User menu

Open subgroups of locally compact Kac-Moody groups

Bibliographic reference Caprace, Pierre-Emmanuel ; Marquis, Timothée. Open subgroups of locally compact Kac-Moody groups. In: Mathematische Zeitschrift, Vol. 274, no. 1-2, p. 291-313 (2013)
Permanent URL http://hdl.handle.net/2078/121004
  1. Abramenko, P., Brown, K.S.: Buildings, Graduate Texts in Mathematics. Theory and Applications, vol. 248. Springer, New York (2008)
  2. Bourbaki, N.: Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles, no. 1337. Hermann, Paris (1968)
  3. Caprace Pierre-Emmanuel, Conjugacy of 2–spherical subgroups of Coxeter groups and parallel walls, 10.2140/agt.2006.6.1987
  4. Caprace, P.-E.: Buildings with isolated subspaces and relatively hyperbolic Coxeter groups. Innov. Incidence Geom. 10, 15–31 (2009)
  5. Caprace Pierre-Emmanuel, Fujiwara Koji, Rank-One Isometries of Buildings and Quasi-Morphisms of Kac–Moody Groups, 10.1007/s00039-009-0042-2
  6. Caprace, P.-E., Monod, N.: Decomposing locally compact groups into simple pieces. Math. Proc. Cambridge Philos. Soc. 150(1), 97–128 (2011)
  7. Caprace Pierre-Emmanuel, Rémy Bertrand, Simplicity and superrigidity of twin building lattices, 10.1007/s00222-008-0162-6
  8. Davis, M.W.: Buildings are CAT(0), Geometry and Cohomology in Group theory (Durham, 1994), London Mathematical Society. Lecture Note Series, vol. 252. Cambridge University Press, Cambridge (1998)
  9. Deodhar Vinay V., On the root system of a coxeter group, 10.1080/00927878208822738
  10. Dranishnikov, A., Januszkiewicz, T.: Every Coxeter group acts amenably on a compact space. In: Proceedings of the 1999 Topology and Dynamics Conference (Salt Lake City, UT), vol. 24, pp. 135–141 (1999)
  11. Hée, J.-Y.: Sur la torsion de Steinberg-Ree des groupes de Chevalley et des groupes de Kac-Moody, Thèse d’État de l’Université Paris 11 Orsay (1993)
  12. Krammer Daan, The conjugacy problem for Coxeter groups, 10.4171/ggd/52
  13. Noskov, G.A., Vinberg, È.B.: Strong Tits alternative for subgroups of Coxeter groups. J. Lie Theory 12(1), 259–264 (2002)
  14. Prasad Gopal, Elementary proof of a theorem of Bruhat-Tits-Rousseau and of a theorem of Tits, 10.24033/bsmf.1959
  15. Rémy, B.: Groupes de Kac–Moody déployés et presque déployés. Astérisque 277, viii+348 (2002)
  16. Rémy, B.: Topological simplicity, commensurator super-rigidity and non-linearities of Kac–Moody groups. Geom. Funct. Anal. 14(4), 810–852 (2004, with an appendix by P. Bonvin)
  17. Rémy Bertrand, Ronan Mark, Topological groups of Kac--Moody type, right-angled twinnings and their lattices, 10.4171/cmh/49
  18. Tits, J.: Buildings of Spherical Type and Finite BN-Pairs. Lecture Notes in Mathematics, vol. 386. Springer, Berlin (1974)