous silica

For a-SiO2, a similar procedure involving the polyfit interpolation of

the G0W0 eigenvalues followed by an additional rigid shift has been

used. The results presented here are performed with a model dielectric

function. As for α-SiO2, the RPA-KS static dielectric constant ε∞ is

rather well described with a mean value of 2.14 to be compared with

the experimental value ranging from 2.11 to 2.18 [147, 148] and with the

theoretical value of 2.14 from Ref. [46]. This value has been used as the

parameter for the MDF.

The macroscopic dielectric function has been obtained for four dif-

ferent models. The computations were carried out separately on four

different k-points. Three different directions of the q vector of light

were obtained and averaged for each model and k-point. The resulting

macroscopic dielectric function is given in Fig. 3.16 (a) to (d) for each

model (in blue). A common additional rigid shift of 1.27 eV had to

be chosen in order to align the first peak with the experimental spectra

[142]. The GW -RPA dielectric function is given by the dot-dashed green

line. Another possibility is to align each model separately, in which case

the shifts needed to align the first peak are respectively 1.38, 1.42, 1.17

and 1.1 eV for the models in (a)-(d). These two alternatives have been

used for the averaging procedure.

The theoretical spectra obtained are not in a so good agreement with

the experiments as for the α-SiO2 case. The first peak is rather well

described in amplitude while its position is fixed by construction. On
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Figure 3.16: Macroscopic dielectric function in a-SiO2. Four different
models (in blue) are shown in panels (a) to (d). The BS and GW -RPA
spectra are given by the full blue and dot-dashed green lines respectively.
The experimental spectrum [142] is given by the black line.

the other hand, the second peak is clearly underestimated and its max-

imum value does not correspond with the experimental position of the

peak. As discussed in the previous section for α-SiO2, the second peak

is quite affected by k-point convergence. This discrepancy is thus likely

to be attributed to the underconverged k-point grid (only one k-point

in each computation). The missing spectral weight is expected be recov-

ered by including more than one k-point in the electron-hole basis set

which in turn could reconcile the theoretical position of the peak with

the experimental one. Concerning the other two peaks, their respective

position is relatively well reproduced in each model. In the crystalline

case, these peaks were not as influenced by k-point convergence as the

second one, which tends to justify the validity of these peaks. The aver-

aged spectra for the four models is given in Fig. 3.17 and the positions

of the peaks are reported in Table 3.7. Except for the first peak which

is slightly broadened when using a common shift, the resulting spectra

are not much changed when using a common shift or separate shifts
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Figure 3.17: Macroscopic dielectric function in a-SiO2 averaged over
four models. The BS and GW -RPA spectra are given by the full and
dot-dashed lines respectively. The blue and green colors correspond to
the spectra obtained with a common additional shift for the models and
a separate shift for each model respectively. The experimental spectrum
[142] is given by the black line.

for each model. In particular, the positions of the peaks remain almost

unaffected.

In view of the above discussions, the value of the QP band gap in

amorphous silica can also be inferred from the value of the additional

rigid shifts needed to align the theoretical spectra with the experimental

one. The direct QP band gaps obtained for the four models presented

are respectively 9.85, 9.73, 9.73 and 9.68 eV, with a mean value of 9.75

eV. This latter value is slightly smaller than the QP gap in α-quartz

and is consistent with the known trend of small disorder implying a

small closure of the gap. Similarly to what was found in the work by

Martin-Samos et al. [49], the quasiparticle corrections to the LDA gap

(including the additional shifts) are slightly larger for the amorphous

phase than for α-quartz. On the contrary, the actual values obtained

in Ref. [49] are smaller than those obtained here. The reliability of the

QP gaps determined in this work is supported by the optical absorption
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Table 3.7: Position of the peaks of ε2(ω) in a-SiO2 (in eV). The rela-
tive positions of the 2nd, 3d and 4th peaks with respect to the first one
are given between parenthesis. Experimental results [142, 145] are also
reported.

nth peak 1st 2nd 3d 4th

Pfitsciss 10.5 11.45 (0.95) 14.1 (3.6) 16.6 (6.1)

Expt. [142, 145] 10.5 11.85 (1.35) 13.9 (3.4) 16.6 (6.1)

results, which were not investigated in Ref. [49]. The results obtained

for a-SiO2 are of course more questionable than those of α-SiO2 due to

k-point convergence and further computations with larger k-point grids

should be performed in order to reproduce the experimental spectrum

more accurately and verify the correctness of the gap inferred.

3.5 Conclusion

Models of amorphous silica containing 72 atoms have been prepared

using classical molecular dynamics and ab initio relaxation. The result-

ing structures have been analyzed in detail. Their structural proper-

ties (bond lengths, bond angles, rings statistics) are in good agreement

with experimental data and with previously published results. Using

DFT and the GW approximation, the electronic structure of a-SiO2

has been compared to the most commonly found crystalline polymorph

: α-quartz. The optical properties have then been investigated by solv-

ing the Bethe-Salpeter equation. The one-shot GW technique has been

found to be insufficient to reproduce the QP gap in SiO2. It has been

shown that the direct QP gap can be obtained from a reverse-engineering

procedure instead. The present results indicate that the direct QP gap

in a-SiO2 (9.75 eV) is slightly smaller than the direct QP gap in α-SiO2

(10.1 eV). The models generated here will be used in the next chapter

for the analysis of charged states of hydrogen in amorphous silica.
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Hydrogen-containing silica

Defects are inevitably present in the materials due to their fabrication

process. In the manufacturing of optical fibers, MOS transistors and

other devices using SiO2 , hydrogen atoms can be trapped in the bulk

material in several forms : molecular H2, neutral H0, O-H+, Si-H−, . . . .

Their presence can affect the electronic and optical properties. More-

over, when the device is used in a given environment, with high temper-

ature, potential irradiation and other possibly harmful conditions, these

sites can be excited, resulting in other defect centers and a degradation

of the properties [1, 149]. In this chapter, the neutral and charged states

of hydrogen are investigated by means of DFT and GW electronic struc-

ture calculations. The structure of these defects is first presented. The

corresponding energy levels are computed from GW computations. De-

fect formation energies obtained from DFT are then presented. Finally,

some GW -corrected formation energies are put up in a perspective of

future work.

4.1 Structure of the different charged states

The hydrogen atom has been investigated in the neutral, positive and

negative charge states. In each case, a variety of minimum 15 different

initial configurations in 5 different models of amorphous silica have been

gathered. For both the positive and negative charged states, at least

9 of the closest atoms were relaxed in order to reach a total energy
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(a) (b)

Figure 4.1: (a) Structure of the positively charged hydrogen in a-SiO2.
(b) Density profile in a plane along the O-H bond. The high density
regions are shown in red while the low density regions appear in blue.

convergence of less than 0.05 eV. For the neutral state, only the hydrogen

atom was relaxed in order to get the same convergence criterion. The

resulting structures are fundamentally different from each other.

In the neutral state, the hydrogen atom H0 is localized in the larger

voids of the system. The silica network is not distorted at all from the

inclusion of this neutral hydrogen. Using a Bader charge analysis, its

electronic charge is almost equal to one, showing that charge density

corresponding to the electron provided by the H atom remains close to

the proton. The state is clearly of s-character from a partial density of

states analysis.

The positively charged hydrogen gets bonded to an oxygen atom as

shown in Fig. 4.1 (a). The O-H bond length is about 1 Å while the

bonds between the O atom and its first neighboring Si atoms increase

to ∼ 1.75Å as compared to the mean Si-O distance in pure a-SiO2,

resulting in slightly distorted tetrahedrons. The charge density along

the O-H bond is illustrated in Fig. 4.1 (b), in which a charge transfer

from the O atom to the H atom is clearly seen. From a Bader analysis,

the O atom, whose electronic charge without the H atom is ∼ 7.55,

looses ∼ 0.5 electrons in favor of the H atom whose Bader electronic

charge is ∼ 0.75. The remaining charge comes from the other atoms of

the unit cell.

In the negative charged state, the H atom forms a Si-H bond instead

with a quite large deformation of the tetrahedron to which the Si atom
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(a) (b)

Figure 4.2: (a) Structure of the negatively charged hydrogen in a-SiO2.
(b) Density profile in a plane along the Si-H bond. The high density
regions are shown in red while the low density regions appear in blue.

belongs to (see Fig. 4.2 (a)). The Si-H bond length is about 1.5 Å and the

Si-O bonds are largely affected. The bond between the Si atom and the

H-opposed O atom (O1) amounts to ∼1.8 Å while the three other Si-O

bond lengths are increased to ∼1.7 Å, resulting in a larger tetrahedron.

In Fig. 4.2 (b), the charge density along the Si-H bond shows a larger

extent of the charge around the H atom than in the positive charge case.

Indeed, the Bader electronic charge of the H atom is ∼ 1.6 electrons,

and a small part (0.1 electron) of the remaining charge goes to the Si

atom.

The structural properties found in this work are in fair agreement

with other ab initio investigations of hydrogen in crystalline [150] and

amorphous silica [54]. In the latter work, another kind of defect struc-

ture was found for the negative charged state in addition to the one

observed here. This could be due either to the initial configurations

used for finding the most stable configurations or to the fact that these

structures are less favored energetically or to the different exchange-

correlation used in this work. Indeed, the LDA has been chosen in this

work as it correctly predicts the order of stability of the low-density SiO2

polymorphs whereas the GGA leads to unrealistic phase transitions with

cristobalite being more stable than quartz [19]. Nevertheless, the elec-

tronic structure and formation energies will be analyzed in the following

sections for the different structures obtained here.
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Figure 4.3: Schematic illustration of the defect energy levels of hydrogen
in a-SiO2 in (a) positive charge state H+, (b) neutral charge state H0

and (c) negative charge state H−. For each charge state, the DFT (left)
and GW (right) energy levels are shown.

4.2 Defect energy levels

As most point defects or impurities do, hydrogen introduces energy lev-

els in the electronic structure of a-SiO2. These defect states can be

evaluated from standard DFT calculations or from GW computations.

Fig. 4.3 shows schematically the energy levels introduced by the hydro-

gen in a-SiO2.

In the positive charge state, a level is lowered in the O2s region at

∼ −21 eV due to the bond formed between the H atom and an O atom.

There is no occupied state in the gap but an unoccupied level appears

close to the conduction band minimum. This absence of occupied defect

state in the gap will lead to take this positive charge state as a reference

for the calculation of the GW formation energies in the next section.

In the neutral charge state, the hydrogen introduces one occupied

level with spin up and one unoccupied level with spin down in the gap.

