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Abstract 

The aggregate black-box approach of conventional Data Envelopment Analysis (DEA) limits its 
usefulness in situations where the observation is the result of independent decision making in sub-units 
(sub-DMUs), sequentially linked through processes or semi-finished products. The situation is 
commonly found in e.g supply chain management, health care provision and environmental 
management (waste water treatment). Alternative approaches for sublevel evaluations include two-stage 
or multi-stage models, where intermediate outputs or inputs are identified to span local production 
possibility spaces. However, the reliance upon numeric values for such intermediate inputs or outputs 
adds an additional difficulty that may lower the value of the assessment. In this paper, we present an 
approach for two-stage evaluation with interval data to resolve this problem. The results show that 
ignoring the interval quality of the data leads to distorted evaluations, both for the subunit and the 
system efficiency. The proposed method obtains an efficiency interval consisting in an upper and a 
lower bound for the system efficiency and the sub-DMU efficiency. In order to link two stages, we 
consider the interval intermediate measures that are outputs and inputs for the first stage and the second 
stage, respectively. The derived interval metric, along with its mean, provides a more informative basis 
for multi-stage evaluation in the presence of imprecise data. The ranks of DMUs and sub-DMUs are 
obtained based on their interval efficiencies. 
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1. Introduction 

In a competitive environment, it is crucial for organizations to know how efficiently and 

effectively they are operating compared to similar organizations. For example a 

university department may wish to compare its performance with the similar departments 

from other universities, or a bank may want to compare the performance of its different 

branches throughout the country with competition. In the literature, two approaches are 

fundamentally advanced for measuring efficiency, namely, parametric and non-

parametric frontier approaches. The parametric techniques require a priori assumptions to 

be made with regard to the production function while in non-parametric techniques no 

such assumptions are necessary. Data envelopment analysis (DEA) is a powerful non-

parametric technique to measure the relative efficiency of decision making units (DMUs) 

which consume multiple inputs to produce multiple outputs. One of the few fundamental 

functional assumptions in DEA is the returns-to-scale (RTS) behavior of the production 

set estimated from the observed data. Charnes et al. (1978) initially introduced DEA 

under constant returns to scale (CRS) by extending linear programming production 

economics concepts of empirical efficiency proposed around twenty years earlier by 

Debreu (1951) and Farrell (1957). 

The conventional models often consider the DMUs as black boxes although in most 

applications DMUs consist of sub-DMUs, internal structures, with relationships among 

them. That is to say, each DMU is, in practice, considered as a series of sequential 

activities (sub-DMUs) occurring in various sectors such as hospitals, universities, banks 

and etc. In the DEA literature, these models in the presence of the inner structure are 

called network DEA (NDEA) pioneered by Färe and Grosskopf (1996). Recently, NDEA 

attracts a great deal of more attention from authors and a large number of papers that deal 

with both theoretical issues and applications have been released.  A two-stage process, a 

special case of Färe and Grosskopf’s multi-stage framework, involves only two stages 

with intermediate measures between them. To the best of our knowledge, network models 

which are composed of a two-stage structure were initially proposed by Wang et al. 

(1997) and later developed by Seiford and Zhu (1999).  

Based on the conventional view, DEA should strive for certainty in all its manifestations 

(precision, specificity, sharpness, consistency, etc.) and uncertainty (imprecision, non-

specificity, vagueness, inconsistency, etc.) should be ignored in evaluating the 

performance. According to a more comprehensive perspective, uncertainty is considered 

necessary to DEA; it is not only an unavoidable plague, but also it has a great utility and 

relevance. Real-life problems often involve various types of uncertainty for data which 

may be interval, ordinal, qualitative, or fuzzy. Sengupta (1992) is a seminal paper in this 

change of paradigm. Accordingly, some researchers have proposed various methods for 

coping with the imprecise and ambiguous data in DEA (Emrouznejad et al., 2008; 

Hatami-Marbini et al., 2011a).  

In this paper, we propose a new imprecise model for measuring efficiency scores of 

DMUs with two-stage structure. Indeed, we evaluate each DMU by its constituting 

activities. We demonstrate that the evaluation of DMUs is not straightforward when the 
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inputs, outputs and intermediate measure change in intervals. The proposed method 

calculates the upper and lower bounds for the whole process and for each stage. The final 

efficiency score for the whole process and two stages will be characterized by an interval 

bounded by the best lower bound efficiency and the best upper bound efficiency.  In both 

optimistic and pessimistic viewpoints, the efficiency frontier is made by the best 

condition of all DMUs. In the optimistic viewpoint, a DMU under evaluation is in its best 

situation whilst in the pessimistic viewpoint, a DMU which is under evaluation put in its 

worst situation. We take into account the interval intermediate measures which are 

outputs and inputs for the first stage and the second stage, respectively, to have a linkage 

between two stages. We apply the upper and lower bounds of the intermediate measure as 

well as an average of them to obtain a linkage between two stages. We also rank DMUs 

and sub-DMUs according to their interval efficiencies.  A numerical example is presented 

to demonstrate the applicability of the proposed framework.  

