# Gradient methods for minimizing composite functions

## Primary tabs

Bibliographic reference | Nesterov, Yurii. Gradient methods for minimizing composite functions. In: Mathematical Programming, Vol. Online first (2013) |
---|---|

Permanent URL | http://hdl.handle.net/2078.1/121611 |

## References Provided by I4OC

- Chen Scott Shaobing, Donoho David L., Saunders Michael A.,
*Atomic Decomposition by Basis Pursuit*, 10.1137/s1064827596304010 - Claerbout Jon F., Muir Francis,
*ROBUST MODELING WITH ERRATIC DATA*, 10.1190/1.1440378 - Figueiredo, M., Novak, R., Wright, S.J.: Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. Submitted for publication
- FUKUSHIMA MASAO, MINE HISASHI,
*A generalized proximal point algorithm for certain non-convex minimization problems*, 10.1080/00207728108963798 - Kim, S.-J., Koh, K., Lustig, M., Boyd, S., Gorinevsky, D.: A method for large-scale $$l_1$$ -regularized least-squares problems with applications in signal processing and statistics. Stanford University, March 20, Research report (2007)
- Levy Shlomo, Fullagar Peter K.,
*Reconstruction of a sparse spike train from a portion of its spectrum and application to high‐resolution deconvolution*, 10.1190/1.1441261 - Miller Alan,
*Subset Selection in Regression*, ISBN:9781584881711, 10.1201/9781420035933 - Nemirovsky, A., Yudin, D.: Informational Complexity and Efficient Methods for Solution of Convex Extremal Problems. Wiley, New-York (1983)
- Nesterov Yurii,
*Introductory Lectures on Convex Optimization*, ISBN:9781461346913, 10.1007/978-1-4419-8853-9 - Nesterov Yu.,
*Smooth minimization of non-smooth functions*, 10.1007/s10107-004-0552-5 - Nesterov, Y.: Gradient methods for minimizing composite objective function. CORE Discussion Paper $$\#$$ 2007/76, CORE (2007)
- Nesterov Yu.,
*Rounding of convex sets and efficient gradient methods for linear programming problems*, 10.1080/10556780701550059 - Nesterov Yu.,
*Accelerating the cubic regularization of Newton’s method on convex problems*, 10.1007/s10107-006-0089-x - Nesterov Yurii, Nemirovskii Arkadii,
*Interior-Point Polynomial Algorithms in Convex Programming*, ISBN:9780898713190, 10.1137/1.9781611970791 - Ortega, J., Rheinboldt, W.: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York (1970)
- Santosa Fadil, Symes William W.,
*Linear Inversion of Band-Limited Reflection Seismograms*, 10.1137/0907087 - Taylor Howard L., Banks Stephen C., McCoy John F.,
*Deconvolution with the ℓ1 norm*, 10.1190/1.1440921 - Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. B 58, 267–288 (1996)
- Tropp J.A.,
*Just relax: convex programming methods for identifying sparse signals in noise*, 10.1109/tit.2005.864420 - Wright, S.J.: Solving $$l_{1}$$ -Regularized Regression Problems. Talk at International Conference “Combinatorics and Optimization”, Waterloo (June 2007)