These two levels correspond to the 1s H orbital. In GW , the occu-

pied H1s level is merged or almost merged with the valence band. The

position of the unoccupied level with respect to the conduction band

minimum is almost unaffected by the GW corrections.
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In the negative charge state, one doubly occupied state is introduced

around 2.5 eV above the valence band maximum. Two other gap states

close to each other are also introduced around 0.7 eV and correspond to

the non-bonding O2p from the oxygen opposed to the Si-H bond (O1 in

Fig. 4.2 (a)). GW corrections do not change significantly the position

of all these states with respect to the valence band maximum.

4.3 Defect formation energies

The defect formation energies (DFE) of the hydrogen atoms have been

calculated in DFT using the following equation

Ef(D
q) = Etot(D

q) +Ecorr(q)−Eref
tot−

∑

i

niµi+ q(εF + εv + ∆V ) (4.1)

in which Dq is a defect D in charge state q (H+, H0 or H−), Etot(D
q)

is the total energy of the system containing the defect. Ecorr(q) is the

electrostatic correction term for q 6= 0 [151]. This term, which amounts

to 0.92 eV, has been obtained from the computation of the electrostatic

energy of a periodic array of a point charge in a neutralizing background

of the opposite charge, divided by the dielectric constant. Eref
tot is the

total energy of the reference system (pure amorphous silica). ni is the

number of atoms of type i that have been added to (ni > 0) or re-

moved from (ni < 0) the system to form the defect with µi being their

corresponding chemical potentials. εF is the Fermi level referenced to

the maximum of the valence band, εv is the energy of the valence band

maximum in the reference system and ∆V is an alignment potential

that accounts for the difference in the mean KS potential between the

defective and reference systems [52].

The formation energies of the positively charged, neutral and nega-

tively charged hydrogen atoms are represented in Fig. 4.4 and reported

in Table 4.1 together with the results obtained by Godet and Pasquarello

[54]. The formation energies are slightly different but as already men-
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Table 4.1: Average hydrogen formation energies in DFT for a Fermi en-
ergy at the valence band maximum and charge transition level ε(+/−)
between the positive and negative charge states of hydrogen. The stan-
dard deviation of the formation energies obtained in the different con-
figurations and models is given between parenthesis. All values are in
eV.

EH
+

f (εF=0) EH
0

f (εF=0) EH
−

f (εF=0) ε(+/−)

This work -1.41 (0.18) 2.31 (0.05) 5.84 (0.31) 3.62 (0.18)

Ref. [54] -1.28 (0.20) 2.24 (0.04) 5.22 (0.44) 3.25 (0.24)

tioned, the exchange-correlation used is not the same and could explain

the different results observed here.

A common criticism about DFE computed using DFT relies in the

presence of defect states in the gap. Because of the well known band

gap underestimation, these gap states are likely to be misplaced. This

in turn has effects in the formation energy. In the following, a combined

DFT+GW scheme recently proposed by Rinke and coworkers [61, 152]

is tested in order to compute GW -corrected defect formation energies.

The method is depicted schematically in Fig. 4.5. For the positively

charged hydrogen, because there is no occupied state within the gap,

the formation energy is computed within DFT (point 1). In order to

get the formation energy of the neutral state (point 2), the change in

energy from the positive to the neutral charge state is split in two parts

: the “relaxation” energy ∆Erel(qi,R1 → R2) at fixed charge qi (hori-

zontal transitions : 1→ b or a→ 2) and the energy to add one electron

or electron affinity A(q1,Ri) for a given configuration Ri (vertical tran-

sitions : b → 2 or 1 → a). As the initial and final states are equal, the

two paths should give the same formation energies.

The relaxation energy is calculated within DFT while the electron

affinities are computed with the GW method. In a sense, one takes

the best of both worlds : energy differences between different configu-

rations without change in the particle number are supposed to be well

described in DFT while GW is expected to give reliable electron addi-

tion and removal energies for a given configuration. For the energy to
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Figure 4.4: Defect formation energies of hydrogen in a-SiO2 (DFT).
The shaded areas indicate the standard deviation of the values.

add one electron, these can be obtained either from the electron affin-

ity of the system with N electrons or as the ionization energy of the

system with N + 1 electrons. In principle, these are equivalent but in

practice, the approximations used (one-shot GW , plasmon-pole model,

. . . ) introduce differences between them and it has been shown that it is

preferable to take the average of the two in order to get reliable electron

addition energies [153].

A similar procedure is applied for the formation energy of the nega-

tive hydrogen, starting from the formation energy of the neutral hydro-

gen.

The results for one particular case are given in Table 4.2 and illus-

trated in Fig. 4.6. The energy to add one electron is clearly different

whether it is computed from the affinity A(q) of with the ionization en-

ergy I(q − 1) of the system with the additional electron. In particular,

for the negative charge state, the difference between the two goes up

to 2.3 eV in the case of the 2 → c → 3 path. The different ranges

of formation energies thus obtained are shown by the colored areas in

Fig. 4.6. Using the mean value of A(q) and I(q − 1) leads to values in

good agreement for the two different paths [153].
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Figure 4.5: GW formation energies.

Table 4.2: Hydrogen formation energies in GW for a Fermi energy at
the valence band maximum. The paths indicated in the table reference
to the points in Fig. 4.5. All values are in eV.

Path A(q) I(q − 1) (A+ I)/2 DFT

EH
+

f (εF=0) -1.36

EH
0

f (εF=0)
1→ a→ 2 2.84 3.69 3.27

2.37
1→ b→ 2 2.81 3.59 3.20

EH
−

f (εF=0)
2→ c→ 3 4.92 7.24 6.08

6.04
2→ d→ 3 5.80 6.30 6.00
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energies.
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For the neutral charge state, this procedure leads to an increase

of the formation energy and the neutral hydrogen is even less favored.

For the negative hydrogen, the formation energy obtained from this

scheme is almost identical to the DFT formation energy. The position

of the charge transition level ε(+/−) is thus almost unaffected by this

correction scheme for this particular case.

Unfortunately, no other conclusive results could be obtained for other

cases. Specifically, the agreement between the two different paths was

not recovered by using the mean value of A(N) and I(N + 1), with

deviations as large as 1 eV. The reasons for these discrepancies are not

yet fully understood. One possible perspective would be to examine the

defect formation energies of hydrogen in the α-quartz system by means of

this DFT+GW scheme. Indeed, the amorphous character complicates

the identification of the possible origins of the problems encountered

here. This thus opens perspectives of future work as it will certainly

help understand these problems by using a simpler system.

The applicability of this DFT+GW scheme for the charged states of

hydrogen in a-SiO2 is thus questionable. In fact, the method was ini-

tially applied in Ref. [61] to the silicon self-interstitial for which the struc-

tural changes from one charged state to another are quite small. This

is very different here where the stable configurations for each charged

state are very different from one another and could explain the prob-

lems encountered here. This complicates the search of the minimum

steady-state in DFT for points a, b, c and d in Fig. 4.5. If the sys-

tem gets stuck in some metastable state, which does not correspond to

the global ground-state minimum, the method used here can lead to

wrong results such as those obtained for the other cases tested while the

results obtained in Table 4.2 were surprisingly consistent. Therefore,

more technical aspects of the computations performed until now will be

reexamined in the following chapters in order to better understand the

discrepancies encountered here.

On the technical aspects, one possible source of error might be found

in the actual GW corrections. In fact, it is customary to neglect finite-

size effects in the GW corrections obtained in a relatively small supercell
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and use them as is to adjust the DFT energy levels of larger supercells.

This leads to the next chapter for the analysis of the size effects in GW

corrections.
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Chapter 5

Size effects in GW

corrections

In the previous chapter, the hydrogen energy levels in a-SiO2 have been

obtained in DFT and further adjusted within the GW approximation.

In this latter correction process, supercell size effects are assumed to be

negligible. The GW defect energy levels εGWdef are then usually obtained

from supercell size corrected DFT levels εDFT
def (L → ∞) to which GW

corrections without any correction for size effects are added :

εGWdef = εDFT
def (L→∞) + ∆GW

def (Lsmall) (5.1)

This size-independency of the GW corrections is a customary as-

sumption that has been used in other studies [154, 155, 156]. It is based

on the fact that the screening effects are rather localized but to my

knowledge, it has never been formally checked so far. In order to do

that, one should test these size effects for a large range of defects in

different systems with different charged states. This chapter is a step in

this direction as it starts with the analysis of the size effects in the GW

defect energy level of one defect in its neutral state.

The tests have been performed for an oxygen vacancy in the idealized

form of SiO2 known as β-cristobalite or high cristobalite. The structure

of cristobalite and the oxygen vacancy are first presented. The supercells

used in the study of the size effects are then described. The defect energy
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(a) (b)

Figure 5.1: Structure of ideal β-cristobalite and oxygen vacancy. (a)
Conventional (cubic) cell of ideal β-cristobalite and (b) Oxygen vacancy
in the conventional cell. The silicon atoms that were initially bonded to
the missing oxygen atom get closer to each other and form a bond (in
blue).

levels obtained in DFT and GW are then given and final conclusions on

this topic are drawn.

5.1 Oxygen vacancy in β-cristobalite

Ideal β-cristobalite is a SiO2 polymorph usually found at high temper-

atures (in volcanic rocks for example). In this form, the SiO4 tetrahe-

drons are arranged in a very ordered way as shown in Fig. 5.1 (a). The

structure is in fact a face-centered cubic system where the silicon atoms

are positioned as in the diamond structure and the oxygen atoms are

inserted in the middle of the Si-Si bonds. The (pure) primitive unit

cell has been relaxed in DFT-LDA and the obtained lattice parame-

ter (a=13.83 Bohr) has been used for the construction of the defective

supercells. The great advantage is that the study of finite-size effects

with this structure is easier as one can use supercells as multiples of the

primitive (6 atoms) or conventional (24 atoms) unit cell.
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Figure 5.2: Energy levels of oxygen vacancy in ideal β-cristobalite. The
band structure is given along the M-Γ-R-X-Γ-M path in the conven-
tional cell. The black and grey lines correspond to valence and conduc-
tion states respectively. The blue and red line are the two gap states
introduced by the oxygen vacancy, the lowest one (def1) being occupied
with 2 electrons while the highest one (def2) remains unoccupied in the
neutral charge state.

In Fig. 5.1 (b), the structure of the oxygen vacancy V0
O in its neutral

charge state that is studied in this chapter is shown. The two silicon

atoms to which the missing oxygen was bonded have been relaxed in the

conventional unit cell. These two atoms gets closer to each other (2.93

Å, to be compared with the standard Si-Si distance of 3.17 Å), making a

new Sisp3-Sisp3 bond, as shown from a partial density of states analysis.