This paper is organized as follows: The next section presents a brief literature review on 

the two-stage DEA models and the imprecise DEA models. Section 3, in terms of 

mathematics, we first provide an overview of the conventional DEA models, and then we 

present the efficiency measurement in a two-stage process. Section 4 presents the details 

of the proposed framework. In section 5 we illustrate a numerical example to exhibit the 

applicability of the proposed method. We close the paper in section 6 with some 

conclusions and future research directions. 

2. Literature Review 

The conventional DEA model treats the efficiency evaluation as a black box and no sub-

process or stages are considered, where intermediate measures are produced by some 

sub-processes and used by other sub-processes. Thus, although the conventional DEA 

approach is appropriate for determining inefficient DMUs and evaluating the measure of 

their inefficiencies, it provides little insight into the inefficient sources and the locations 

where the inefficiency may occur. Moreover, it does not provide process-specific 

guidance to decision makers to help them improve the efficiencies of the DMUs. 

Performance evaluation of multi-plant firms in the presence of their internal structures 

was originated by Färe and Primont (1984) extended in Färe (1991) and Färe and 

Whittaker (1995). Färe and Grosskopf (1996) is a seminal study of network DEA 

(NDEA) in the form of a book entitled “Intertemporal production frontiers with dynamic 

DEA”  as the first to go over the inner workings of the production process in more detail. 

According to Färe and Grosskopf (1996), NDEA can be classified into three general 

classes: (1) A static network model involves a finite set of sub-technologies so as to build 

a network, (2) A dynamic network model evaluates a sequence of production 

technologies where one stage (e.g. a time period) effects on later stages, (3) A technology 

adoption examines production on different processors where inputs are allocated among 

the processors to determine which technology to adopt. A special case of Färe and 

Grosskopf’s multi-stage framework, a two-stage process, involves only two stages with 

intermediate measures between them.  
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2.1.  Two-stage DEA models 

Although it is evident that either reducing inputs or increasing outputs will improve the 

inefficiency in DEA, the main interest maybe to decompose the factor of efficiency. To 

deal with this concern, much effort has been done to decompose the overall efficiency 

into components so that the sources of inefficiency can be identified. Accordingly, some 

DEA studies recently focus on the two-stage structure where the first stage uses inputs to 

generate outputs that then become the inputs to the second stage. The second stage thus 

utilizes these first stage outputs to produce its own outputs. 

Wang et al. (1997) initially proposed a two-stage structure for measuring the 

performance. They ignored the intermediate measures and obtained an overall efficiency 

of the whole process with the inputs of the first stage and the outputs of the second stage. 

Seiford and Zhu (1999) explored a two-stage method to attain the profitability and 

marketability of the top 55 U.S. commercial banks. Seiford and Zhu (1999) used a 

standard DEA model separately in each stage for measuring the efficiencies. 

Sequentially, Zhu (2000) applied the method of Seiford and Zhu (1999) to the Fortune 

Global 500 companies. As demonstrated in Zhu (2003c) and Chen and Zhu (2004), such 

approaches that treat the stages in a two-stage process as operating independently of each 

another does not suitably characterize the performance of the two stages owing to the 

existence of the serial relationship of the two stages. Chen and Zhu (2004) suggested an 

alternative DEA model for the two-stage process for variable returns to scale. Their 

method not only measured the overall efficiency, but also computed the optimal values of 

the intermediate measures for each DMU. Furthermore, Chen and Zhu (2004)’s model 

can specify the DEA frontier of two-stage process for projecting the inefficient units onto 

the efficient frontier.  

Liang et al. (2006, 2008) proposed a method for evaluation the efficiency of a supply 

chain (whole process) and its members (two stages) using the non-cooperative (leader-

follower) and cooperative concept in game theory. Under the non-cooperative view, the 

leader is first evaluated, then the evaluation of the follower is on the basis of leader’s 

efficiency. In the cooperative structure, the overall efficiency that is constructed as an 

average of the two stages’ efficiencies is maximized, and accordingly the efficiencies of 

the two stages are evaluated. 

Chen et al. (2006) evaluated the IT impact on firm performance by means of the two-

stage structure. They actually modified the evaluation process of IT investment proposed 

in (Wang et al., 1997; Chen and Zhu, 2004) by considering shared resources (i.e., fixed 

assets, IT budget and employees) with the two stages. Kao and Hwang (2008) took 

account of the series of relationship between the whole process and the two sub-processes 

in measuring the efficiencies for constant returns to scale (CRS) technology. Under their 

framework, the overall efficiency can be decomposed into the product of the efficiencies 

of the two stages. Chen et al. (2009a) explored the connection between two common 

models proposed by Chen and Zhu (2004) and Kao and Hwang (2008). Chen et al. 

