User menu

Structural role of the active-site metal in the conformation of Trypanosoma brucei phosphoglycerate mutase.

Bibliographic reference Mercaldi, Gustavo F ; Pereira, Humberto M ; Cordeiro, Artur T ; Michels, Paulus ; Thiemann, Otavio H. Structural role of the active-site metal in the conformation of Trypanosoma brucei phosphoglycerate mutase.. In: FEBS Journal, Vol. 279, no. 11, p. 2012-2021 (2012)
Permanent URL
  1. Foster Jeremy M., Davis Paul J., Raverdy Sylvine, Sibley Marion H., Raleigh Elisabeth A., Kumar Sanjay, Carlow Clotilde K. S., Evolution of Bacterial Phosphoglycerate Mutases: Non-Homologous Isofunctional Enzymes Undergoing Gene Losses, Gains and Lateral Transfers, 10.1371/journal.pone.0013576
  2. Fuad Fazia Adyani Ahmad, Fothergill-Gilmore Linda A., Nowicki Matthew W., Eades Lorna J., Morgan Hugh P., McNae Iain W., Michels Paul A. M., Walkinshaw Malcolm D., Phosphoglycerate mutase from Trypanosoma brucei is hyperactivated by cobalt in vitro, but not in vivo, 10.1039/c1mt00119a
  3. Rigden Daniel J., Lamani Ejvis, Mello Luciane V., Littlejohn James E., Jedrzejas Mark J., Insights into the Catalytic Mechanism of Cofactor-independent Phosphoglycerate Mutase from X-ray Crystallography, Simulated Dynamics and Molecular Modeling, 10.1016/s0022-2836(03)00350-4
  4. Rigden Daniel J, Mello Luciane V, Setlow Peter, Jedrzejas Mark J, Structure and mechanism of action of a cofactor-dependent phosphoglycerate mutase homolog from Bacillus stearothermophilus with broad specificity phosphatase activity, 10.1006/jmbi.2001.5290
  5. Carreras, Comp Biochem Physiol, 71, 591 (1982)
  6. Nukui Masatoshi, Mello Luciane V., Littlejohn James E., Setlow Barbara, Setlow Peter, Kim Kijeong, Leighton Terrance, Jedrzejas Mark J., Structure and Molecular Mechanism of Bacillus anthracis Cofactor-Independent Phosphoglycerate Mutase: A Crucial Enzyme for Spores and Growing Cells of Bacillus Species, 10.1529/biophysj.106.093872
  7. Zhang Yinhua, Foster Jeremy M., Kumar Sanjay, Fougere Marjorie, Carlow Clotilde K. S., Cofactor-independent Phosphoglycerate Mutase Has an Essential Role inCaenorhabditis elegansand Is Conserved in Parasitic Nematodes, 10.1074/jbc.m405877200
  8. Albert Marie-Astrid, Haanstra Jurgen R., Hannaert Véronique, Van Roy Joris, Opperdoes Fred R., Bakker Barbara M., Michels Paul A. M., Experimental andin SilicoAnalyses of Glycolytic Flux Control in Bloodstream FormTrypanosoma brucei, 10.1074/jbc.m502403200
  9. Foster Jeremy M., Raverdy Sylvine, Ganatra Mehul B., Colussi Paul A., Taron Christopher H., Carlow Clotilde K. S., The Wolbachia endosymbiont of Brugia malayi has an active phosphoglycerate mutase: a candidate target for anti-filarial therapies, 10.1007/s00436-008-1287-7
  10. Poonperm Buabarn, Guerra Daniel G., McNae Iain W., Fothergill-Gilmore Linda A., Walkinshaw Malcolm D., Expression, purification, crystallization and preliminary crystallographic analysis ofLeishmania mexicanaphosphoglycerate mutase, 10.1107/s0907444903010369
  11. Nowicki Matthew W., Kuaprasert Buabarn, McNae Iain W., Morgan Hugh P., Harding Marjorie M., Michels Paul A.M., Fothergill-Gilmore Linda A., Walkinshaw Malcolm D., Crystal Structures of Leishmania mexicana Phosphoglycerate Mutase Suggest a One-Metal Mechanism and a New Enzyme Subclass, 10.1016/j.jmb.2009.09.041
  12. Jedrzejas M. J., Structure and mechanism of action of a novel phosphoglycerate mutase from Bacillus stearothermophilus, 10.1093/emboj/19.7.1419
  13. Chevalier Nathalie, Rigden Daniel J., Van Roy Joris, Opperdoes Fred R., Michels Paul A. M., Trypanosoma brucei contains a 2,3-bisphosphoglycerate independent phosphoglycerate mutase : Trypanosoma brucei phosphoglycerate mutase, 10.1046/j.1432-1327.2000.01145.x