The presence of the oxygen vacancy introduces two defect energy

levels in the band gap as shown in Fig. 5.2 (DFT band structure along

the M-Γ-R-X-Γ-M path in the conventional cell). The lowest energy

level (blue line, referred to as “def1”) is occupied with two electrons

and correspond to the bonding sp3 hybridized states forming the Si-Si

bond mentioned above. The highest energy one (red line, referred to as

“def2”) is unoccupied and is attributed to antibonding sp3 states.

In the following sections, the convergence of the position of these

defects with respect to the size of supercell used will be analyzed in
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Table 5.1: Supercells of cristobalite.

Name n× n× n Cell Nat VSC (Bohr3) ddef
min (Bohr) Nd

C111 1× 1× 1 C 23 2643.9 13.83 6

P222 2× 2× 2 P 47 5287.9 19.56 12

P333 3× 3× 3 P 161 17846.5 29.33 12

C222 2× 2× 2 C 191 21151.4 27.66 6

P444 4× 4× 4 P 383 42302.9 39.11 12

C333 3× 3× 3 P 647 71385.3 41.48 6
...

...
...

...
...

...

details. In particular, the GW corrections to the DFT energy levels will

be obtained for four different supercells.

5.1.1 Supercells

The different supercells that have been used corresponds to multiples of

the unit cell (containing 6 atoms) and the primitive cubic cell (contain-

ing 24 atoms). One can then successively build supercells of increasing

size as given in Table 5.1 where the multiplying factor n, the initial cell

type (primitive P or conventional C) that is multiplied, the number of

atoms in the supercell Nat and the volume VSC of the supercell. The

minimum distance between defects in neighboring images ddef
min and the

defect coordination number Nd (the number of defect images at a dis-

tance ddef
min of the defect in the origin cell) are the main parameters that

controls the convergence of the defect energy levels with respect to the

supercell size and are also given in the table.

Each of the supercells defined in Table 5.1 have been used to obtain

the defect energy levels within DFT. The GW corrections were calcu-

lated for the first four of them. Indeed, the computational time and

memory requirements become rapidly very high as shown in the follow-

ing.
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5.1.2 Computational details

The parameters used for the simulations were carefully chosen as small

as possible in order to reduce the computational needs to their minimum

for an acceptable convergence criterion of 0.05 eV. For the ground-state

calculations, an energy cut-off of 30 Ha has been used for the plane

wave basis set. For the C111 and P222 supercells, a non-shifted 2×2×2

k-point grid has been used whereas only the Γ-point was needed for the

larger supercells. The calculation of the dielectric matrix was expanded

using an energy cut-off of 6 Ha for the plane waves. In order to get an

accuracy of 0.05 eV on the defect energy positions, the number of unoc-

cupied states included amounts to 18-20 times the number of occupied

ones. For both the dielectric matrix and the self-energy corrections, the

extrapolar method [130] with a compensation energy of 2 Ha has been

used so that the number of unoccupied states required for the desired ac-

curacy could be decreased to only 5 times the number of occupied states

in all the supercells. An estimate of the computational requirements is

given in Appendix C for the five first supercells.

5.2 Size effects in the defect energy levels

In DFT, the finite-size effects on the defect energy levels have been ex-

tensively studied for many systems [50, 51, 157, 158, 159, 160]. The

convergence for the two defect levels in DFT is shown in Fig. 5.3 with

respect to the inverse of the volume (left) and with respect to the in-

verse of the minimum distance between defects. The energy levels are

referenced to the valence band maximum. It is interesting to note that

the energy levels obtained from Cnnn-type supercells (multiples of the

conventional cell, blue squares) seem to converge faster than those from

Pnnn-type supercells (multiples of the primitive cell, green triangles)

even when the minimum distance between defects is larger. This can be

understood in terms of the defect coordination number Nd of Pnnn-type

supercells which is twice that of Cnnn-type supercells.

The infinite size energy levels can be obtained by extrapolation using

for example εdef(L) = εdef(L → ∞) + αL−1 with cells C222 and C333.
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Figure 5.3: Convergence of the defect energy levels in DFT.

The corresponding values for def1 and def2 are 0.74 eV and 5.23 eV and

are shown in Fig. 5.3 by the dot-dashed line.

Turning to the GW computations, the GW energy levels and GW

corrections are given in Figs 5.4 and 5.5. While the difference between

the GW energy levels in the two larger supercells is less than 0.05 eV, the

ones obtained in the 23- and 47 atom supercells differ by up to 0.3 eV.

This observation is also present in the GW corrections with differences

of ∼ 0.2 eV between the two smallest and the two larger supercells. As

the system studied here is neutral, for which supercell size effects are

usually small, the convergence with respect to the supercell size could

be important not only at the DFT level but also at the GW level. This

indeed questions the reliability of GW defect energy levels calculated

with small supercells, such as, for example, in Refs. [154, 155].

In the calculation of the GW corrections, the first step involves the

computation of the dielectric function εGG′(q). This dielectric func-

tion is then used to build the screened Coulomb interaction that enters

Eq. 2.79 for the evaluation of the self-energy corrections.
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levels.
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Table 5.2: Macroscopic dielectric constants in pure cristobalite and in
defective supercells.

C111 P222 P333 C222 Pure

2.17 2.10 2.03 2.02 2.00

As the self-energy corrections depend on the screened Coulomb inter-

action, it is worth examining the latter in more in details. It is derived

from the microscopic dielectric function of the defective system as

W (r, r′) =

∫
1

|r′′ − r′|ε
−1(r, r′′)dr′′ (5.2)

In the above integral, the inverse dielectric function ε−1(r, r′′) for

large distances r − r′′ should be close (equal for an isolated defect

in an infinite medium) to the macroscopic dielectric constant ε∞ =

1/ε−1
G=G′=0,q=0 of the pure compound. If the value of ε∞ obtained from

a finite supercell computation differs too much from its value in the

pure system, it will invariably induce deviations in the self-energy. The

comparison of this quantity in the defective and pure system is thus

expected to provide an indication of convergence of the GW corrections

with respect to the size of the supercell. As shown in Table 5.2, the

value of ε∞ in the two smaller supercells does not reproduce the pure

bulk value, while this is the case for the two larger supercells.

The dielectric constant in the two larger supercells is converged

within 1.5% of the pure bulk one and the GW defect energy levels are

equal to each other within the 0.05 eV convergence criterion. This con-

firms that the comparison of the static dielectric constant in the pure

bulk and in the defective supercell is an important parameter to be

considered. This analysis could be done in other compounds and with

other point defects in different charged states in order to validate the

proposition and suggest an actual convergence criterion on the dielectric

constant.
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5.3 Conclusion

The defect energy levels induced by an oxygen vacancy in the neutral

charge state have been obtained using the DFT and GW methods for

several sizes of supercells in the ideal β-cristobalite. The GW correc-

tions are shown to depend on the supercell size, in particular for small

cells. Results with larger cells (383 atoms, 647 atoms, . . . ) would most

likely show that the GW corrections are reasonably converged for the

larger cells used here. Due to computational resources, the GW correc-

tions could not be performed for those cells. Regarding the macroscopic

dielectric constant, it is very close to the one of the pure system for

the 161- and 191-atom cells while the relative difference for the 23- and

47-atom cells amounts to ∼9% and ∼5% respectively. The macroscopic

dielectric constant can thus be suggested as a convergence criterion for

the GW corrections. In fact, the long range part of the microscopic di-

electric function (i.e. the G = G′ = 0 term) could be fixed to its value in

the pure bulk system. In that case, we would expect the GW corrections

to be converge more rapidly with the supercell size. Another possible

test would be to add a Coulomb cut-off for the long-range interactions.

This has been shown to improve the convergence of the GW corrections

with respect to the supercell size [161].

Further investigations should of course be performed for larger cells

and in the case of charged states. Finally, this same procedure could

be applied to other compounds in order to draw some rule of thumb

depending on the macroscopic dielectric function of the pure system.
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Chapter 6

Assessment of the

plasmon-pole

approximation

In the previous chapters, the Godby and Needs (GN) plasmon-pole

model (PPM) has been used for the GW calculations. In a plasmon-pole

approximation, the frequency dependence of the inverse dielectric ma-

trix ε−1 is assumed to have a particular form given by Eqs 2.84 and 2.85

where all the spectral weight of the imaginary part is reduced to a sin-

gle delta peak. This particular assumption for the frequency depen-

dence can have a strong effect on the computed QP eigenvalues. In this

chapter, the QP electronic structure and the RPA dielectric function

of α-SiO2 are obtained using two different PPMs and compared to re-

sults without any PPM approximation by performing a full-frequency

computation.

6.1 QP eigenvalues with and without plasmon-

pole models

In order to obtain the full-frequency results, the contour deformation

technique (CD) has been employed. It is of course much more computa-

tionally demanding but leads to a more accurate evaluation of the corre-
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lation term of the self-energy. For a detailed discussion of the technique,

the reader is referred to Ref. [162]. The GN PPM and the Hybertsen

and Louie (HL) PPM (see Sect. 2.4.4) have been studied here. The

wavefunctions were expanded in a plane-wave basis set with an energy

cut-off of 40 Ha. A non-shifted 2×2×2 k-point grid has been used for

the computation of the self-energy terms while the same grid was shifted

by (0, 0, 1
2) for the evaluation of the screened Coulomb interaction W .

This smaller grid (with respect to the one used in Chapter 3) was used

in order to facilitate the full-frequency treatment. It leads to a roughly

systematic underestimation of the gap by ∼0.1 eV with respect to a fully

converged k-point grid. The energy cut-off for the this screening matrix

was set to 6 Ha. The QP energies have been converged within 0.05 eV

for the chosen k-point grid.

In Fig. 6.1 (a), the effects of using a PPM approximation are probed

by looking at G0W0 corrections ∆G0W0 to the KS-LDA eigenvalues εLDA.

The results computed with the GN and HL PPMs are compared to those

calculated without resorting to any approximation on the frequency-

dependence of the dielectric matrix (i.e. using the CD technique). In

the range of energies close to the Fermi level, the results obtained with

the GN PPM are in excellent agreement with the CD results, not only

for the band gap but also for the absolute values of the G0W0 shifts.

The latter are critical for band offsets studies [110, 163]. For the lowest

energies (O2s-like states, between -20 and -15 eV), the reliability of the

GN PPM is not as good. On the other hand, these states are very low

in energy and are often not taken into account for the computation of

other properties such as optical properties (see Sect. 3.4).

When using the HL PPM, the QP eigenvalues differ largely from the

CD results for the whole range of energies. In particular, the band gap is

overestimated with respect to its full-frequency value. The fundamental

and direct band gaps obtained with the CD technique and with the two

PPMs are gathered in Table 6.1 together with the LDA gap and the real

QP gap as inferred in Sect. 3.4.