(2009b) proposed a weighted additive (arithmetic mean) approach to calculate the overall 

efficiency of the process under the VRS assumption.  
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Yang et al. (2011) proposed a DEA approach under the CRS assumption to measure the 

overall efficiency of the entire process using a predefined production possibility set. 

Their model can be obtained a production frontier for improving the inefficient DMUs 

and sub-DMUs. 

Wang and Chin (2010) argued that a two-stage DEA model with a weighted harmonic 

mean of the two stages is equivalent to Chen et al. (2009b)’s model. Furthermore, Wang 

and Chin (2010) extended Kao and Hwang (2008)’s model under the CRS to the VRS 

technology and also generalized Chen et al. (2009b)’s model. Chen et al. (2010) proposed 

a method for determining the frontier to the inefficient DMUs based upon the Kao and 

Hwang (2008)’s model. Zha and Liang (2010) put forward an approach to measure the 

performance of a two-stage process in the non-cooperative and cooperative views under 

the game theory framework, where the shared inputs can be allocated between the two 

stages. They utilized the product of two stages to measure the overall efficiency of each 

DMU in the cooperative efficiency. 

Two-stage models are classified into three approaches: independent, connected, and 

rational by Kao and Hwang (2010).  In the independent approach, the efficiency of the 

whole system and all sub-DMUs are computed independently. The connected approach 

obtains the efficiency of the whole system based on the interactions between sub-DMUs. 

In the rational approach, there are some relations between the efficiencies of systems and 

sub-DMUs 

2.2. Imprecision in DEA models 

In traditional DEA, the inputs and outputs are always treated as deterministic values. 

However vagueness or imprecision always exists in real-world evaluation problems. 

Imprecise or vague data may be the result of uncertainty, unquantifiable information, 

incomplete and non-obtainable information, conflicting information, partiality of truth 

and partiality of possibility, in short; imperfect information (Zadeh 1975; 1976; 1978; 

2008). In order to tackle the uncertain benchmarking problems, fuzzy, interval and 

stochastic approaches, originated by Sengupta (1992), Cooper et al. (1999) and Aigner et 

al. (1977), respectively, are commonly used to describe the imprecise characteristics. 

Below, we abstract these imprecise approaches. 

Generally, in stochastic programming, the uncertain data is taken into account as random 

variables and their probability distributions are assumed to be known. In the efficiency 

analysis framework, particularly, the data collected can be stochastic and therefore the 

associated efficiency measures should be stochastic. The discussion on the stochastic 

approach was started by Aigner et al. (1977) and Meeusen and Van den Broeck (1977) 

which is classified into the parametric approach in which the functional form of the 

production frontier needs to be determined in advance. This leads to the so-called 

stochastic frontier analysis (SFA) which can be used to estimate the efficient frontier and 

efficiency scores. The statistical nature allows for including the stochastic errors in the 

analysis and the testing of the hypotheses. SFA decomposes the error term into two parts 

where the first part represents the inefficiency and the second part describes the statistical 
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noise. Readers refer to Bogetoft and Otto (2010), Cooper et al. (2000) and Bauer (1990) 

for further details. 

In the fuzzy DEA approach, inputs and outputs are viewed as fuzzy sets and their 

membership functions also need to be known. The fuzzy DEA methods in the literature 

are categorized into five general groups by Hatami-Marbini et al. (2011a): 

 

(i) the tolerance approach (e.g. Sengupta, 1992), 

(ii) the α-level based approach (e.g. Kao and Liu, 2000, 2003, 2005, Saati et al., 2002; 

Hatami-Marbini and Saati, 2009; Hatami-Marbini et al., 2010a; Hatami-Marbini et 

al. 2012; Saati et al., 2011),  

(iii) the fuzzy ranking approach (e.g. Guo and Tanaka 2008; Leon et al. 2003; Hatami-

Marbini et al. 2011b; Hatami-Marbini et al. 2011c),  

(iv) possibility approach (e.g. Lertworasirikul et al., 2003a, 2003b; Khodabakhshi et 

al. 2010), and  

(v) other developments (e.g. Hougaard 1999, 2005). 

In these two kinds of approaches (stochastic and fuzzy), the membership functions and 

probability distributions have to be known beforehand. In recent years, the interval 

analysis method was developed to model the uncertainty in the imprecise DEA approach, 

in which the bounds of the uncertain data are only required, not necessarily knowing the 

probability distributions or membership functions. 

Cooper et al. (1999, 2001a, 2001b) initially proposed the interval approach (so-called 

imprecise DEA (IDEA)) to study the interval data in DEA. They transformed a nonlinear 

programming problem into a linear programming problem equivalent through scale 

transformations and the obtained efficiency scores for each DMU were the deterministic 

numerical values less than or equal to unity. Consequently, a number of developments 

and applications have been proposed for solving nonlinear IDEA problem owing to 

uncertain inputs and outputs (Kim et al., 1999; Park, 2004; Zhu, 2003a,2003b, 2004). 

