User menu

A level set based model for damage growth: The thick level set approach

Bibliographic reference Moës, Nicolas ; Stolz, C. ; Bernard, Paul-Emile ; Chevaugeon, Nicolas. A level set based model for damage growth: The thick level set approach. In: International Journal for Numerical Methods in Engineering, Vol. 86, no.3, p. 358-380 (2011)
Permanent URL
  1. Kachanov, Izvestiia Akademii Nauk SSSR, Otdelenie Tekhmlchesikh Nauk, 8, 26 (1958)
  2. Lemaitre Jean, A Course on Damage Mechanics, ISBN:9783662027639, 10.1007/978-3-662-02761-5
  3. Peerlings R Gradient damage for quasi-brittle materials 1994
  4. PEERLINGS R. H. J., DE BORST R., BREKELMANS W. A. M., DE VREE J. H. P., GRADIENT ENHANCED DAMAGE FOR QUASI-BRITTLE MATERIALS, 10.1002/(sici)1097-0207(19961015)39:19<3391::aid-nme7>;2-d
  5. Bažant Zdeněk P., Belytschko Ted B., Chang Ta‐Peng, Continuum Theory for Strain‐Softening, 10.1061/(asce)0733-9399(1984)110:12(1666)
  6. Pijaudier‐Cabot Gilles, Bažant Zdeněk P., Nonlocal Damage Theory, 10.1061/(asce)0733-9399(1987)113:10(1512)
  7. Aifantis E. C., On the Microstructural Origin of Certain Inelastic Models, 10.1115/1.3225725
  8. Triantafyllidis N., Aifantis Elias C., A gradient approach to localization of deformation. I. Hyperelastic materials, 10.1007/bf00040814
  9. Schreyer Howard L., Chen Z., One-Dimensional Softening With Localization, 10.1115/1.3171860
  10. Mühlhaus H. B., Vardoulakis I., The thickness of shear bands in granular materials, 10.1680/geot.1987.37.3.271
  11. Frémond Michel, Nedjar Boumediene, Damage, gradient of damage and principle of virtual power, 10.1016/0020-7683(95)00074-7
  12. Pijaudier-Cabot Gilles, Burlion Nicolas, Damage and localisation in elastic materials with voids, 10.1002/(sici)1099-1484(199604)1:2<129::aid-cfm7>;2-2
  13. Nguyen, Comptes Rendus Académie des Sciences de Paris, Série II, 333, 139 (2005)
  14. Peerlings R.H.J., Geers M.G.D., de Borst R., Brekelmans W.A.M., A critical comparison of nonlocal and gradient-enhanced softening continua, 10.1016/s0020-7683(01)00087-7
  15. Hakim Vincent, Karma Alain, Laws of crack motion and phase-field models of fracture, 10.1016/j.jmps.2008.10.012
  16. Hakim Vincent, Karma Alain, Crack Path Prediction in Anisotropic Brittle Materials, 10.1103/physrevlett.95.235501
  17. Karma, Physical Review Letters, 8704 (2001)
  18. Francfort G.A., Marigo J.-J., Revisiting brittle fracture as an energy minimization problem, 10.1016/s0022-5096(98)00034-9
  19. Bourdin B., Francfort G.A., Marigo J-J., Numerical experiments in revisited brittle fracture, 10.1016/s0022-5096(99)00028-9
  20. Bourdin Blaise, Francfort Gilles A., Marigo Jean-Jacques, The Variational Approach to Fracture, 10.1007/s10659-007-9107-3
  21. Allaire G Van Goethem N Jouve F A level set method for the numerical simulation of damage evolution 2007
  22. Pradeilles-Duval, Comptes Rendus Académie des Sciences de Paris, Série II, 313, 297 (1991)
  23. Pradeilles-Duval Rachel-Marie, Stolz Claude, Mechanical transformations and discontinuities along a moving surface, 10.1016/0022-5096(94)00061-9
  24. Moës N Chevaugeon N Dufour F A Regularized Brittle Damage Model Solved by a Level Set Technique 2008
  25. Nguyen, Comptes Rendus Académie des Sciences de Paris, Série II, 309, 1515 (1989)
  26. Stolz Claude, Bifurcation of equilibrium solutions and defects nucleation, 10.1007/s10704-007-9147-5
