User menu

Compartmentalized coculture of porcine arterial endothelial and smooth muscle cells on a microporous membrane.

Bibliographic reference Kinard, Fabienne ; Sergent-Engelen, T ; Trouet, André ; Remacle, Claude ; Schneider, Yves-Jacques. Compartmentalized coculture of porcine arterial endothelial and smooth muscle cells on a microporous membrane.. In: In vitro cellular & developmental biology. Animal, Vol. 33, no. 2, p. 92-103 (1997)
Permanent URL http://hdl.handle.net/2078.1/12309
  1. Albelda, S. M.; Sampson, P. M.; Haselton, F. R., et al. Permeability characteristics of cultured endothelial cell monolayers. J. Appl. Physiol. 64:308–322; 1988.
  2. Buul-Wortelboer, M. F.; Brinkman, H. J. M.; Dingemans, K. P., et al. Reconstitution of the vascular wall in vitro: a novel model to study interactions between endothelial and smooth muscle cells. Exp. Cell Res. 162:151–158; 1986.
  3. Casnocha, S. A.; Eskin, S. G.; Hall, E. R., et al. Permeability of human endothelial monolayers: effect of vasoactive agonist and cAMP. J. Appl. Physiol. 67(5):1997–2005; 1989.
  4. Casnocha, S. A.; McIntire, L. V.; Eskin, S. G., et al. Measurement of endothel ial monolayer permeability and expression of endothelial cell products. Abstract, American Institute of Chemical Engineers, Annual Meeting. 173g; 1987.
  5. Castellot, J. J., Jr.; Addonizio, M. L.; Rosenberg, R., et al. Cultured endothelial cells produce a heparinlike inhibitor of smooth muscle cell growth. J. Cell Biol. 90:372–379; 1981.
  6. Chamley, J. H.; Campbell, G. R. Endothelial cell influences on vascular smooth muscle phenotype. Annu. Rev. Physiol. 48:295–306; 1986.
  7. Chamley, J. H.; Gordon, R.; Campbell, G. R., et al. The smooth muscle cell in culture. Physiol. Rev. 59:1–51; 1979.
  8. Ching, S. F.; Hayes, L. W.; Slakey, L. L. Angiotensin-converting enzyme in cultured endothelial cells: synthesis, degradation and transfer to culture medium. Atherosclerosis 3:581–588; 1983.
  9. Cooper, J. A.; Del Vecchio, P. J.; Minnear, F. L., et al. Measurement of albumin permeability across endothelial monolayers in vitro. J. Appl. Physiol 62:1076–1083; 1987.
  10. Davies, P. F.; Truskey, G. A.; Warren, H. B., et al. Metabolic cooperation between vascular endothelial cells and smooth muscle cells in coculture: changes in low density lipoprotein metabolism. J. Cell Biol. 101:871–879; 1985.
  11. Downie Gordon H., Ryan Una S., Hayes Brendan A., Friedman Mitchell, Interleukin-2 Directly Increases Albumin Permeability of Bovine and Human Vascular EndotheliumIn Vitro, 10.1165/ajrcmb/7.1.58
  12. Fass, D.; Knutson, G. J.; Katzmann, J. Monoclonal antibodies to porcine factor VIII coagulation and their use in the isolation of active coagulation protein. Blood 59:594–600; 1982.
  13. Fillinger, M. F.; O’Connor, S. E.; Wagner, R. J., et al. The effect of endothelial cell coculture on smooth muscle cell proliferation. J. Vasc. Surg. 17:1058–1068; 1993.
  14. Gajdusek, C.; Di Corleto, P. E.; Ross, R., et al. An endothelial cell derived growth factor. J. Cell Biol. 85:467–472; 1980.
  15. Ganz, P.; Davies, P. F.; Leopold, J. A., et al. Short and long term interaction of endothelium and vascular smooth muscle in coculture: effects on cyclic GMP production. Proc. Natl. Acad. Sci. USA 83:3552–3556; 1986.
  16. Garcia, J. G.; Siflinger-Birnboim, A.; Bizios, R., et al. Thrombin-induced increase in albumin permeability across the endothelium. J. Cell. Physiol. 128:96–104; 1986.
  17. Garg, U. C.; Hassid, A. Nitric oxide-generating vasodilators and 8-bromocyclic guanosine monophosphate inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells. J. Clin. Invest. 83(5):1774–1777; 1989.
  18. Graham, D. J.; Alexander, J. J.; Miguel, R. Aortic endothelial and smooth muscle cell co-culture: an in vitro model of the arterial wall. J. Invest. Surg. 4:487–494; 1991.
