User menu

Gradient methods for minimizing composite functions

Bibliographic reference Nesterov, Yurii. Gradient methods for minimizing composite functions. In: Mathematical Programming, Vol. Online first (2013)
Permanent URL http://hdl.handle.net/2078.1/121611
  1. Chen Scott Shaobing, Donoho David L., Saunders Michael A., Atomic Decomposition by Basis Pursuit, 10.1137/s1064827596304010
  2. Claerbout Jon F., Muir Francis, ROBUST MODELING WITH ERRATIC DATA, 10.1190/1.1440378
  3. Figueiredo, M., Novak, R., Wright, S.J.: Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. Submitted for publication
  4. FUKUSHIMA MASAO, MINE HISASHI, A generalized proximal point algorithm for certain non-convex minimization problems, 10.1080/00207728108963798
  5. Kim, S.-J., Koh, K., Lustig, M., Boyd, S., Gorinevsky, D.: A method for large-scale $$l_1$$ -regularized least-squares problems with applications in signal processing and statistics. Stanford University, March 20, Research report (2007)
  6. Levy Shlomo, Fullagar Peter K., Reconstruction of a sparse spike train from a portion of its spectrum and application to high‐resolution deconvolution, 10.1190/1.1441261
  7. Miller Alan, Subset Selection in Regression, ISBN:9781584881711, 10.1201/9781420035933
  8. Nemirovsky, A., Yudin, D.: Informational Complexity and Efficient Methods for Solution of Convex Extremal Problems. Wiley, New-York (1983)
  9. Nesterov Yurii, Introductory Lectures on Convex Optimization, ISBN:9781461346913, 10.1007/978-1-4419-8853-9
  10. Nesterov Yu., Smooth minimization of non-smooth functions, 10.1007/s10107-004-0552-5
  11. Nesterov, Y.: Gradient methods for minimizing composite objective function. CORE Discussion Paper $$\#$$ 2007/76, CORE (2007)
  12. Nesterov Yu., Rounding of convex sets and efficient gradient methods for linear programming problems, 10.1080/10556780701550059
  13. Nesterov Yu., Accelerating the cubic regularization of Newton’s method on convex problems, 10.1007/s10107-006-0089-x
  14. Nesterov Yurii, Nemirovskii Arkadii, Interior-Point Polynomial Algorithms in Convex Programming, ISBN:9780898713190, 10.1137/1.9781611970791
  15. Ortega, J., Rheinboldt, W.: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York (1970)
  16. Santosa Fadil, Symes William W., Linear Inversion of Band-Limited Reflection Seismograms, 10.1137/0907087
  17. Taylor Howard L., Banks Stephen C., McCoy John F., Deconvolution with the ℓ1 norm, 10.1190/1.1440921
  18. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. B 58, 267–288 (1996)
  19. Tropp J.A., Just relax: convex programming methods for identifying sparse signals in noise, 10.1109/tit.2005.864420
  20. Wright, S.J.: Solving $$l_{1}$$ -Regularized Regression Problems. Talk at International Conference “Combinatorics and Optimization”, Waterloo (June 2007)