  27. Salac David, Lu Wei, A level set approach to model directed nanocrack patterns, 10.1016/j.commatsci.2006.10.008
  28. Simone Angelo, Wells Garth N., Sluys Lambertus J., From continuous to discontinuous failure in a gradient-enhanced continuum damage model, 10.1016/s0045-7825(03)00428-6
  29. Simone Angelo, Sluys Lambertus J., The use of displacement discontinuities in a rate-dependent medium, 10.1016/j.cma.2003.08.006
  30. Comi Claudia, Mariani Stefano, Perego Umberto, An extended FE strategy for transition from continuum damage to mode I cohesive crack propagation, 10.1002/nag.537
  31. Saanouni K., Belamri N., Autesserre P., Finite element simulation of 3D sheet metal guillotining using advanced fully coupled elastoplastic-damage constitutive equations, 10.1016/j.finel.2010.02.002
  32. Mazars Jacky, Pijaudier-Cabot Gilles, From damage to fracture mechanics and conversely: A combined approach, 10.1016/0020-7683(96)00015-7
  33. Stolz, Comptes Rendus Académie des Sciences de Paris, Série II, 308, 1 (1989)
  34. Stolz, Continuum Thermodynamics, 401 (2000)
  35. Dequiedt, Archives of Mechanics, 56, 5 (2004)
  36. Lorentz E., Andrieux S., Analysis of non-local models through energetic formulations, 10.1016/s0020-7683(03)00110-0
  37. Simone Angelo, Askes Harm, Sluys Lambertus J., Incorrect initiation and propagation of failure in non-local and gradient-enhanced media, 10.1016/j.ijsolstr.2003.09.020
  38. Mo�s Nicolas, Dolbow John, Belytschko Ted, A finite element method for crack growth without remeshing, 10.1002/(sici)1097-0207(19990910)46:1<131::aid-nme726>;2-j
  39. Belytschko T., Mo�s N., Usui S., Parimi C., Arbitrary discontinuities in finite elements, 10.1002/1097-0207(20010210)50:4<993::aid-nme164>;2-m
  40. Daux Christophe, Mo�s Nicolas, Dolbow John, Sukumar Natarajan, Belytschko Ted, Arbitrary branched and intersecting cracks with the extended finite element method, 10.1002/1097-0207(20000830)48:12<1741::aid-nme956>;2-l
  41. Sethian, Level Set Methods and Fast Marching Method: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science (1999)
  42. Osher, Level Set Methods and Dynamic Implicit Surfaces (2002)
  43. Dhia Hachmi Ben, Vautier Isabelle, Zarroug Malek, Problèmes de contact frottant en grandes transformations: du continu au discret, 10.1080/12506559.2000.10511439
  44. Zarroug M Eléments Mixtes de Contact Frottant en Grandes Transformation et Applications 2002
  45. Verhoosel Clemens V., Remmers Joris J. C., Gutiérrez Miguel A., A dissipation-based arc-length method for robust simulation of brittle and ductile failure, 10.1002/nme.2447
  46. Lemaitre, Engineering Damage Mechanics: Ductile, Creep, Fatigue and Brittle Failures (2005)
  47. Bazant, ACI Materials Journal, 89, 456 (1992)
  48. Carpinteri Alberto, Colombo Giovanni, Numerical analysis of catastrophic softening behaviour (snap-back instability), 10.1016/0045-7949(89)90337-4
  49. Melin Solveig, Why do cracks avoid each other?, 10.1007/bf00020156
  50. Sumi Y., Wang Z.N., A finite-element simulation method for a system of growing cracks in a heterogeneous material, 10.1016/s0167-6636(97)00048-3
  51. Budyn É., Zi G., Moës N., Belytschko T., A method for multiple crack growth in brittle materials without remeshing : A METHOD FOR MULTIPLE CRACK GROWTH, 10.1002/nme.1130