Kim et al. (1999) discussed how to deal with interval data, strong and weak ordinal data, 

and ratio interval data with an application to telephone offices. Zhu (2003a) has argued 

that the IDEA method proposed by Cooper et al. (1999, 2001a, 2001b); significantly adds 

to the complexity of the DEA model because of the great number of scale transformations 

and variable alternations, and the scale-transformation approach on both the precise and 

imprecise data including preference and interval data into constraints, leading to a rapid 

increase in computational burden. Entani et al. (2002) developed a DEA model with 

interval efficiencies measured from both the optimistic and the pessimistic viewpoints. 

Their model (Entani et al., 2002) was first developed for crisp data and then Entani et al. 

(2002) extended their model to interval data and fuzzy data. Despotis and Smirlis (2002) 

proposed a pair of models for dealing with imprecise data in DEA by transforming a non-

linear DEA model to an LP in order to attain the upper and lower bounds of the 

efficiency scores for each DMU. The interval efficiency was used to classify the units 

into three sets: fully efficient (efficient for all cases), efficient and inefficient DMUs. 

Wang et al. (2005) extended a pair of interval DEA models based on Despotis and 
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Smirlis (2002)’s study to construct a fixed and unified production frontier for measuring 

the efficiencies of DMUs.  Their models determined the lower and upper bounds of the 

best relative efficiency of each DMU.  Jahanshahloo et al. (2004) developed an analogous 

FDH model with interval inputs and outputs. Amirteimoori and Kordrostami (2005) 

extended a DEA method proposed by Zhu (2003a) for dealing with multi-component 

efficiency measurement with imprecise data which preserved the linearity of DEA model. 

Haghighat and Khorram (2005) suggested a DEA method with interval data for seeking 

the maximum and minimum values of efficient DMUs. Kao (2006) proposed a pair of 

two-level mathematical programming models and transformed them into a pair of 

ordinary one-level linear programs. Solving the associated pairs of linear programs 

produced the efficiency intervals of all the DMUs. Smirlis et al. (2006) introduced an 

approach based on interval DEA that allowed the evaluation of the DMUs with missing 

values along with the other DMUs with available crisp data. The missing values were 

replaced by intervals in which the unknown values were likely to belong. The constant 

bounds of the intervals were estimated by using statistical or experiential techniques. For 

the units with missing values, the proposed models were able to identify an upper and a 

lower bound of their efficiency scores. Park (2007) considered a classification same as 

Despotis and Smirlis (2002) but in a more general structure of imprecise data consisting 

of any combinations of bounded and ordinal data. Yu (2007) measured efficiency of 

DMUs in the presence of the interval data using a multiple objective programming 

with/without an ideal DMU. Moreover, this method improved the discriminating power 

of the method of Despotis and Smirlis (2002) by deriving a unique set of weights for all 

DMUs simultaneously. Jahanshahloo et al. (2007) considered the discriminant analysis in 

DEA with interval data so as to determine the existence or non-existence of an overlap 

between two groups, implemented with Monte Carlo algorithm. Toloo et al. (2008) 

proposed an imprecise DEA model for measuring the overall profit efficiency of DMU in 

which input and output values varied over certain ranges. They obtained upper and lower 

bounds of the overall profit efficiency for each DMU and with respect to efficiencies 

bounds, the DMUs were classified into three various groups; efficient, semi-efficient and 

inefficient classes. Sadjadi and Omrania (2008) proposed a robust DEA model with 

consideration of uncertainty on output parameters for the performance assessment of 

electricity distribution companies. Jahanshahloo et al. (2009) propose a generalized 

model for interval DEA with interval data and they proved that the model can evaluate 

the efficiencies of several imprecise DEA models in a unified way. Park (2010) 

investigated the relationships between a pair of primal and dual models based on the 

duality theory in imprecise DEA. Mostafaee and Saljooghi (2010) proposed a method for 

dealing with imprecise data in the cost efficiency analysis. They constructed a pair of 

two-level mathematical programming problems to obtain the lower bound and upper 

bound of cost efficiency in the presence of interval data. Based on a robust optimization 

model, Shokouhi et al. (2010) recently proposed an imprecise DEA approach (called 

robust data envelopment analysis) in which the input and output parameters only vary in 

ranges. Their method completely covers the method of Despotis and Smirlis (2002). By 
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applying a Monte-Carlo simulation, Shokouhi et al. (2010) also demonstrated that the 

classification or ranking based on the upper and lower bounds of efficiency do not 

necessarily have maximum conformity. 

3. Efficiency Measurement 

In this section, we first provide an overview of the conventional DEA models when we 

do not consider internal structures for DMUs. Next, we review DEA models in the two-

stage process. 

3.1. DEA models 

DEA is a nonparametric method of measuring efficiency that uses mathematical 

programming rather than regression. DEA circumvents the problem of specifying an 

explicit form of the production function and makes only a minimum number of 

assumptions to estimate the underlying technology. Farrell (1957) formulated a linear 

programming (LP) model to measure the technical efficiency of a firm with reference to a 

benchmark technology characterized by constant returns to scale. 