  14. Djikeng Appolinaire, Raverdy Sylvine, Foster Jeremy, Bartholomeu Daniella, Zhang Yinhua, El-Sayed Najib M., Carlow Clotilde, Cofactor-independent phosphoglycerate mutase is an essential gene in procyclic form Trypanosoma brucei, 10.1007/s00436-006-0332-7
  15. Collet Jean-François, Stroobant Vincent, Schaftingen Emile, The 2,3-bisphosphoglycerate-independent phosphoglycerate mutase fromTrypanosoma brucei: metal-ion dependency and phosphoenzyme formation, 10.1111/j.1574-6968.2001.tb10859.x
  16. Krissinel Evgeny, Henrick Kim, Inference of Macromolecular Assemblies from Crystalline State, 10.1016/j.jmb.2007.05.022
  17. Hayward Steven, Kitao Akio, Berendsen Herman J.C., Model-free methods of analyzing domain motions in proteins from simulation: A comparison of normal mode analysis and molecular dynamics simulation of lysozyme, 10.1002/(sici)1097-0134(199703)27:3<425::aid-prot10>;2-n
  18. Hayward Steven, Berendsen Herman J.C., Systematic analysis of domain motions in proteins from conformational change: New results on citrate synthase and T4 lysozyme, 10.1002/(sici)1097-0134(19980201)30:2<144::aid-prot4>;2-n
  19. Guerra Daniel G., Vertommen Didier, Fothergill-Gilmore Linda A., Opperdoes Fred R., Michels Paul A. M., Characterization of the cofactor-independent phosphoglycerate mutase from Leishmania mexicana mexicana. Histidines that coordinate the two metal ions in the active site show different susceptibilities to irreversible chemical modification, 10.1111/j.1432-1033.2004.04097.x
  20. Huang Yafan, Dennis David T., Histidine Residues 139, 363 and 500 are Essential for Catalytic Activity of Cofactor-Independent Phosphoglyceromutase from Developing Endosperm of the Castor Plant, 10.1111/j.1432-1033.1995.tb20480.x
  21. Oganesyan Natalia, Ankoudinova Irina, Kim Sung-Hou, Kim Rosalind, Effect of osmotic stress and heat shock in recombinant protein overexpression and crystallization, 10.1016/j.pep.2006.09.015
  22. Leslie Andrew G. W., Powell Harold R., Processing diffraction data with mosflm, Evolving Methods for Macromolecular Crystallography (2007) ISBN:9781402063145 p.41-51, 10.1007/978-1-4020-6316-9_4
  23. Evans Philip, Scaling and assessment of data quality, 10.1107/s0907444905036693
  24. Collaborative Computational Project, Number 4, The CCP4 suite: programs for protein crystallography, 10.1107/s0907444994003112
  25. McCoy Airlie J., Solving structures of protein complexes by molecular replacement withPhaser, 10.1107/s0907444906045975
  26. Adams Paul D., Grosse-Kunstleve Ralf W., Hung Li-Wei, Ioerger Thomas R., McCoy Airlie J., Moriarty Nigel W., Read Randy J., Sacchettini James C., Sauter Nicholas K., Terwilliger Thomas C., PHENIX: building new software for automated crystallographic structure determination, 10.1107/s0907444902016657
  27. Murshudov G. N., Vagin A. A., Dodson E. J., Refinement of Macromolecular Structures by the Maximum-Likelihood Method, 10.1107/s0907444996012255
  28. Emsley Paul, Cowtan Kevin, Coot: model-building tools for molecular graphics, 10.1107/s0907444904019158
  29. Konarev Petr V., Volkov Vladimir V., Sokolova Anna V., Koch Michel H. J., Svergun Dmitri I., PRIMUS: a Windows PC-based system for small-angle scattering data analysis, 10.1107/s0021889803012779
  30. Svergun Dmitri I, Koch Michel H J, Small-angle scattering studies of biological macromolecules in solution, 10.1088/0034-4885/66/10/r05
  31. Semenyuk A. V., Svergun D. I., GNOM – a program package for small-angle scattering data processing, 10.1107/s002188989100081x
  32. Svergun D., Barberato C., Koch M. H. J., CRYSOL– a Program to Evaluate X-ray Solution Scattering of Biological Macromolecules from Atomic Coordinates, 10.1107/s0021889895007047