User menu

A non-negative fast multiplicative algorithm in 3D scatter-compensated SPET reconstruction.

Bibliographic reference Walrand, Stéphan ; van Elmbt, Larry ; Pauwels, Stanislas. A non-negative fast multiplicative algorithm in 3D scatter-compensated SPET reconstruction.. In: European journal of nuclear medicine, Vol. 23, no. 11, p. 1521-6 (1996)
Permanent URL http://hdl.handle.net/2078.1/12230
  1. Shepp LA, Vardi Y. Maximum likelihood reconstruction for emission tomography.IEEE Trans Med Imaging 1982; 2: 113?122.
  2. Lange K, Carson R. EM reconstruction algorithms for emission and transmission tomography.J Comput Assist Tomogr 1984; 8: 306?316.
  3. Nuyts J, Suetens P, Mortelmans L. Acceleration of maximum likelihood reconstruction, using frequency amplification and attenuation compensation.IEEE Trans Med Imaging 1993; 12: 643?652.
  4. Murase K, Tanada S, Sugawara Y, Tauxe WN, Hamamoto K. An evaluation of the accelerated expectation maximization algorithms for single-photon emission tomography image reconstruction.Eur J Nucl Med 1994; 21: 597?603.
  5. Bowsher JE, Floyd CE Jr. Treatment of Compton scattering in maximum likelihood, expectation-maximization reconstruction of SPELT images.J Nucl Med 1991; 32: 1285?1291.
  6. Lewitt RM, Muehllehner G. Accelerated iterative reconstruction for positron emission tomography based on the EM algorithm for maximum likelihood estimation.IEEE Trans Med Imaging 1986; 5: 16?22.
  7. Tanaka E. A fast reconstruction algorithm for stationary positron emission tomography based on modified EM algorithm.IEEE Trans Med Imaging 1987; 6: 98?105.
  8. Metz CE, Chen CT. On the acceleration of maximum likelihood algorithms.SPIE 1988; 914: 344?349.
  9. Meilijson I. A fast improvement to the EM algorithm on its own terms.J R Statist Soc 1989; 51: 127?138.
  10. Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data.IEEE Trans Med Imaging 1994; 13: 601?609.
  11. Floyd CE Jr, Jaszczak RJ, Greer KL, Coleman RE. Deconvolution of Compton scatter in SPELT.J Nucl Med 1985; 26: 403?408.
  12. Axelsson B, Msaki P, Israelsson A. Subtraction of Comptonscattered photons in single-photon emission computerized tomography.J Nucl Med 1984; 25: 490?494.
  13. Msaki P, Axelsson B, Dahl CM, Larsson SA. Generalized scatter correction method in SPELT using point scatter distribution functions.J Nucl Med 1987; 28: 1861?1869.
  14. Ljungberg M, Strand SE. Attenuation and scatter correction in SPELT for sources in a nonhomogeneous object: a Monte Carlo study.J Nucl Med 1991; 32: 1278?1284.
  15. Yanch JC, Dobrzeniecki AB, Ramanathan C, Behrman R. Physically realistic Monte Carlo simulation of source collimator and tomographic data acquisition for emission computed tomography.Phys Med Biol 1992; 37: 853?870.
  16. Walrand S, van Elmbt L, Pauwels S. Quantitation of SPELT using an effective model of the scattering.Phys Med Biol 1994; 39: 719?734.
  17. Meikle SR, Hutton BF, Bailey DL. A transmission-dependent method for scatter correction in SPELT.J Nucl Med 1994; 35: 360?367.
  18. Walrand S, Toussaint MS, Schmitz H, et al. Image improvement in111In clinical tomographic studies using a false likelihood algorithm.Ear J Nucl Med 1995; 22: 889.
  19. Barrett HH, Wilson DW Tsui BMW. Noise properties of the EM algorithm.J Nucl Med 1994; 39: 833?846.
  20. Liow JS, Strother SC. Practical tradeoffs between noise, quantitation and number of iterations for maximum likelihood based reconstruction.IEEE Trans Med Imaging 1991; 10: 563?571.
  21. Ollinger JM. Maximum-likelihood reconstruction of transmission images in emission computed tomography via the EM algorithm.IEEE Trans Med Imaging 1994; 13: 89?101.
  22. Tanaka E. Improved iterative image reconstruction with automatic noise artifact suppression.IEEE Trans Med Imaging 1992;11:21?27.
  23. Liew SC, Hasegawa BH, Brown JK, Lang TE Noise propagation in SPELT images reconstructed using an iterative maximum likelihood algorithm.Phys Med Biol 1993; 38: 1713?1726.
  24. Snyder D, Miller M, Thomas L, Politte DG. Noise and edge artifacts in maximum likelihood reconstructions for emission tomography.IEEE Trans Med Imaging 1987; 6: 228?238.
  25. Veklerov E, Llacer J. Stopping rule for the MLE algorithm based on statistical hypothesis testing.IEEE Trans Med Imaging 1987; 6: 313?319.
  26. Llacer J, Veklerov E. Feasible images and practical stopping rules for iterative algorithms in emission tomography.IEEE Trans Med Imaging 1989; 8: 186?193.
  27. Lange K. Convergence of EM image reconstruction algorithms with Gibbs smoothing.IEEE Trans Med Imaging 1990; 9: 439?446.
  28. Press WH, Teukolsky SA, Vetterling WT, Flannery BP. Numerical recipes in c.The art of scientific computing. Cambridge New York Victoria: Cambridge University Press; 1992: 55?58, 85.
  29. Larsson S. Gamma camera emission tomography.Acta Radiol Suppl 363: 32.
  30. Jamar F, Fiasse R, Leners N, Pauwels S. Somatostatin receptor imaging with111In-pentetreotide in gastroenteropancreatic neuroendocrine tumors: safety, efficacy and impact on patient management.J Nucl Med 1995; 36: 542?549.
  31. Ziemons K, Herzog H, Bosetti P, Feinendegen LE. Iterative image reconstruction with weighted pixel contributions to projection elements.Eur J Nucl Med 1992; 19: 587.
  32. Schwinger RB, Cool SL, King MA. Area weighted convolution interpolation for data reprojection in single photon emission computed tomography.Med Phys 1986; 13: 350?353.
  33. Schmidlin P. Improved iterative image reconstruction using variable projection binning and abbreviated convolution.Eur J Nucl Med 1994; 21: 930?936.
  34. Lange K, Balm M, Little R. A theoretical study of some maximum likelihood algorithms for emission and transmission tomography.IEEE Trans Med Imaging 1987; 6: 106?114.