User menu

Computationally Efficient self-consistent Born approximation treatments of phonon scattering for Coupled-Mode Space Non-Equilibrium Green's Functions

Bibliographic reference Afzalian, Aryan. Computationally Efficient self-consistent Born approximation treatments of phonon scattering for Coupled-Mode Space Non-Equilibrium Green's Functions. In: Journal of Applied Physics, Vol. 110, no.094517, p. 094517-1-11 (11 November 2011)
Permanent URL http://hdl.handle.net/2078.1/122803
  1. Keldysh P., Sov. Phys. JETP, 20, 1018 (1965)
  2. Kadanoff P., Quantum Statistical Mechanics (1962)
  3. Datta Supriyo, Nanoscale device modeling: the Green’s function method, 10.1006/spmi.2000.0920
  4. Wang Jing, Polizzi Eric, Lundstrom Mark, A three-dimensional quantum simulation of silicon nanowire transistors with the effective-mass approximation, 10.1063/1.1769089
  5. Lake Roger, Datta Supriyo, Nonequilibrium Green’s-function method applied to double-barrier resonant-tunneling diodes, 10.1103/physrevb.45.6670
  6. Jin Seonghoon, Park Young June, Min Hong Shick, A three-dimensional simulation of quantum transport in silicon nanowire transistor in the presence of electron-phonon interactions, 10.1063/1.2206885
  7. Venugopal R., Paulsson M., Goasguen S., Datta S., Lundstrom M. S., A simple quantum mechanical treatment of scattering in nanoscale transistors, 10.1063/1.1563298
  8. Iwata Hideyuki, Matsuda Toshihiro, Ohzone Takashi, Computationally efficient method for scattering device simulation in nanoscale MOSFETs, 10.1016/j.sse.2007.02.040
  9. Takagi Shin‐ichi, Hoyt Judy L., Welser Jeffrey J., Gibbons James F., Comparative study of phonon‐limited mobility of two‐dimensional electrons in strained and unstrained Si metal–oxide–semiconductor field‐effect transistors, 10.1063/1.362953
  10. Afzalian Aryan, Colinge Jean-Pierre, Flandre Denis, Physics of Gate Modulated Resonant Tunneling (RT)-FETs: Multi-barrier MOSFET for steep slope and high on-current, 10.1016/j.sse.2011.01.016
  11. Afzalian Aryan, Akhavan Nima Dehdashti, Lee Chi-Woo, Yan Ran, Ferain Isabelle, Razavi Pedram, Colinge Jean-Pierre, A new F(ast)-CMS NEGF algorithm for efficient 3D simulations of switching characteristics enhancement in constricted tunnel barrier silicon nanowire MuGFETs, 10.1007/s10825-009-0283-1
  12. Wang J., Rahman A., Ghosh A., Klimeck G., Lundstrom M., On the Validity of the Parabolic Effective-Mass Approximation for the I–V Calculation of Silicon Nanowire Transistors, 10.1109/ted.2005.850945
  13. Luisier Mathieu, Schenk Andreas, Fichtner Wolfgang, Quantum transport in two- and three-dimensional nanoscale transistors: Coupled mode effects in the nonequilibrium Green’s function formalism, 10.1063/1.2244522
  14. Jacoboni Carlo, Reggiani Lino, The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials, 10.1103/revmodphys.55.645
  15. Ferry D. K., Semiconductors (1991)
  16. Svizhenko A., Anantram M.P., Role of scattering in nanotransistors, 10.1109/ted.2003.813503
  17. Koswatta S.O., Hasan S., Lundstrom M.S., Anantram M.P., Nikonov D.E., Nonequilibrium Green's Function Treatment of Phonon Scattering in Carbon-Nanotube Transistors, 10.1109/ted.2007.902900
  18. Büttiker M., Four-Terminal Phase-Coherent Conductance, 10.1103/physrevlett.57.1761
  19. Afzalian A., Flandre D., Computational study of dopant segregated nanoscale Schottky barrier MOSFETs for steep slope, low SD-resistance and high on-current gate-modulated resonant tunneling FETs, 10.1016/j.sse.2011.06.017
  20. Knoch J., Zhang M., Feste S., Mantl S., Dopant segregation in SOI Schottky-barrier MOSFETs, 10.1016/j.mee.2007.05.047
  21. Wittmer M., Phys. Rev. B, 29, 1984 (2010)
  22. Seoane Natalia, Martinez Antonio, Brown Andrew R., Barker John R., Asenov Asen, Current Variability in Si Nanowire MOSFETs Due to Random Dopants in the Source/Drain Regions: A Fully 3-D NEGF Simulation Study, 10.1109/ted.2009.2021357