The LDA and G0W0 band structures and density of states (DOS)

are plotted in Fig. 6.2. The G0W0 results are obtained using the polyfit
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Figure 6.1: (a) Quasiparticle corrections obtained with and without
plasmon-pole models (b) Error of each PPM investigated in this study
with respect to full-frequency results (CD). The CD results are shown
by the blue circles while the GN and HL PPMs correspond to the green
crosses and red pluses respectively. The shaded areas correspond to the
valence states.

Table 6.1: Fundamental Eg and direct Eg,d band gaps in α-SiO2 com-
puted within LDA and G0W 0 using the CD technique, the GN and the
HL PPMs. The real QP gap reported here corresponds to the value of
the gap obtained in this work in Sect. 3.4.

LDA CD GN PPM HL PPM Real QP gap

Eg 5.77 8.89 8.88 9.36 ∼ 9.8

Eg,d 6.06 9.16 9.16 9.65 ∼ 10.1
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interpolation presented in Sect. 2.4.5. Only the upper valence bands

corresponding to the bonding Si3s,3p-O2p and antibonding O2p orbitals

are shown in the figure.

It is proven here that the GN PPM is quite accurate approximation

as compared to full-frequency results in a large of frequencies around

the gap. As already demonstrated in Sect. 3.4, the one-shot GW is

not sufficient to correctly predict the QP gap in α-SiO2. Quasiparticle

self-consistent GW with vertex corrections [144] has been shown [97] to

yield a better agreement for the QP gap.

6.2 Analysis of the plasmon-pole models and di-

electric function

The properties of the dielectric matrices obtained with the CD technique

and with the PPMs are analyzed in order to further investigate the rea-

sons leading to the discrepancies in the QP eigenvalues. In Fig. 6.3,

the real part of the dielectric matrix Rε−1(iω) along the imaginary fre-

quency axis for q = 0 at G = G′ = 0 computed with the PPMs is

compared to the more accurate values obtained with the CD technique.

It is clear that the GN PPM is much closer to the CD result. Indeed, the

GN PPM parameters are determined from the value of ε−1 for the static

limit (ω = 0+) and for another frequency iωp along the imaginary axis,

the value of which corresponds to the intersection of the CD and GN

curves in Fig. 6.3. It is thus not surprising that the GN PPM reproduces

the behavior of the dielectric matrix along the imaginary axis fairly well.

In contrast, the HL PPM strongly underestimates the behavior of the

CD results over the whole frequency range.

The real part of ε−1(ω) along the real frequency axis is shown in the

upper panel of Fig. 6.4 for q = 0 at G = G′ = 0. Both PPMs reproduce

the static limit ω = 0+ by construction. Even though the two PPMs are

both crude approximations, the GN PPM is closer to the exact behavior

of Rε−1(ω), in particular for frequencies larger than the position of the

main pole. The GN PPM is also a better approximation for frequencies

smaller than 10 eV (see inset). These small frequencies correspond to
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Figure 6.3: Real component of the RPA microscopic dielectric func-
tion ε−1 at G = G′ = 0 and q = 0 plotted along the imaginary axis.
The contour deformation technique, the Godby-Needs PPM and the
Hybertsen-Louie PPM are given by the solid blue, the dot-dashed green
and the dotted red lines.

the range needed for the evaluation of the QP corrections to the states

close to the band gap.

The imaginary part of ε−1 is shown in the middle panel of Fig. 6.4.

The arrows indicate the position of the Dirac delta peaks for the PPMs

where all the spectral weight of Iε−1(ω) is concentrated. The GN pole

peak seems to better account for the overall peak structure of Iε−1(ω).

In the lower panel of Fig. 6.4, the integrand of the f -sum rule (Eq. 2.86)

is shown. The blue shaded area is the integral corresponding to the

CD results while the green and blue rectangles corresponds to the GN

and HL PPMs. For higher G,G′ vectors, the position of the peaks for

the GN and HL PPMs is affected differently. The sum rule imposed

by the HL model pushes the delta peak ever further on the real axis

as can be seen in the upper panel of Fig. 6.5. This seems to result in

an overestimation of the pole contribution along the imaginary axis, in

particular for the low frequency region.

Turning to the analysis of the f -sum rule, it is trivially fulfilled by the

HL PPM by construction, while in the GN PPM, the parameters fix the

integral of the imaginary part of the inverse dielectric function. When
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Figure 6.4: Real (upper panel) and imaginary (middle panel) compo-
nents [at G = G′ = 0 and q = 0] of the RPA microscopic dielec-
tric function ε−1 as computed with the contour deformation technique
(full blue line), the Godby-Needs PPM (dot-dashed green line), and the
Hybertsen-Louie PPM (dotted red line) plotted along the real axis. The
inset in the upper panel is a zoom of the real component for frequen-
cies between 0 and 16 eV. The lowest panel shows the imaginary part
multiplied by the frequency, as an illustration of the f -sum rule.
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Iε−1(ω) is calculated explicitly, the integral depends on the number of

empty states included in the sum. In the lower panel of Fig. 6.5, the

fulfillment of the sum rule is shown as a function of the kinetic energy
1
2 |G|

2 of the diagonal matrix elements of Iε−1(ω). The compliance with

the sum rule is slowly achieved by the CD technique. On the other hand,

the band gap and the QP eigenvalues in the range of energies between

-10 eV and 15 eV are converged with only 400 bands, for which the sum

rule is obviously not fulfilled for most diagonal matrix elements. For the

GN PPM, the fulfillment is rather poor.

From the discussion stated above, the fulfillment of the f -sum rule

is neither a minimum nor a sufficient condition to ensure reliable QP

energies.

6.3 Conclusion

The reliability of the GN and HL PPMs has been studied by comparing

them to results obtained with a full-frequency treatment using the CD

technique. These results show that the GN PPM is able to reproduce

the QP eigenvalues obtained from the CD method with good accuracy

for a large range of energies around the Fermi level. The analysis of

the PPMs also shows that the fulfillment of the f -sum rule is not an

essential requirement for getting accurate results.

As a consequence, it is clear that the band gap obtained in Sect. 3.3.4

is underestimated by the one-shot GW method starting from an LDA

electronic band structure. The HL PPM seems to give a better estimate

of the QP gap but for the wrong reasons. In order to improve the

prediction of the QP gap, it is thus necessary to go beyond the one-shot

approach. The self-consistent GW schemes being very computationally

demanding, it is advised to use a better starting point than LDA. The

next chapter analyzes the TB09 exchange-correlation potential which

has been claimed to give much more accurate band gaps while remaining

in a KS-like formulation.
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Chapter 7

Analysis of the TB09

exchange-correlation

potential

In the previous chapters, it was shown that DFT with the LDA as the

exchange-correlation functional was unable to predict correctly the band

gaps and defect energy levels in SiO2. The application of a one-shot GW

using the DFT-LDA electronic structure as a starting point also revealed

the limits of the method. One would then need to use more sophisticated

approaches involving some kind self-consistent solution of Hedin’s equa-

tions such as QPscGW [144, 164] or self-consistent COHSEX+G0W0

[165].

Alternatively, Tran and Blaha [78] recently proposed a modified ver-

sion of the Becke-Johnson potential [91] leading to an improved descrip-

tion of the band gaps in semiconductors and insulators. This new XC

functional (referred to as TB09) has already been applied to a large va-

riety of systems [92, 93, 94, 95, 96, 97, 166] and was able to predict band

gaps in close agreement with experiment. In this chapter, the TB09

functional is analyzed in details for a series of ten semiconductors and

oxides (see also Ref. [62]).

121
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7.1 Band gaps and widths

In the following, a systematic comparison of electronic band structures

obtained from the LDA and TB09 functionals is performed. These are

compared with the more accurate band structures obtained through one-

shot GW calculations, and available experimental data. Several oxides

and other technologically or theoretically interesting materials are inves-

tigated : silicon, germanium, silicon dioxide, tin monoxide and dioxide,

zinc oxide, calcium sulfide, calcium oxide, magnesium oxide and lithium

fluoride. As shown in Table 7.1 and Fig. 7.1, the TB09 delivers band

gaps in much better agreement with experiment than the simple LDA.

The G0W0 calculations are performed starting from LDA eigenvalues

and wavefunctions (referred to as G0W0@LDA), but also from TB09

eigenvalues and wavefunctions (referred to as G0W0@TB09). The dif-

ference is non-negligible. In fact, the one-shot GW band gaps obtained

starting from TB09 are close to those from quasiparticle self-consistent

GW calculations, at a much reduced cost. For the specific case of α-

SiO2, the G0W0@TB09 band gap is much closer to the value inferred in

Sect. 3.4.

7.2 Band structures

The experimental lattice parameters have been used for all the com-

pounds studied. The GW eigenvalues and densities of states have been

interpolated using the polyfit approximation developed in Sect. 2.4.5.

The discussion presented in this section is based on the band structures

and densities of states presented in Appendix D (except for Si, Ge and

α-SiO2) in which the computational details used for the calculations are

also reported.

7.2.1 Silicon and germanium

The silicon and germanium band structures and densities of states (DOS)

are presented in Figs. 7.2 and 7.3 respectively. The DOS are compared

to experimental X-ray photoemission spectra [177, 178] (XPS). It is clear
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Table 7.1: Fundamental (Eg) and direct (Eg,d) band gaps of all the ma-
terials in this study in the LDA, TB09, G0W0@LDA and G0W0@TB09
approximations. Experimental and QPscGW values are also reported
[28, 97, 144, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176].

DFT G0W0

LDA TB09 @LDA @TB09 QPscGW Expt.