Let us consider n DMUs under evaluation where each DMUj, 1,2,...,j n , use m inputs 

to produce s output. Each observation is characterized by an input vector 

1,( ,..., ),m
j j mjx x x  and an output vector ,s

jy   1( ,..., )j sjy y , consisting of non-

negative elements. The technology T or production possibility set (PPS) is defined as 

{( , ) :T x y x  can produce y}.  

In DEA, a benchmark technology is constructed from the observed inputs and outputs of 

the DMUs. For this, we make the following general assumptions about the production 

technology without specifying any functional form. These are fairly weak assumptions 

and hold for all technologies represented by a quasi-concave and weakly monotonic 

production function. 

a) Envelopment: ( , ) .x y T   

b) Free disposability: ( , ) , , ( , ) .x y T y y x x x y T         

c) Convexity: 

( , ),( , ) ,( , ) ( , ) (1 )( , ),0 1 ( , ) .x y x y T x y x y x y x y T              

d) z returns to scale: ( , ) ( , ) , ( ),x y T qx qy T q z      where z=crs, drs or vrs, 

0
( ) , ( ) [0,1] ( ) {1},crs drs and vrs      respectively. 

Thereby, we can estimate a PPS or the technology satisfying assumptions (a–d) from the 

observed data for n DMUs without any explicit specification of a production function. It 

defines as 

{( , ) : , | , , 0}.C m sT x y x y x X y Y  
 

       (1) 

where the superscript C presents that the technology is characterized by CRS. 

To evaluate the input-oriented technical efficiency of any DMU, we examine to what 

extent it is possible to proportionally reduce its input(s) and still produce the same 

output(s). This evaluation with one input is quite straightforward. However, in the 

presence of multiple inputs, a question would be whether reducing one input is more 
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important than reducing some other input. When market prices of inputs are not 

available, one way to deal with this problem is to seek equiproportionate reduction in all 

inputs. The input-oriented technical efficiency of oDMU  can be defined as 

(( , ); ) min{ ( , ) }Cx y T x y T   


     (2) 

The CCR model proposed by Charnes et al. (1978) evaluates the efficiency of a specific 

oDMU under the constant returns to scale (CRS).  The input oriented primal and dual 

models are given in (5). 

 

Primal CCR model (input-oriented)  

(3) 
,

min ,

0.

o

o o

x X

y Y

 

  



 
 

  
 

 

 

Dual CCR model (input-oriented)  

(4) 
0,

max 1,

, 0.

T T

j j

T T

o o o

u y v x j

u y v x

u v



   
  

  
 

  

 

where u and v in model (4) are the weights assigned to the outputs and the inputs, 

respectively. In an economic context, u and v of model (4) are the shadow prices 

associated with the outputs and the inputs, respectively. The shadow prices are used for 

aggregation as a measure of average productivity of each DMU and vary across DMUs. 

In such sense, two restrictions are imposed; firstly, all of these shadow prices have to be 

nonnegative ( , 0u v  ), although zero prices are acceptable for individual inputs and 

outputs. Secondly, the shadow prices must be such that when aggregated using these 

prices, no DMU’s input–output data results in average productivity greater than unity, 

  1T T
j ju y v x  . Note also that the constraint 1T

ov x   in (4) is a given normalized input 

prices. It is obvious that there are a large number of shadow prices ( , )u v satisfying these 

restrictions.  

3.2. DEA in the two-stage process 

Fig. 1 shows a two-stage process, where each DMU is composed of two sub-DMUs in 

series, and intermediate products by the sub-DMU in stage 1 is consumed by the sub-

DMU in stage 2. 
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Fig 1. A two-stage process 

We assume stage 1 of each ( 1,..., )jDMU j n  uses m inputs ( jx ) 
 
to produce q outputs  

( jz ). Then, the outputs of stage 1 ( jz ) become the inputs to stage 2 and are called 

intermediate measures. Therefore, stage 2 of each ( 1,..., )jDMU j n  consists of q 

inputs 
 

and s outputs ( jy ). Note that the intermediate measure plays two roles 

simultaneously in the two-stage process: output and input for the stages 1 and 2, 

respectively. 

Under CRS technology, the overall efficiency scores of the two-stage process and the two 

individual stages can be obtained as: 

1, ,
max

, 0.

T

jT

To

To j

o

u y
ju y

E v x
v x

u v

 
   

  
 

    

(5) 

 

Stage 1)

  

1
1, ,

max

, 0.

T

jT

To

To j

o

w z
jw z

E v x
v x

w v

 
   

  
 

  

          

 (6a) 

Stage 2)   2
1, ,

max

, 0.

T

jT

To

To j

o

u y
ju y

E w z
w z

u w

 
   

  
 

  

 (6b) 

where v and w are the input and output (intermediate measure) weights for stage 1, 

respectively, while w  and u are the input (intermediate measure) and output weights for 

stage 2, respectively . 