  19. Halleux, C.; Schneider, Y.-J. Iron absorption by intestinal epithelial cells: 1. CaCo2 cells cultivated in serum-free medium, on polyethylene terephtalate microporous membranes, as an in vitro model. In Vitro Cell. Dev. Biol. 27A:293–302; 1991.
  20. Hayes, L. W.; Goguen, C. A.; Ching, S. F., et al. Angiotensin-converting enzyme: accumulation in medium from cultured endothelial cells. Biochem. Biophys. Res. Commun. 82:1147–1153; 1978.
  21. Hickey, K. A.; Rubanyi, G. M.; Paul, R. J., et al. Characterization of a coronary vasoconstrictor produced by cultured endothelial cells. Am. J. Physiol. 248:C550–556; 1985.
  22. Jaffe, E. A. Endothelial cells. Ann. NY Acad. Sci. 401:163–170; 1982.
  23. Jones, P. A. Construction of an artificial blood vessel wall cultured endothelial and smooth muscle cells. Proc. Natl. Acad. Sci. USA 76:1882–1886; 1979.
  24. Kapuscinski, J.; Skoczylas, B. Simple and rapid fluorimetric method for DNA microassay. Anal. Biochem. 83:252–257; 1977.
  25. Larson, D. M.; Sheridan, J. D. Intercellular junctions and transfer of small molecules in primary vascular endothelial cultures. J. Cell Biol. 92:183–191; 1982.
  26. Lowry, O. H.; Rosenbrough, N. J.; Farr, A. L., et al. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275; 1951.
  27. Merrilees, M. J.; Lesley, S. Culture of rat and pig aortic endothelial cells. Atherosclerosis 38:19–26; 1981.
  28. Navab, M. G.; Hama, S. Y.; Van Lenten, B. J., et al. A new antiinflammatory compound, leumedin, inhibits modification of low density lipoprotein and the resulting monocyte transmigration into the subendothelial space of cocultures of human aortic wall cells. J. Clin. Invest. 91:1225–1230; 1993.
  29. Navab, M. G.; Hough, G. P.; Stevenson, L. W., et al. Monocyte migration into the subendothelial space of a coculture of adult human aortic endothelial and smooth muscle cells. J. Clin. Invest. 82:1853–1863; 1988.
  30. Pederson, D. C.; Fass, D. N. Failure to detect Von Willebrand Factor in cultured porcine endothelial cells. Circulation 62 (suppl. III) 169; 1980.
  31. Ryan, U. S.; Ryan, J. W. Vital and functional activities of endothelial cells: In: Nossell, H. L.; Vogel, H. J., eds. Pathobiology of the endothelial cell. New York: Academic Press; 1985:455–469.
  32. Saunders, K. B.; D’Amore, P. A. An in vitro model for cell-cell interactions. In Vitro Cell. Dev. Biol. 28A:521–528; 1992.
  33. Schneider, Y.-J. Optimization of hybridoma cell growth and monoclonal antibody secretion in a chemically defined, serum- and protein-free culture medium. J. Immunol. Methods 116:65–77; 1989.
  34. Sergent-Engelen, T.; Halleux, C.; Ferain, E., et al. Improved cultivation of polarized animal cells on culture inserts with new transparent polyethylene terephtalate or polycarbonate microporous membranes. Biotechnol. Tech. 4:89–96; 1990.
  35. Siflinger-Birnboim, A.; Del Vecchio, P. J.; Cooper, J. A., et al. Molecular sieving characteristics of the cultured endothelial monolayer. J. Cell. Physiol. 132:111–117; 1987.
  36. Stoll, L. L.; Spector, A. A. Lipid transfer between endothelial and smooth muscle cells in coculture. J. Cell. Physiol. 133:103–110; 1987.
  37. Thomae, K. R.; Nakayama, D. K.; Billiar, T. R., et al. The effect of nitric oxide on fetal pulmonary artery smooth muscle growth. J. Surg. Res. 59(3):337–343; 1995.
  38. Vanhoutte, P. M.; Rubanyi, G. M.; Miller, V. M., et al. Modulation of vascular smooth muscle contraction by endothelium. Annu. Rev. Physiol. 48:307–320; 1986.
  39. Xu, C. B.; Stavenow, L.; Pessah-Rasmussen, H. Interactions between cultured bovine arterial endothelial and smooth muscle cells: further studies on the effects of injury and modification of the consequences of injury. Artery 20(3):163–179; 1993.