Si Eg 0.51 0.98 1.21 1.38 1.24 1.12

Eg,d 2.56 3.04 3.25 3.44 3.30 3.20

Ge Eg 0.20 0.71 0.70 0.93 0.95 0.66

Eg,d 0.23 0.89 0.73 1.12 0.80

SiO2 Eg 5.77 9.82 8.96 10.09 9.7 ∼9

Eg,d 6.06 10.01 9.27 10.36 10.1 ∼9

ZnO Eg 0.67 3.44 2.32 3.73 3.8 3.6

SnO Eg 0.27 0.48 0.74 0.78 1.38 0.7

Eg,d 2.17 3.17 2.92 3.82 3.88 2.77

SnO2 Eg 0.89 4.35 2.72 4.17 4.28 3.6

CaS Eg 2.15 3.31 4.28 4.89 4.43

Eg,d,Γ 3.89 4.76 5.57 7.06 5.80

Eg,d,X 2.97 4.01 5.13 5.77 5.34

CaO Eg 3.49 5.30 6.02 7.39 7.57 7.0

Eg,d,Γ 4.55 7.04 6.49 10.36 7.0

Eg,d,X 3.87 5.62 6.46 7.85 7.3

MgO Eg 4.73 8.32 7.48 8.97 9.16 7.83

LiF Eg 8.82 14.31 13.45 15.09 15.9 14.2
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Figure 7.1: Comparison of the theoretical and experimental band gaps
(in eV) for all the different materials considered in this study. The
different XC approximations for both DFT and GW calculations are
given as black dots (DFT-LDA), red squares (DFT-TB09), green dia-
monds (G0W0@LDA), blue triangles (G0W0@TB09), and yellow dots
(QPscGW ). Corresponding band gap values are also reported in Ta-
ble 7.1. Inset: Table of the mean error (ME), the mean absolute error
(MAE), the mean relative error (MRE, in %), and the mean absolute
relative error (MARE, in %) for the various XC functionals.
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from the figures that both LDA and TB09 provide a rather fair descrip-

tion of the valence DOS. The main features of the band structure are

indeed correctly reproduced by both XC approximations. The more

elaborate G0W0-corrected DOS does not give rise to any major change

in the valence electronic structure. The direct and indirect band gaps

have already been presented in Table 7.1 while the valence band widths

as well as first conduction band widths are given in Table 7.2. The

valence band widths computed with the different approximations are

reported in Fig. 7.4, together with those of the other compounds stud-

ied in this chapter. As expected, the band gaps obtained with TB09 are

fundamentally improved over LDA. G0W0@TB09 opens the gap further,

overshooting the experimental values. When compared to XPS results,

our DFT results show that both XC functionals yield too small band

widths. Further G0W0 correction even worsens this narrowing although

the relative error with respect to experiment is reasonable in all four

cases.

7.2.2 Silicon dioxide

Silicon dioxide has already been presented extensively in Chapter 3. Its

QP gap has been shown to be underestimated by ∼4 eV within DFT-

LDA. It is thus a more challenging case than Si and Ge, to test the

accuracy of the electronic structure obtained with the TB09 functional.

Figure 7.5 shows the band structures and DOS obtained with LDA,

TB09, G0W0@LDA and G0W0@TB09. The fundamental gap is indirect,

from K to Γ. The band gaps and different band widths of α-quartz

obtained with the different XC approximations, in DFT and G0W0 are

reported in Table 7.1 and Table 7.2.

As expected, the TB09 fundamental and direct gaps are closer to

the reported experimental values (see Table 3.4 in Chapter 3) than the

LDA ones and to the gaps obtained in Sect. 3.4. Comparing the DOS

with recent XPS experiment [134], it is clear that the TB09 drastically

underestimates the valence band widths. Applying G0W0 corrections

rectifies this error, leading to a G0W0@TB09 valence band structure
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Figure 7.2: Band structure and DOS of bulk silicon in the diamond
structure computed in DFT with (a) the LDA XC, (b) the TB09 XC and
in one-shot GW using (c) DFT-LDA and (d) DFT-TB09 as a starting
point. In the left panel, the dashed (black) lines correspond to the DFT-
LDA band structure and the full (red) lines represent the DFT-TB09
band structure. In the middle panel, the dashed (green) lines correspond
to the G0W0@LDA band structure and the full (blue) lines represent
the G0W0@TB09 band structure. In the right panel, the valence DOS
is compared to XPS spectrum [177] (black line).
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Figure 7.3: Band structure and DOS of bulk germanium in the diamond
structure computed in DFT with (a) the LDA XC, (b) the TB09 XC and
in one-shot GW using (c) DFT-LDA and (d) DFT-TB09 as a starting
point. The XPS spectrum is from Ref. [178]. The color scheme is the
same as in Fig. 7.2.
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Table 7.2: Valence band widths (VBW) and first conduction band
widths (1CBW) of all the materials in this study. Experimental values
[164, 170, 179, 180, 181, 182, 183, 184, 185, 186] are also reported when
available.

DFT G0W0

LDA TB09 @LDA @TB09 Expt.

Si VBW 11.96 11.72 11.19 11.43 12.50

1CBW 3.71 3.51 3.69 3.54

Ge VBW 12.50 12.26 11.86 11.92 12.60

1CBW 4.16 4.06 4.14 4.16

SiO2 VBWO2p 3.27 2.65 3.66 3.70 4.0

VBWO2p Si3s,3p 4.81 3.98 5.09 5.15 5.0

VBWO2s 2.38 1.99 2.17 2.19 2.5

1CBW 2.92 2.72 3.20 3.51

ZnO VBW 6.19 5.41 6.43 6.49 9.0

1CBW 7.11 6.55 7.53 7.25

SnO VBW 9.11 9.12 9.67 10.00 12.0

1CBW 2.98 3.22 3.35 3.60

SnO2 VBW 8.38 6.78 8.29 8.32 10.4

1CBW 5.08 4.13 5.48 4.97

CaS VBW 3.18 2.59 3.13 3.18 3.9

1CBW 3.09 3.07 3.43 4.28

CaO VBWO2p 2.68 1.92 2.82 2.72

VBWO2s 1.22 0.86 0.88 1.42

VBWO2pΓ-X 1.76 1.36 1.89 1.85 1.2

VBWO2sΓ-X 0.55 0.37 0.40 0.76 0.6

1CBW 3.47 2.55 3.72 4.36

MgO VBW 4.71 3.71 5.05 5.01 4.8

1CBW 6.79 6.10 7.28 6.68

LiF VBW 3.12 2.00 3.39 3.21 3.5

1CBW 5.84 5.64 6.24 6.21
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Figure 7.4: Comparison of the theoretical and experimental band widths
(in eV) for all the different materials considered in this study. The dif-
ferent XC approximations for both DFT and GW calculations are given
as black dots (DFT-LDA), red squares (DFT-TB09), green diamonds
(G0W0@LDA), and blue triangles (G0W0@TB09). Corresponding band
width values are also reported in Table 7.1. Inset: Table of the mean
error (ME), the mean absolute error (MAE), the mean relative error
(MRE, in %), and the mean absolute relative error (MARE, in %) for
the various XC functionals.
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Figure 7.5: Band structure and density of states of α-quartz computed
in DFT with (a) the LDA XC, (b) the TB09 XC and in one-shot GW
using (c) DFT-LDA and (d) DFT-TB09 as a starting point. The XPS
spectrum is from Ref. [134]. The color scheme is the same as in Fig. 7.2.
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very close to the G0W0@LDA one. The band gaps obtained with the

G0W0@TB09 approach are also even closer to the QPscGW ones [97].

7.2.3 Zinc oxide

The band structures and DOS are given in Fig. D.1. As already shown in

other previous studies, [187, 188, 189, 190] LDA fails to provide a correct

description of the Zn 3d levels and gives rise to a strong hybridization

of these levels with the O and Zn p-states. The same authors suggest to

add a Hubbard U term in order to lower the position of the Zn 3d-states

and actually decouple them from the p-states. This results at the same

time in an increased band gap closer to measurements. In any case,

the same hybridization problem is observed when using the TB09 even

if a tiny internal band gap around −4 eV is obtained. Nevertheless,

considering all these states as a single group, the valence band width

is once more clearly narrowed with the TB09 (5.41 eV) compared to

LDA (6.19 eV). The G0W0 corrected band structures are much closer to

each other, at least for the highest p states (from −4 eV to the Fermi

level). In Table 7.2, the present theoretical results are compared to the

experimental band width (9 eV) [181, 191] corresponding to the sum of

p states (5.3 eV), d states (2.5 eV) and the separating internal band gap

(1.2 eV). This experimental band width is also in rather good agreement

with the XPS spectrum reported in Fig. D.1.

The TB09 yields a band gap value of 3.44 eV which is again in much

better agreement with experimental one (3.6 eV [169]) than the LDA

(0.67 eV). The G0W0 correction to LDA leads to a larger band gap

(2.34 eV), still too low with respect to the experimental value while

starting from the TB09 electronic structure leads to a G0W0 gap of 3.73

eV, close to the QPscGW value.

7.2.4 Tin oxides

The band structures and DOS are given in Figs. D.2 and D.3. The

highest group of valence bands of both oxides is rather well described

even if some discrepancies appear between LDA and TB09, especially

for the band width in the case of SnO2. For SnO, it is clear that the
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highly localized d states (lying at ∼23-24 eV below the Fermi level)

are better described with the TB09 as they are pushed down in energy,

closer to the G0W0 corrected ones. The O s-states (around ∼18-20 eV

below the Fermi level) are better positioned with TB09 than with LDA

as confirmed by the G0W0 results. In contrast with SiO2 and ZnO, but

similarly to Si and Ge, the valence band widths in SnO are not narrowed

with the TB09 leading to a surprisingly good description of the valence

states for this particular case.

The fundamental band gap of SnO is indirect from Γ to M . TB09

leads to larger fundamental and direct band gaps than LDA but both

DFT fundamental band gaps are still lower than the measured values.

The addition of a G0W0 leads to indirect band gaps in very close agree-

ment with the experiment whereas the direct experimental gap at Γ is

overestimated by G0W0@TB09 but is closer to the QPscGW result.

For tin dioxide, the flat bands corresponding to d states (around

−22 eV to −20 eV) are also somewhat better positioned in energy with

the TB09 than within LDA but are slightly narrowed. The group of

bands around −16 eV to −18 eV which is composed of O s states and

some Sn s and p states is clearly shrunk with the TB09 compared to the

LDA and G0W0 structures. The highest valence bands are also strongly

contracted with TB09.

Concerning the band gap, it is clearly underestimated within DFT-

LDA while the TB09 leads to a value larger than the experimental one

[171], very close to the QPscGW one. The G0W0@LDA band gap is

still lower than in experiments while the G0W0@TB09 theoretical gap

is closer to the measured value.

7.2.5 Calcium sulfide and calcium oxide

The band structures and DOS of CaS are given in Fig. D.4. The funda-

mental band gap is indirect from Γ to X. The TB09 leads to increased

values of the band gaps as shown in Table 7.1 while the LDA under-

estimates the experiments. The G0W0@LDA band gaps are closer to

experiment. G0W0@TB09 strongly overestimates the direct band gap at

Γ while the direct band gap at X and the indirect band gap are within
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5% of the experimental values. Unfortunately, no QPscGW results were

available in literature for this large band gap semiconductor.

The upper valence band composed of sulfur p-states is again clearly

narrowed by TB09. In contrast, LDA is in much better agreement with

the G0W0 values. The band widths obtained with G0W0@LDA and

G0W0@TB09 are in close agreement with each other.

The band structures and DOS of CaO are shown in Fig. D.5. The

conduction band structure is somewhat different with the LDA and the

TB09. In LDA, there is a local minimum in the conduction band at Γ

while this band is pushed upwards with the TB09. In both cases, the

gap is indirect from Γ to X. The band gaps obtained are gathered in

Table 7.1. There is some controversy on the exact value and on the indi-

rect character of the fundamental gap such that no reliable experimental

value could be compared with our results.