Kao and Hwang (2008) proposed the overall efficiency as the product of the efficiencies 

of the two sub-processes when w w : 
1 2E E E   (7) 

Consequently, the overall efficiency is defined as follows: 

1, ,

1, ,
max

1, ,

, , 0.

T

j

T

j

T

jT

To

To j

o
T

j

T

j

u y
j

v x

w z
ju y

E v x
v x

u y
j

w z

u v w

 
  
 
 
 

  
  

 
 

  
 
  

 (8) 
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Note that the constraint set of (8) is built from models (5), (6a) and (6b) although 

constraints 1T T
j ju y v x   are redundant in model (8). Model (8) is equivalent to the 

following linear program 

0, ,

1, ,
max

1,

, , 0.

T T

j j

T T

T j j

o o
T

o

w z v x j

u y w z j
E u y

v x

u v w

   
 
    

  
 

 
  

 (9) 

After obtaining the optimal values *v , *u  and 
*w , the efficiencies of stages 1 and 2, 

respectively, can be calculated as 
1 * */T T
o o oE w z v x

 
and 

2 * */T T
o o oE u y w z . 

4. Two-stage DEA Model under Uncertainty 

All data in the conventional two-stage model are known precisely or given as crisp 

values. However, in an environment of imprecision, uncertainty, incompleteness of 

information, crisp data are inadequate or insufficient to model real-life evaluation 

problems. In some applications, a number of the data sets may be known only within 

specified bounds. Cooper et al. (1999, 2001a, 2001b) were pioneers to use the interval 

approach to study the uncertainty in DEA.  

Let us consider the uncertainty in model (5) by applying interval inputs and outputs so as 

to arrive the following model for measuring the overall efficiency of oDMU : 

1, ,

1, ,
max

1, ,

, , 0.

T

j

T

j

T

jT

T

T j

T

j

T

j

u y
j

v x

w z
ju y

E v x
v x

u y
j

w z

u v w

 
  
 
 
 

  
  

 
 

  
 
  

 (10) 

“^” represents the uncertainty in the inputs and outputs. We assume that jx , jy and jz  

are only known to lie within the upper and lower bounds represented by the ranges as 

[ , ]l u
j jx x , [ , ]l u

j jy y  and [ , ]l u
j jz z , respectively. Note that the lower and upper bounds of the 

interval inputs and outputs are assumed to be constants and strictly positive. In order to 

cope with such uncertainty, based on Wang et al. (2005), a new mathematical program is 

proposed to obtain the lower and upper bound of efficiency of each process and sub-

process. These models utilize a common production frontier because the use of same 

constraint sets results in a more fair and meaningful efficiency assessment of the DMUs 

and the sub-DMUs. Many present approaches used the different constraint sets for 

calculating the upper and lower bounds of the efficiency (some references). Wang et al. 

(2005, p.351) accordingly state: “The main drawback of the use of different constraint 

sets to measure the efficiencies of DMUs is the lack of comparability among the 
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efficiencies because different production frontiers were adopted in the process of 

efficiency measure”. In an environment of uncertain data, the interval intermediate 

measures play a key role of a linkage between two stages for calculating the overall 

efficiency. Therefore, we have 

E =
1 2

T T T

o o o

T T To o

o o o

w z u y u y
E E

v x w z v x
     (11) 

The upper and lower bounds of the interval overall efficiency of each oDMU under 

consideration, denoted by [ , ]l u

o o
E E , are obtained from the pessimistic and optimistic 

viewpoints, respectively, using the following pair of LP models 

1, ,

max 1, ,

, , 0.

T

j

T l

j

T u T u
u o j

T l T
o j

w z
j

v x

u y u y
E j

v x w z

u v w

 
  
 
 
 

   
 
 
 
  

 (12) 

1, ,

max 1, ,

, , 0.

T

j

T l

j

T l T u
l o j

T uo T
o j

w z
j

v x

u y u y
E j

v x w z

u v w

 
  
 
 
 

   
 
 
 
  

 (13) 

In the optimistic and pessimistic viewpoints, the best situation for all sub-DMUs is 

considered to build the common production set. In other words, models (12) and (13) 

consist of the same constraints, however, the best situation for the   under 

evaluation is used in the optimistic viewpoint and the worst situation for the   is 

used in the pessimistic viewpoint. To achieve this purpose, we take into account three 

cases for the interval intermediate measures in evaluation analysis: (a) u
j jz z , (b) jz =

l
jz , (c) 0.5( )l u

j j jz z z  . Therefore, we have three pairs of models (12) and (13) with 

respect to the upper bound, the lower bound and the arithmetic mean of the upper and 

lower bounds for the intermediate measures. Models (12) and (13) are fractional 

programs which can be transformed into the following linear program: 

 

1,

0, ,
max

0, ,

, , 0.

T l

o

T T l

j ju T u

o o T u T

j j

v x

w z v x j
E u y

u y w z j

u v w

 
 

    
  

   
 

  

 (14) 

oDMU

oDMU
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1,

0, ,
max

0, ,

, , 0.

