User menu

Discrete fourier transform-based TOA estimation in UWB systems

Bibliographic reference Mallat, Achraf ; Louveaux, Jérôme ; Vandendorpe, Luc ; Di Dio, Mario ; Luise, Marco. Discrete fourier transform-based TOA estimation in UWB systems. In: EURASIP Journal on Wireless Communications and Networking, Vol. 2012, no. 1, p. 3 (2012)
Permanent URL
  1. Federal Communications Commission Revision of Part 15 of the Commissionís rules regarding ultra-wideband transmission systems FCC 02-48 2002.
  2. Dardari Davide, Conti Andrea, Ferner Ulric, Giorgetti Andrea, Win Moe Z., Ranging With Ultrawide Bandwidth Signals in Multipath Environments, 10.1109/jproc.2008.2008846
  3. Sahinoglu Z, Gezici S, Guvenc I: Ultra-Wideband Positioning Systems: Theoretical Limits, Ranging Algorithms, and Protocols. Cambridge University Press, Cambridge; 2008.
  4. Gezici S., Zhi Tian, Giannakis G.B., Kobayashi H., Molisch A.F., Poor H.V., Sahinoglu Z., Localization via ultra-wideband radios: a look at positioning aspects for future sensor networks, 10.1109/msp.2005.1458289
  5. Tian Z, et al.: A GLRT approach to data-aided timing acquisition in UWB radios-Part I: algorithms. IEEE Trans Wirel Commun 2005, 4(6):1536-1576.
  6. Dardari Davide, Chong Chia-Chin, Win Moe, Threshold-Based Time-of-Arrival Estimators in UWB Dense Multipath Channels, 10.1109/tcomm.2008.050551
  7. D'Amico AA, Mengali U, Taponecco L: Energy-based TOA estimation. IEEE Trans Wirel Commun 2008, 7(3):838-847.
  8. Lei Z, Chin F, Kwok Y-S: UWB ranging with energy detectors using ternary preamble sequences. Proc IEEE Wirel Commun Netw Conf 2006, 2: 872-877.
  9. Lee J-Y, Scholtz RA: Ranging in a dense multipath environment using an UWB radio link. IEEE J Sel Areas Commun 2002, 20(9):1677-1683. 10.1109/JSAC.2002.805060
  10. Falsi C, Dardari D, Mucchi L, Win MZ: Time of arrival estimation for UWB localizers in realistic environments. EURASIP J Appl Signal Process 2006. (Special Issue on Wireless Location Technologies and Applications)
  11. Xiang-Gen Xia, Kejing Liu, A generalized Chinese remainder theorem for residue sets with errors and its application in frequency determination from multiple sensors with low sampling rates, 10.1109/lsp.2005.856877
  12. Towers Catherine E., Towers David P., Jones Julian D. C., Time efficient Chinese remainder theorem algorithm for full-field fringe phase analysis in multi-wavelength interferometry, 10.1364/opex.12.001136
  13. Sahin I, Yilmazer N: Reducing computational complexity of time delay estimation method using frequency domain alignment, in 43rd Annual Conference on Information Sciences and Systems (CISS 2009). 2009, 43-46.
  14. Blancoa L, Serraa J, Nájar M: Minimum variance time of arrival estimation for positioning. Special Sect Process Anal High Dimens. Masses Image Signal Data 2010, 90(8):2611-2620.
  15. Wang S, Sen D, Lu W: Subband analysis of time delay estimation in STFT domain. in Proceedings of the 11thAustralian International Conference on Speech Science and Technology. 2006, 211-215.
  16. Jiang B, et al.: High precision time delay estimation using generalised mvdr cross spectrum. Electron Lett 2007, 43(2):131-133. 10.1049/el:20072966
  17. Assous S, et al.: Short pulse multi-frequency phase-based time delay estimation. J Acousti Soc Am 2010, 127(1):309-315. 10.1121/1.3263602
  18. Kay SM: Fundamentals of Statistical Signal Processing: Estimation Theory. Prentice Hall PTR, Englewood Cliffs; 1993:39-40.
  19. Lathi BP: Modern Digital and Analog Communication Systems. 3rd edition. Oxford University Press, New York; 1998:522.
  20. Gudbjartsson HáKon, Patz Samuel, The rician distribution of noisy mri data, 10.1002/mrm.1910340618