Concerning the valence electronic structure, the upper valence bands

are once more narrowed by TB09 when compared to LDA or G0W0-

corrected band structures.

7.2.6 Magnesium oxide

The band structures and DOS of MgO are shown in Fig. D.6. The band

gap is underestimated within DFT-LDA while the TB09 leads to a value

larger than the experimental value. The G0W0@LDA band gap is closer

to experiments while G0W0@TB09 pushes the gap even further away

from the measured value. In fact, the

G0W0@TB09 gap is very close to the reported QPscGW result.

The valence bands are clearly shrunk when using the TB09. Com-

paring the DOS with XPS experiments [192] shows evidently that the

distance between the two peaks in the DOS of the upper valence band

is much smaller than the experimental value when using the TB09 while

the LDA and the G0W0-corrected band structures are in much better

agreement. The valence band widths and band gap values obtained with

the different methods are collected in Table 7.1 and Table 7.2.
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7.2.7 Lithium fluoride

The band structures and DOS are shown in Fig. D.7. There is a strong

narrowing of the valence band when using the TB09. Comparing the

DOS with XPS experiments [186] shows obviously that the valence band

is much smaller than the experimental value when using the TB09 while

the LDA and the G0W0-corrected band structures are in better agree-

ment. The two-peak structure in the XPS spectrum is also much better

rendered with the LDA DOS whereas the TB09 is far from the experi-

ment. Both G0W0-DOS fairly reproduce this peak structure.

The valence band width and band gap values obtained with the dif-

ferent methods are gathered in Table 7.1 and Table 7.2. As for the other

materials, the band gap is underestimated within DFT-LDA while the

TB09 corrects this, yielding a value of 14.31 eV in much closer agreement

with the experimental value [176] of 14.2 eV. The G0W0 correction opens

the LDA band gap closer to experiment while G0W0@TB09 opens the

gap even further, overshooting the experimental value by almost 1eV. It

is again very close to the QPscGW band gap.

7.3 Optical spectra of α-SiO2

From the overall accurate prediction of the experimental band gaps, the

TB09 or the G0W0@TB09 would be expected to be a good candidate to

build the electron-hole basis set needed in a BS calculation. This has

been tested for the case of α-SiO2 and the resulting optical spectra is

shown in Fig. 7.6 (a) and (b) for TB09 and G0W0@TB09 respectively.

Using the DFT-TB09 for the electron-hole basis set leads to an op-

tical spectra that is red-shifted by about 1.5 eV as shown in (a) while

the G0W0@TB09 in (b) yields a reasonable agreement of the position

of the peaks of ε2(ω). On the other hand, in both cases, the amplitude

of the peaks and the overall weight of the spectrum is strongly under-

estimated. As shown from the corresponding RPA spectra, this is not

due to the excitonic effects but rather comes from the optical matrix

elements. These are computed from the TB09 wavefunctions and are

not comparable to those obtained from the LDA computations. This
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Figure 7.6: Optical spectra of α-SiO2 from the TB09 functional. For
TB09, G0W0@LDA and G0W0@TB09, the electron-hole basis sets in
the BS or RPA computation are built from the TB09 eigenvalues and
wavefunctions, from the G0W0@LDA eigenvalues and LDA wavefunc-
tions and from the G0W0@TB09 eigenvalues and TB09 wavefunctions
respectively.
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discrepancy can most likely be traced back to the fact that it is not,

strictly speaking, a Kohn-Sham system, as there is no energy functional

from which the TB09 potential derives [99, 100]. As a consequence, the

f -sum rule is not guaranteed to be fulfilled by the RPA-TB09 dielectric

function, while this is the case for LDA [193].

7.4 Effect of the c parameter

As shown in the previous section, the TB09 functional allows to deter-

mine the band gaps of materials without any large additional computa-

tional cost and with a relatively good agreement with experiment. The

exchange potential of the TB09 functional takes the form

V TB09
X (r) = cV BR

X (r) + (3c− 2)
1

π

√
5

12

√
2ts(r)

n(r)
, (7.1)

All the terms in Eq. 7.1 have been defined in Sect. 2.3.3. We focus

here on the c parameter which is usually obtained following the standard

self-consistent procedure (Eq. 2.52) proposed by Tran and Blaha. This

parameter will also be varied manually in order to better identify its

effects on the band gap and on the electronic structure.

Defining the narrowing factor as the ratio of the upper valence band

width in LDA to the upper valence band width in TB09, the experimen-

tal fundamental gap of the materials shows an overall linear correlation

to the narrowing factor as shown in Fig. 7.7. It is indeed clear that

the narrowing of the bands is more pronounced for materials with wider

band gaps. This gives some hint on how the TB09 leads to larger gaps.

Indeed, exact exchange methods such as Hartree-Fock lead to an over-

estimation of the band gaps. Similarly, the TB09 opens the gaps by

mixing in more local exchange in the system thanks to the adjustment

of the c parameter. As a consequence of a more attractive exchange

potential, the electrons are more localized and their electronic bands are

narrowed.

Following this discussion, the effect of the c parameter on the com-

puted band width is shown in Fig. 7.8 for α-SiO2, ZnO, SnO2 and MgO.
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Figure 7.7: Graph of the narrowing factor (VBWLDA/VBWTB09) of the
upper valence band as a function of the fundamental band gap Eg of the
materials considered in the present study. Materials with larger band
gaps exhibit a stronger narrowing of the valence bands.

The modification of the upper valence band width and the conduction

band is shown for various values of the c parameter ranging from 1.0

to 1.7. As already mentioned in Ref. [78], the band gap is increases as

a function of the c parameter. On the other hand, it is clear from the

figure that the band widths are decreased when the c parameter is in-

creased. This is also observed in the other compounds investigated and

confirms the conjecture that the TB09 leads to band gaps larger than

LDA by introducing a larger contribution of local exchange which at the

same time contracts the electronic bands. Unfortunately, any attempt

to obtain a better estimation of this c parameter would never correct the

TB09’s failure to describe the ground state correctly. The band widths

obtained with LDA (black horizontal dashed lines) are always closer to

the more reliable G0W0 results (green horizontal continuous lines) than

those obtained with the TB09.

Recently the authors of the TB09 proposed an improvement [194]

of the original XC by redefining the parameters α and β entering in

the evaluation of the c parameter of the functional using a larger set
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of materials. They claimed that the TB09 and its revised version yield

very accurate electronic band structures and gaps. According to the

present study, the ground state valence band structures obtained with

the TB09 is not guaranteed to reproduce the G0W0 band structures nor

the experiment. In particular, for large band gap materials, the valence

band widths are strongly contracted.

7.5 Conclusion

A systematic investigation of the electronic structure obtained either

from the LDA or TB09 XC functionals has been performed for ten semi-

conductors and oxides. The results show that although very appealing

for its efficiency and simplicity and for its performance in reproducing

experimental band gaps of pure bulk materials, the TB09 must be used

with great caution if any other property than the band gap itself is un-

der investigation. In particular, optical properties for α-SiO2 reveal a

severe deficiency of the TB09 functional in the fact that the RPA di-

electric function do not fulfill the f -sum rule. The perspectives of this

kind of approaches are yet promising and there are possible avenues for

the design of better XC functionals. Their forms should be given for the

XC energy so that they correspond to real Kohn-Sham system where

the exchange-correlation potential is derived from the XC energy func-

tional. In order to better reflect the actual many-body effects, a local

XC functional should take into account some part of semi-locality such

as what is done with the TB09 functional.

Comparisons with G0W0 results using both the DFT-LDA and the

DFT-TB09 as starting points have been carried out for all the materials

revealing that the TB09 can strongly underestimate the band widths.

This contraction of the bands is found to be more pronounced for mate-

rials with a larger band gap. This follows from the fact that the TB09

opens the gaps by virtually adding a larger part of local exchange to the

system through the adjustment of the c parameter. This stronger ex-

change part results in a stronger localization of electron hence narrowing

the band widths.
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As a consequence, the ground-state electronic band structure is not

well described for medium to large band gap materials. This is expected

to be detrimental for any further investigations such as defect studies,

analysis of surfaces or interfaces, etc. It is shown that any modification

of the c parameter aiming to reproduce exactly the experimental band

gap would not lead to any improvement. Indeed, the band widths of the

materials are roughly proportional to the inverse of this parameter and

will invariably be compressed.

Finally, the TB09 could be tested as a starting point for QPscGW

computations in the perspective of reducing the number of self-consistent

iterations needed to converge the QP wavefunctions and energies. In-

deed, for the case of α-SiO2, the G0W0@TB09 eigenvalues seem to be

already rather close to the real QP ones as shown from the inspection

of the BS spectrum obtained using these for the electron-hole basis set.

The TB09 thus opens the perspectives of a better description of excited

states in SiO2.

This study has been accepted for publication in Phys. Rev. B as

Ref. [62].
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Conclusion and

perspectives

This PhD project started four years ago, with the ambitious objective

of describing the electronic and optical properties of amorphous silica

containing various radiation-induced defects. Above all, this implies a

very strong understanding of the properties in the pure, nondefective,

bulk material. Clearly, modeling the amorphous state is not trivial and

particular care has to be taken for the generation of such models. A

large part of the work performed during this thesis concerned this as-

pect as well as the analysis and determination of the properties of the

pure phase in order to assess the reliability of the models. From there on-

wards, impurities and defects can be introduced in the samples in order

to investigate their effects on the properties of the perfect bulk system.

This also appeared to be intricate and problematic in some cases. As a

consequence, this thesis covers a mix of both technical and more phys-

ically oriented topics and results. The main outcomes are summarized

in the following lines.

From a methodological point of view, the polyfit interpolation scheme

has been developed in order to facilitate the interpolation of the quasi-

particle energies obtained from GW computations. Indeed, these cannot

be obtained easily for large k-point meshes as needed for BSE compu-

tations or for a given k-point path for the visualization of the band

structure along specific symmetry lines. The polyfit interpolation is

easier to apply than other techniques such as the Wannier interpola-

tion. Besides, it is almost completely automatic and does not require

141
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any human time for the generation of the quasiparticle band structure.

Densities of states, random k-point meshes and effective masses are also

obtained straightforwardly. This approach is of course not perfect as it

neglects the dependence of the GW corrections on the character of the

state considered but it appeared to be very satisfactory in the case of

SiO2 and for most compounds presented in Chapter 7. Moreover, the

polyfit has been proven to be efficient in many of the topics presented

in this work and has already been used for publications.