T u

o

T T l

j jl T l

o o T u T

j j

v x

w z v x j
E u y

u y w z j

u v w

 
 

    
  

   
 

  

 

(15) 

Once the optimal weights *v , *u  and
*w  of model (14) are determined, the upper 

efficiencies of stages 1 and 2, respectively, will be calculated as 
1( ) * */u T T l
o o oE w z v x

 
and 

2( ) * */u T u T
o o oE u y w z , whilst after obtaining the optimal values ,  and  of model 

(15), the lower efficiencies of stages 1 and 2, respectively, will be computed as: 
1( ) * */l T T u
o o oE w z v x

 
and 

2( ) * */l T l T
o o oE u y w z . Note that in this paper jz  can be the 

upper bound, the lower bound and the arithmetic mean of the upper and lower bounds for 

the intermediate measures. 

We can advance the following definitions to classify DMUs or sub-DMUs into different 

classes with respect to the interval efficiency scores: 

 

Definition 1. Assume that *l
jE , 1( )*l

jE  and 2( )*l
jE  present the lower efficiency of a DMU, 

sub-DMUs 1 and 2, respectively.  A DMU and the first (second) sub-DMU are called 

DEA fully efficient if * 1l
jE   and 1( )* 1l

jE   ( 2( )* 1l
jE  ). 

 

Definition 2. Assume that *u
jE , 1( )*u

jE  and 2( )*u
jE  present the upper efficiency of a DMU, 

sub-DMUs 1 and 2, respectively.  A DMU and the first (second) sub-DMU are called 

DEA efficient if * 1u
jE   and 1( )* 1u

jE   ( 2( )* 1u
jE  ).A DMU (or a sub-DMU) is called 

DEA inefficient if its upper efficiency, *u
jE  ( 1( )*u

jE  or 2( )*u
jE ), is smaller than unity. 

 

Note that a DMU which is placed in the fully-efficient class remains efficient for all cases 

(any combination of the input/output data). In addition, as a result of the above 

definitions and Remark 2, when the lower bound of the overall performance is 

equivalence to unity, the DEA fully efficiency for the DMU and its sub-DMUs 

simultaneously occurs in the performance analysis.  

The relationship between uE  and lE  in models (14) and (15) can be defined with 

Theorem 1.  

 

Theorem 1. If *uE  and  *lE  are the optimum objective function values of models (14) 

and (15), respectively, then * *l uE E . 

 

Proof. Let 
*v , 

*u  and 
*w  be the optimal solution to model (15). We introduce the new 

variables  

* ,T l
o ov x 

* *

,
o o

u v
u v

 
   and 

*

o

w
w


 .  

Therefore 

*v *u
*w
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* *

*
*

1,

1
1,

io o

T l T u

o o o

T l l T l

o

o o

v x v x

v
v x x v x



 

  

  
 

Moreover, we have 

* *

* *

1
( ) 0,

1
( ) 0,

T u T T u T

j j j j

o

T T l T T l

j j j j

o

u y w z u y w z j

w z v x w z v x j





    

    

 

It is obvious that all new variables are also constrained to be non-negative as  
*

0,
o

u
u


   

*

0,
o

v
v


   

*

0,
o

w
w


   

Thus, ,u v  and w  is a feasible solution to model (14). Therefore, 
T u

ou y  is always smaller 

than or equal to the optimum objective function of (14), 
*u

oE .   

* * * * *( ) .l T l T u T u T u u u

o o o o o o o o o oE u y u y u y u y E E       

 

This completes the proof. 

 

In addition, the relationship between the lower and upper bounds of the first and second 

stages can be considered as the following corollaries directly from Theorem 1, stated 

without their proofs. 

 

Corollary 1. If 1( )lE  and 1( )uE  are the efficiency scores for the first stage, then 
1( ) 1( )l uE E . 

 

Corollary 2. If 2( )lE  and 2( )uE  are the efficiency scores for the second stage, then 
2( ) 2( )l uE E . 

 

It is clear that the feasible region of sub-DMUs is greater than the feasible region of the 

whole process (see formula (7)). As a result, we state the following remark concerning 

the interval efficiency score of stages and the whole process. 

 

Remark 1. If * *[ , ]l uE E , 1( )* 1( )*[ , ]l uE E  and 2( )* 2( )*[ , ]l uE E  are the interval efficiency 

scores of the whole process, stage 1 and stage 2, respectively, then *lE  *uE  1( )*lE 
1( )*uE  and * * 2( )* 2( )*l u l uE E E E   . 

 

Models (14) and (15) may have multiple optimal solutions. Therefore, it is possible that 

the uniqueness of the decomposition of the overall efficiency does not occur in the 
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optimistic and pessimistic scenarios. According to Kao and Hwang’s (2008) approach, 

we find a set of multipliers which produces the largest upper and lower efficiency score 

of the first (or second) stage while maintaining the overall efficiency score at *uE  and 
*lE  calculated from (14) and (15). Hence, for this extension, we give priority to the first 

stage to obtain its maximum upper and lower efficiency via models (16) and (17) when 

the overall efficiency is, respectively, equal to *uE  and *lE . 

