Mattiussi, Marina
Tilman, Gaëlle
Lenglez, Sandrine
Decottignies, Anabelle
[UCL]
In addition to its well-established role in telomere synthesis, telomerase exerts non-canonical functions that may promote cancer and stem cell survival, notably by lowering reactive oxygen species (ROS) levels and acting as transcriptional cofactor in Wnt-β-catenin signaling pathway. We investigated the impact of telomerase on ROS-dependent and -independent cellular responses to Tumor Necrosis Factor-α (TNF-α), a potent inducer of endogenous ROS production and activator of NF-κB signaling pathway. Strikingly, telomerase overexpression in normal human fibroblasts treated with TNF-α strongly repressed ROS-dependent activation of both ERK1/2 mitogen-activated protein kinases and cell death. Telomerase overexpression also considerably diminished TNF-α-induced transcription of SOD2 Superoxide Dismutase 2 gene by reducing ROS contribution to SOD2 gene induction, both in normal fibroblasts and in cancer cells. Conversely, telomerase did not impair TNF-α-induced transcription of various ROS-insensitive NF-κB target genes. These data were in apparent contrast with the striking observation that telomerase overexpression induced strong constitutive nuclear accumulation of NF-κBp65. Accumulated NF-κBp65, however, lacked Ser-536 activating phosphorylation, was not associated with global constitutive NF-κB activation and did not impair subsequent nuclear translocation of phosphorylated NF-κBp65 in response to TNF-α. Our results demonstrate that human telomerase represses ROS-dependent intracellular signaling and gene induction in response to TNF-α.
Bibliographic reference |
Mattiussi, Marina ; Tilman, Gaëlle ; Lenglez, Sandrine ; Decottignies, Anabelle. Human telomerase represses ROS-dependent cellular responses to Tumor Necrosis Factor-α without affecting NF-κB activation.. In: Cellular Signalling, Vol. 24, no.3, p. 708-17 (2012) |
Permanent URL |
http://hdl.handle.net/2078/121121 |