On the scientific part, twenty models of amorphous silica were gen-

erated and analyzed in detail. In particular, their structural properties

have been proven to be well described. Their electronic structure has

been successfully obtained within DFT and perturbative GW and com-

pared to XPS experiments. The different models were also characterized

using atomic charge analysis and projected densities of states. We have

shown that those pure silica models were in good agreement with ex-

periments and previous theoretical studies. As already mentioned, this

preliminary step was essential in order to assess the quality of the mod-

els.

One important scientific outcome of this thesis lies in the determi-

nation of the actual quasiparticle gap in amorphous silica (9.75 eV) and

α-quartz (10.1 eV). This longstanding problem, for which experimen-

tal studies have often been contradictory, has been solved by means of a

reverse-engineering procedure. The correct gap was found by a matching

procedure in which the positions of the peaks in the absorption spectrum

obtained from the solution of the Bethe-Salpeter equation were aligned

to those of experiments. The resulting optical spectrum of a-SiO2 ob-

tained in this thesis is also a significant achievement though its accuracy

should be improved by further computations using more refined grids.

It is interesting to note that the band gaps of both the crystalline and

the amorphous form obtained using the above-mentioned procedure are

larger than those obtained from a perturbative GW . This pushed the

need to validate the main approximation of the latter method, namely

the use of a plasmon-pole model.
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Concerning the defects, the positively charged, neutral and nega-

tively charged states of hydrogen have been investigated. Their struc-

ture and formation energies have been obtained using DFT and shown

to reproduce previous studies. The induced gap states have been suc-

cessfully determined within GW . Preliminary results for GW -corrected

formation energies have been discussed and led to consider a reexamina-

tion of the technical details and approximations used in this correction

procedure.

The first technical issue discussed in this thesis is the supercell size

convergence of the GW corrections. This important point has often been

neglected while no formal study had ever been performed to address

this problem. It has been shown for a defect model, the neutral oxygen

vacancy in cristobalite, that supercells with 24 or 48 atoms are not

large enough to converge the quasiparticle corrections, while such small

cells have been used in the past to compute defect energy levels within

GW . The macroscopic dielectric constant was found to be a relevant

parameter for testing the convergence of the quasiparticle corrections

with respect to the supercell size. This is still work in progress though

and other cases should be tested, such as other charged states.

Two plasmon-pole models have been thoroughly tested and compared

to full-frequency results. The Hybertsen and Louie PPM showed large

deviations with respect to the latter results. On the contrary, the Godby

and Needs PPM that was used in this work has been proven to be a very

good estimate of the full-frequency results. Another important outcome

from this detailed analysis concerns f -sum rule. Indeed, its fulfillment

does not seem to be a necessary condition to ensure reliable results as

it is clearly not satisfied with the GN PPM despite its good accuracy.

This thus validated the previous GW results from that point of view.

As a side effect, the one-shot GW with LDA as a starting point is thus

unable to predict the band gap in SiO2 (as inferred previously) and

more involved theories such as quasiparticle self-consistent GW should

be used to solve this issue.

From a computational point of view, even a partial self-consistency

in the GW method is very demanding. For that reason, a better starting
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point than LDA is strongly advised. The Tran and Blaha exchange

potential, as claimed by their authors, was shown to yield much better

band gaps than LDA, coming up as an interesting candidate as a starting

point for self-consistent GW . On the other hand, the valence band

widths were found to be strongly contracted, in particular for large band

gap materials such as SiO2. Another issue concerns the optical matrix

elements that seem to be largely underestimated, as observed in the

optical spectrum. This thus questions the reliability of this already

widely used functional.

Following the previous lines, many technical issues have been clar-

ified, which opens perspectives for future work. In particular, the de-

scription of defects is far from being a closed subject. The electron

addition and removal energies in defective systems are still a subject of

debate and the present study brings up possible solutions. Indeed, these

computed electron affinities may vary depending on the charge state in

which they are computed. The GW defect formation energies of hydro-

gen in SiO2, which is still an open issue, could be reexamined in view of

the analysis performed for the finite-size effects.

Another somewhat related point concerns the determination of the

universal method needed to compute accurate band gaps. The reverse-

engineering procedure applied for SiO2 can indeed be generalized and

used for other compounds but is not completely ab initio as it involves

comparison with some experimental data. It can nevertheless be used

to confirm and support results obtained with other methods such as the

quasiparticle self-consistent scheme with vertex corrections. This latter

approach seems to be universal but is at present out of reach for large

systems such as the ones involved here.

Concerning the methods, there are many possible improvements to

the polyfit interpolation developed in this work. In particular, the state

and character dependence can be accounted for by using an approach

based on the overlaps of the wavefunctions. Instead of interpolating

the GW corrections using a simple energy dependence, the interpolated

values would be obtained from an overlap-weighted average of the GW
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corrections of other states. This procedure is in fact already in progress

and will very likely be continued soon.

On a broader view, the different topics addressed in this thesis form a

sound basis for other studies. As stated in the introduction, an accurate

knowledge of the defects at the nanoscale and of their effects on the

properties is essential in order to develop new materials and improve

existing ones. Ab initio computations can now be used to predict the

properties of a particular compound and/or combination of defects and

impurities before actually synthesizing it. In this context, first-principles

approaches are becoming a standard for the discovery of new and high-

quality materials.
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Appendix A

Expression of the

Becke-Roussel potential

The expression of the Becke-Roussel potential reads

V BR
X (r) = − 1

b(r)

(
1− e−x(r)−1

2
x(r) e−x(r)

)
(A.1)

where b(r) is computed as

b(r) =

(
x3(r) e−x(r)

8πn(r)

)1/3

(A.2)

and x(r) is obtained from the solution of a non-linear equation involving

the density n(r), the gradient ∇n(r) of the density, the laplacian ∇2n(r)

of the density and the kinetic energy density ts(r) as defined in Eq. 2.53 :

x(r) e−2x(r)/3

x(r)− 2
=

2

3
π2/3n(r)5/3

Q(r)
(A.3)

with

Q(r) =
1

6

(
∇2n(r)− 2γD(r)

)
(A.4)

D(r) = 2ts(r)− 1

4

(∇n(r))2

n(r)
(A.5)
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and γ = 0.8 is a fixed parameter.



Appendix B

Structural properties of the

amorphous silica models

Some of the relevant structural properties of each model generated in this

thesis are reported in this appendix. The radial distribution functions

for the Si-O and O-O bonds are shown in the first columns of Figs. B.1

to B.3. The Si-Si-Si bond angle distribution is illustrated in the second

columns while the rings statistics for each model are represented in the

last columns. The figures also report the total energy ∆Etot of each

model with respect to the one with the minimum total energy (model

05). Models with a wrong coordination (02, 07, 10 and 17) or with

edge-sharing tetrahedra (15) have been rejected. This kind of defects

is indeed present in a real SiO2 glass but in a much smaller proportion

than that of the models. These models are thus not expected to be

representative of the real material.
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Figure B.1: Structural properties of models 01 to 08.
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Figure B.2: Structural properties of models 09 to 16.
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Figure B.3: Structural properties of models 17 to 20.



Appendix C

Size effects in GW

corrections : computational

requirements

C.1 Memory

The computational requirements for GW computations in large super-

cells are extremely large. Indeed, for the wavefunctions, many unoc-

cupied states need to be stored in memory in addition to the valence

states. The number of states included and the number of plane waves

NWF
PW needed are roughly proportional to the volume of the cell so that

the size of the wavefunctions is roughly proportional to the volume

squared. For the dielectric and screening functions, the size of the matri-

ces (N ε
PW×N ε

PW) involved are also proportional to the volume squared.

The memory requirements are gathered in Table C.1 for the five first

supercells (as defined in Table 5.1).

As shown in this table, the memory needed grows fast. Hence,

this project has been done on the large Curie cluster (see for example

http://www-hpc.cea.fr/en/complexe/tgcc-curie.htm) within a PRACE pre-

paratory access. The computations were performed in conjugation with

algorithmic and optimization developments. These include develop-

ments towards an hybrid programming model consisting in a mix of
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Table C.1: Memory requirements in GW calculations for large systems.
NWF

PW is the number of plane waves used to represent the wavefunctions
(WF) and N ε

PW is the number of plane waves used in the dielectric
matrix. The names of the supercells correspond to those defined in
Table 5.1.

Name Nat NWF
PW WF size (GB) N ε

PW ε size (GB)

C111 23 ∼20750 ∼0.1 ∼1850 ∼0.1

P222 47 ∼41500 ∼0.4 ∼3700 ∼0.4

P333 161 ∼140000 ∼4.9 ∼12550 ∼4.7

C222 191 ∼166000 ∼6.9 ∼14850 ∼6.6

P444 383 ∼332000 ∼28.3 ∼29700 ∼26.3

shared memory (OpenMP) and message passing interface (MPI) stan-

dards. Indeed, this kind of computations for these large systems would

not have been possible without such developments as the maximum

available memory for each MPI process is limited. On the cluster used,

the largest nodes consist of 32 processors which share 128 GB of memory.

C.2 Timings

The most computationally demanding part when the self-energy correc-

tions are needed for a few states only, as it is the case when gap states

are involved, is the computation of the dielectric function. Table C.2

reports the timings for the computation of the dielectric function in the

different supercells.

This study is still work in progress and other developments have been

performed that would allow the computation of the dielectric function

for larger systems, such as the 383-atom supercell.
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Table C.2: Timings in GW calculations for large systems. NMPI is
the number of MPI processes while Nthreads is the number of threads
for each MPI process, the total number of cores used being the product
NMPI×Nthreads. The names of the supercells correspond to those defined
in Table 5.1.

Name Nat NMPI Nthreads Time (hours) Total time (hours)

C111 23 23 1 ∼0.5 ∼12

P222 47 65 1 ∼13 ∼865

P333 161 116 4 ∼11 ∼5200

C222 191 140 8 ∼17 ∼18700
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Appendix D

Band structures with the

TB09 functional

The computational details for all the compounds studied in Chapter 7

and the band structures of ZnO, SnO, SnO2, CaS, CaO, MgO and LiF

are given in this appendix. In all the figures D.1 to D.7, the band struc-

tures and densities of states (DOS) are shown as obtained from DFT

with (a) the LDA XC, (b) the TB09 XC and from one-shot GW using

(c) DFT-LDA and (d) DFT-TB09 as a starting point. In the left pan-

els, the dashed (black) lines correspond to the DFT-LDA band structure

and the full (red) lines represent the DFT-TB09 band structure. In the

middle panels, the dashed (green) lines correspond to the G0W0@LDA

band structure and the full (blue) lines represent the G0W0@TB09 band

structure. The corresponding DOS are shown in the right panels. When

available, the experimental XPS spectrum is shown by the black line in

the right panels.