1*1

1 111( )

1 1

1

, 1, ,

max

1, , , , 0, , , .

qs
u

p pjr r
pur

q m m
l l

i i i ijp p
i ipu

m s
l u

i i r rj
i r

q r i p

p pj
p

w zu y

E j

v x v xw z

E

v x u y

j u v w r i p

w z



 

 



 
 
   
 
 
 

  
 
 

    
 
  



 

 



 (16) 

 

1*1

1 111( )

1 1

1

, 1, ,

max

1, , , , 0, , , .

qs
l

p pjr r
plr

q m m
u l

i i i ijp p
i ipl

m s
l u

i i r rj
i r

q r i p

p pj
p

w zu y

E j

v x v xw z

E

v x u y

j u v w r i p

w z



 

 



 
 
   
 
 
 

  
 
 

    
 
  



 

 



 (17) 

or equivalently, 

*

1 1

1( )

1 1 1

1 1

, 1,

max 0, ,

0, , , , 0, , , .

s m
u u l

r r i i
r i

q q m
u l

p pj p pj i ij
p p i

qs
u

r r p pj r i p
r p

u y E v x

E w z w z v x j

u y w z j u v w r i p

 

  

 

 
  

 
 
 

    
 
 
     
  

 

  

 

 (18) 

 

*

1 1 1

1( )

1 1 1

1 1

0, 1,

max 0, ,

0, , , , 0, , , .

s m m
l l u l

r r i i i i
r i i

q q m
l l

p p p pj i ij
p p i

qs
u

r rj p pj r i p
r p

u y E v x v x

E w z w z v x j

u y w z j u v w r i p

  

  

 

 
   

 
 
 

    
 
 
     
  

  

  

 

 (19) 



16     Hatami-Marbini, Agrell, Aghayi 

 

The upper and lower efficiency of the second stage is then calculated as 2( ) 1( )u u uE E E  

and 2( ) 1( )l l lE E E , respectively. Note that we can similarly follow the above models 

when giving priority to the second stage. 

Likewise, we may give priority to the second stage to obtain its maximum upper and 

lower efficiency while keeping the upper and lower overall efficiency, *uE  and *lE ,  

respectively. Then, similarly the upper and lower efficiency of the first stage can be 

computed as 1( ) 2( )u u uE E E  and  1( ) 2( )l l lE E E , respectively. 

 

Corollary 3. Let 1( )* 1( )*[ , ]l uE E  and 2( )* 2( )*[ , ]l uE E  be the interval efficiencies when 

giving priority to the first stage and let also 1( )* 1( )*[ , ]l uE E  and 2( )* 2( )*[ , ]l uE E  be the 

interval efficiencies when giving priority to the second stage. Then, 2( )* 2( )*u lE E  and 

1( )* 1( )*u uE E . 

 

Remark 2. If * *[ , ]l uE E , 1( )* 1( )*[ , ]l uE E  and  2( )* 2( )*[ , ]l uE E are the interval efficiency 

scores of the whole process, stage 1 and stage 2, respectively, while giving priority to the 

first stage, then * * 1( )* 1( )*l u l uE E E E   . 

 

Remark 3. If * *[ , ]l uE E , 1( )* 1( )*[ , ]l uE E  and  2( )* 2( )*[ , ]l uE E  are the interval efficiency 

scores of the whole process, stage 1 and stage 2, respectively, while giving priority to the 

second stage, then * * 2( )* 2( )*l u l uE E E E   . 

5. Conclusions and further research 

Performance assessment in real applications relies critically upon the minimal imposition 

of a priori assumptions on the structural relationships, the representativeness of the 

reference set and the adequate consideration of the uncertainty in the underlying data 

generation process. The two-stage process modeling in DEA is a reflection of the first 

criterion, since the non-parametric approach removes the otherwise restrictive 

assumptions regarding the functional form and due to the explicit consideration of the 

interdependencies of the process through the two-stage model.  The second criterion is 

also addressed with the two-stage modeling, since data in certain applications indeed 

emanate from decentralized organizations that should be compared relative to both their 

individual and team performance, just as in the analysis of industrial supply chains. 

Finally, the third criterion is the most neglected in the current literature and the main 

contribution of this paper. Departing from the restrictive assumption of access to perfect 

and deterministic data for all DMUs, our approach allows for impreciseness in the sense 

of interval data for inputs and outputs. This approach naturally results in the calculation 

of distance function results in intervals as well, mapping the domain of the production 

space into the domain of its projections for aggregate and intermediate processes. 

However, our approach for the two-stage process has the strength of a consistent 

production possibility set for the two evaluations, with links back to the first and second 

criteria evoked.  
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Further research is underway to apply this approach to real two-stage systems with larger 

datasets and to explore the interpretation of the obtained measures with respect to the 

individual and system performance in these systems.  
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