D.1 Silicon and germanium

Silicon in the diamond structure has been studied with the experimental

lattice parameter [195] a=5.43 Å. Silicon has an indirect band gap from Γ

to a point located about 80% of the way along the path Γ-X. Germanium

possesses the same zinc-blende crystalline structure (Fd3m) with an
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experimental lattice parameter [195] a=5.66 Å and has an indirect band

gap from Γ to L.

The wavefunctions have been expanded in a plane wave basis set with

a kinetic energy cutoff of 20 Ha. The k-point grids used were 6×6×6

unshifted and 8×8×8 unshifted meshes for silicon (Si) and germanium

(Ge) respectively. For the GW calculations, the size of the dielectric

matrix used was determined by a kinetic energy cutoff of 10 Ha for

Si and 20 Ha for Ge. The band structures and DOS are presented in

Chapter 7 (Figs 7.2 and 7.3).

D.2 Silicon dioxide

The α-quartz polymorph (P3221) has been considered with the exper-

imental lattice parameters and internal coordinates from Wyckoff [195]

(a=4.91 Å, c=5.40 Å, uSi=0.465, xO=0.415, yO=0.272, zO=0.12). An

energy cut-off of 40 Ha for plane waves and a 4×4×4 k -point mesh have

been used. Finally, the dielectric matrix was expanded with an energy

cutoff of 8 Ha. The band structures and DOS are shown in Chapter 7

(Fig. 7.5).

D.3 Zinc oxide

Zinc oxide (ZnO) is a widely studied material due to its application as a

transparent conducting oxide. The wurtzite structure (P63mc - B4) of

ZnO has been considered here with the experimental lattice parameters

from Kihara and Donnay. [196] It is also a benchmark case for band gap

predictions as there is no consensus on the theoretical gap obtained from

DFT or GW methods, with reported GW values ranging from 2.1 eV

to 4.2 eV (see Ref. [111] and references therein).

The pseudopotential for the zinc atom includes the whole n=3 shell

in the valence configuration. A Γ-centered 8×8×5 k-point mesh has

been used and the plane-wave energy cut-off used for the wavefunctions

and dielectric matrix are 150 Ha and 20 Ha respectively. The band

structures and densities of states are shown in Fig. D.1.
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Figure D.1: Band structure and density of states of ZnO. The XPS
spectrum is from Ref. [197]. The range of energies from -6 eV to the
Fermi level has been magnified with respect to the rest of the XPS
spectrum.

D.4 Tin oxides

Two forms of tin oxides have been considered : stannous SnO and stannic

SnO2 oxide. Stannous oxide crystallizes in the P4/nmm (B10) structure

while stannic oxide adopts the rutile form

(P42/mnm). Their experimental lattice parameters and internal co-

ordinates are taken from Refs. [198] and [199] respectively. For both

systems, an energy cutoff of 100 Ha was used for the wavefunctions.

The k-point meshes used were 4×4×3 and 4×4×6 for SnO and SnO2

respectively. The dielectric matrix was expanded using a cutoff energy

of 10 Ha. The band structures and densities of states are shown in

Figs. D.2 and D.3.

D.5 Calcium sulfide

Calcium sulfide (CaS) has been studied in the rock salt structure (Fm3m

- B1) using the experimental lattice parameters. [195] The energy cut-
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Figure D.2: Band structure and density of states of SnO. The XPS
spectrum is from Ref. [182].
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Figure D.3: Band structure and density of states of SnO2. The XPS
spectrum is from Ref. [182].
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Figure D.4: Band structure and density of states of CaS.

off used for the wavefunctions was 45 Ha and the reciprocal space was

discretized using 29 k-points in the irreducible Brillouin zone. The di-

electric matrix was expanded using an energy cut-off of 10 Ha. The

band structures and densities of states are shown in Fig. D.4.

D.6 Calcium oxide

Calcium oxide (CaO) has been investigated in the rock salt structure

(Fm3m - B1). The experimental lattice parameters [200] have been

used. An energy cut-off of 38 Ha and 29 k-points in the irreducible Bril-

louin zone have been used for the wavefunctions. The dielectric matrix

was expanded using an energy cut-off of 10 Ha. The band structures

and densities of states are shown in Fig. D.5.

D.7 Magnesium oxide

The most stable phase of magnesium oxide (MgO) is in the rock-salt

structure (Fm3m). The experimental lattice parameter a=4.203 Å has

been used [201]. The fundamental gap, which is direct at Γ, amounts

to 7.83 eV. [175] The wavefunctions were expanded using 80 Ha as the
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Figure D.5: Band structure and density of states of CaO.

energy cutoff for the plane waves and 44 k-points in the irreducible

Brillouin zone. An energy cut-off of 16 Ha has been used for the plane

wave representation of the dielectric matrix. The band structures and

densities of states are shown in Fig. D.6.

D.8 Lithium fluoride

The rock-salt structure (Fm3m) of lithium fluoride (LiF) has been stud-

ied using the experimental lattice parameter [202] a=4.028 Å. The wave-

functions were expanded using 40 Ha as the energy cutoff for the plane

waves and 29 k-points in the irreducible Brillouin zone. A kinetic energy

cut-off of 16 Ha has been used for the plane wave representation of the

dielectric matrix. The band structures and densities of states are shown

in Fig. D.7.
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Figure D.6: Band structure and density of states of MgO. The XPS
spectrum is from Ref. [192].
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Figure D.7: Band structure and density of states of LiF. The XPS spec-
trum is from Ref. [186].
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[47] B. Sadigh, P. Erhart, D. Åberg, A. Trave, E. Schwegler, and

J. Bude. First-Principles Calculations of the Urbach Tail in the

Optical Absorption Spectra of Silica Glass. Phys. Rev. Lett., 106,

027401 (2011).

[48] F. Urbach. The Long-Wavelength Edge of Photographic Sensitivity

and of the Electronic Absorption of Solids. Phys. Rev., 92, 1324

(1953).

[49] L. Martin-Samos, G. Bussi, A. Ruini, E. Molinari, and M. J. Cal-

das. Unraveling effects of disorder on the electronic structure of

SiO2 from first principles. Phys. Rev. B, 81, 081202 (2010).

[50] C. G. Van de Walle and J. Neugebauer. First-principles calcula-

tions for defects and impurities: Applications to III-nitrides. J.

Appl. Phys., 95, 3851 (2004).



174 BIBLIOGRAPHY

[51] S. Lany and A. Zunger. Accurate prediction of defect properties

in density functional supercell calculations. Model. Simul. Mater.

Sc., 17, 084002 (2009).

[52] S. E. Taylor and F. Bruneval. Understanding and correcting the

spurious interactions in charged supercells. Phys. Rev. B, 84,

075155 (2011).

[53] A. Alkauskas, P. Deák, J. Neugebauer, A. Pasquarello, and C.G.

Van de Walle. Advanced Calculations for Defects in Materials:

Electronic Structure Methods. John Wiley & Sons, 2011.

[54] J. Godet and A. Pasquarello. Ab initio study of charged states of

H in amorphous SiO2. Microelectron. Eng., 80, 288 (2005).

[55] J. Godet and A. Pasquarello. Proton Diffusion Mechanism in

Amorphous SiO2. Phys. Rev. Lett., 97, 155901 (2006).

[56] M. Benoit, M. Pohlmann, and W. Kob. On the nature of native

defects in high OH-content silica glasses: A first-principles study.

Europhys. Lett., 82, 57004 (2008).

[57] L. Martin-Samos, Y. Limoge, N. Richard, J. P. Crocombette,

G. Roma, E. Anglada, and E. Artacho. Oxygen neutral defects

in silica: Origin of the distribution of the formation energies. Eu-

rophys. Lett., 66, 680 (2004).

[58] N. Richard, L. Martin-Samos, G. Roma, Y. Limoge, and J.-P.

Crocombette. First principle study of neutral and charged self-

defects in amorphous SiO2. J. Non-Cryst. Solids, 351, 1825 (2005).

[59] G. Roma, Y. Limoge, and L. Martin-Samos. Aspects of point de-

fects energetics and diffusion in SiO2 from first principles simula-

tions. Nucl. Instrum. Meth. B, 250, 54 (2006).

[60] L. Martin-Samos, G. Roma, P. Rinke, and Y. Limoge. Charged

Oxygen Defects in SiO2: Going beyond Local and Semilocal Ap-

proximations to Density Functional Theory. Phys. Rev. Lett., 104,

075502 (2010).



BIBLIOGRAPHY 175

[61] P. Rinke, A. Janotti, M. Scheffler, and C. G. Van de Walle. Defect

Formation Energies without the Band-Gap Problem: Combining

Density-Functional Theory and the GW Approach for the Silicon

Self-Interstitial. Phys. Rev. Lett., 102, 026402 (2009).

[62] D. Waroquiers, A. Lherbier, A. Miglio, M. Stankovski, S. Poncé,
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M. Stankovski, M. Côté, X. Gonze, and G. Rignanese. Effects of

plasmon pole models on the G0W 0 electronic structure of various

oxides. Eur. Phys. J. B, 85, 322 (2012).

[113] N. Marzari and D. Vanderbilt. Maximally localized generalized

Wannier functions for composite energy bands. Phys. Rev. B, 56,

12847 (1997).

[114] I. Souza, N. Marzari, and D. Vanderbilt. Maximally localized

Wannier functions for entangled energy bands. Phys. Rev. B, 65,

035109 (2001).

[115] W. P. Johnson. The Curious History of Faà di Bruno’s Formula.
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[191] D. Vogel, P. Krüger, and J. Pollmann. Ab initio electronic-

structure calculations for II-VI semiconductors using self-

interaction-corrected pseudopotentials. Phys. Rev. B, 52, R14316

(1995).

[192] R. H. French, R. V. Kasowski, F. S. Ohuchi, D. J. Jones, H. Song,

and R. L. Coble. Band Structure Calculations of the High-

Temperature Electronic Structure of Magnesium Oxide. J. Am.

Ceram. Soc., 73, 3195 (1990).

[193] K. Sturm. Optical sum rules for inhomogeneous electron systems.

Phys. Rev. B, 52, 8028 (1995).



188 BIBLIOGRAPHY

[194] D. Koller, F. Tran, and P. Blaha. Improving the modified Becke-

Johnson exchange potential. Phys. Rev. B, 85, 155109 (2012).

[195] R. W. G. Wyckoff. Crystal structures, Vol. 1. Number vol. 4 in

Crystal Structures. Interscience Publishers, 1963.

[196] K. Kihara and G. Donnay. Anharmonic thermal vibrations in ZnO.

Can. Mineral., 23, 647 (1985).

[197] P. D. C. King, T. D. Veal, A. Schleife, J. Zúñiga Pérez, B. Mar-
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