User menu

Quantum transport length scales in silicon-based semiconducting nanowires: Surface roughness effects

Bibliographic reference Lherbier, Aurélien ; Persson, M.P. ; Niquet, Y.-M. ; Triozon, F. ; Roche, S.. Quantum transport length scales in silicon-based semiconducting nanowires: Surface roughness effects. In: Physical Review B - Condensed Matter and Materials Physics, Vol. 77, no. 8, p. 085301 (5 pages)
Permanent URL
  1. Hansen A. E., Björk M. T., Fasth C., Thelander C., Samuelson L., Spin relaxation in InAs nanowires studied by tunable weak antilocalization, 10.1103/physrevb.71.205328
  2. Zhong Zhaohui, Fang Ying, Lu Wei, Lieber Charles M., Coherent Single Charge Transport in Molecular-Scale Silicon Nanowires, 10.1021/nl050783s
  3. Doh Y.-J., Tunable Supercurrent Through Semiconductor Nanowires, 10.1126/science.1113523
  4. Colinge Jean-Pierre, Multiple-gate SOI MOSFETs, 10.1016/j.sse.2003.12.020
  5. Ma D. D. D., Small-Diameter Silicon Nanowire Surfaces, 10.1126/science.1080313
  6. Wu Yue, Cui Yi, Huynh Lynn, Barrelet Carl J., Bell David C., Lieber Charles M., Controlled Growth and Structures of Molecular-Scale Silicon Nanowires, 10.1021/nl035162i
  7. Dick Kimberly A., Deppert Knut, Mårtensson Thomas, Mandl Bernhard, Samuelson Lars, Seifert Werner, Failure of the Vapor−Liquid−Solid Mechanism in Au-Assisted MOVPE Growth of InAs Nanowires, 10.1021/nl050301c
  8. Björk M. T., Ohlsson B. J., Sass T., Persson A. I., Thelander C., Magnusson M. H., Deppert K., Wallenberg L. R., Samuelson L., One-dimensional Steeplechase for Electrons Realized, 10.1021/nl010099n
  9. Cui Y., Functional Nanoscale Electronic Devices Assembled Using Silicon Nanowire Building Blocks, 10.1126/science.291.5505.851
  10. Huang Y., Logic Gates and Computation from Assembled Nanowire Building Blocks, 10.1126/science.1066192
  11. Cui Yi, Zhong Zhaohui, Wang Deli, Wang Wayne U., Lieber Charles M., High Performance Silicon Nanowire Field Effect Transistors, 10.1021/nl025875l
  12. Xiang Jie, Lu Wei, Hu Yongjie, Wu Yue, Yan Hao, Lieber Charles M., Ge/Si nanowire heterostructures as high-performance field-effect transistors, 10.1038/nature04796
  13. Cui Y., Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species, 10.1126/science.1062711
  14. Patolsky F., Zheng G., Hayden O., Lakadamyali M., Zhuang X., Lieber C. M., Electrical detection of single viruses, 10.1073/pnas.0406159101
  15. van Langevelde R., Klaassen F.M., Effect of gate-field dependent mobility degradation on distortion analysis in MOSFETs, 10.1109/16.641382
  16. Sharma A.K., Zaidi S.H., Lucero S., Brueck S.R.J., Islam N.E., Mobility and transverse electric field effects in channel conduction of wrap-around-gate nanowire MOSFETs, 10.1049/ip-cds:20040993
  17. Wang Jing, Polizzi Eric, Ghosh Avik, Datta Supriyo, Lundstrom Mark, Theoretical investigation of surface roughness scattering in silicon nanowire transistors, 10.1063/1.2001158
  18. Froufe-Pérez L. S., García-Mochales P., Serena P. A., Mello P. A., Sáenz J. J., Conductance Distributions in Quasi-One-Dimensional Disordered Wires, 10.1103/physrevlett.89.246403
  19. Froufe-Pérez L.S., García-Mochales P., Serena P.A., Mello P.A., Sáenz J.J., A Monte Carlo approach to determine conductance distributions in quasi-one-dimensional disordered wires, 10.1016/j.mejo.2005.05.002
  20. Feist J., Bäcker A., Ketzmerick R., Rotter S., Huckestein B., Burgdörfer J., Nanowires with Surface Disorder: Giant Localization Lengths and Quantum-to-Classical Crossover, 10.1103/physrevlett.97.116804
  21. Rurali R., Lorente N., Metallic and Semimetallic Silicon⟨100⟩Nanowires, 10.1103/physrevlett.94.026805
  22. Rurali R, Lorente N, On the properties of surface reconstructed silicon nanowires, 10.1088/0957-4484/16/5/021
  23. Fernández-Serra M. V., Adessi Ch., Blase X., Surface Segregation and Backscattering in Doped Silicon Nanowires, 10.1103/physrevlett.96.166805
  24. Fernández-Serra M.-V., Adessi Ch., Blase X., Conductance, Surface Traps, and Passivation in Doped Silicon Nanowires, 10.1021/nl0614258
  25. Csontos D., Xu H. Q., Effects of boundary roughness on the conductance of quantum wires, 10.1063/1.1311606
  26. Zhong Jianxin, Stocks G. Malcolm, Localization/Quasi-Delocalization Transitions and Quasi-Mobility-Edges in Shell-Doped Nanowires, 10.1021/nl051981m
  27. Takagaki Y, Ferry D K, Conductance of quantum waveguides with a rough boundary, 10.1088/0953-8984/4/50/030
  28. Nikolić K., MacKinnon A., Conductance and conductance fluctuations of narrow disordered quantum wires, 10.1103/physrevb.50.11008
  29. Markussen Troels, Rurali Riccardo, Brandbyge Mads, Jauho Antti-Pekka, Electronic transport through Si nanowires: Role of bulk and surface disorder, 10.1103/physrevb.74.245313
  30. Svizhenko Alexei, Leu Paul W., Cho Kyeongjae, Effect of growth orientation and surface roughness on electron transport in silicon nanowires, 10.1103/physrevb.75.125417
  31. Niquet Y. M., Delerue C., Allan G., Lannoo M., Method for tight-binding parametrization: Application to silicon nanostructures, 10.1103/physrevb.62.5109
  32. Niquet Y. M., Lherbier A., Quang N. H., Fernández-Serra M. V., Blase X., Delerue C., Electronic structure of semiconductor nanowires, 10.1103/physrevb.73.165319
  33. Kubo R, The fluctuation-dissipation theorem, 10.1088/0034-4885/29/1/306
  34. Roche S., Mayou D., Conductivity of Quasiperiodic Systems: A Numerical Study, 10.1103/physrevlett.79.2518
  35. Roche Stephan, Quantum transport by means ofO(N)real-space methods, 10.1103/physrevb.59.2284
  36. Roche Stephan, Saito Riichiro, Magnetoresistance of Carbon Nanotubes: From Molecular to Mesoscopic Fingerprints, 10.1103/physrevlett.87.246803
  37. Triozon François, Roche Stephan, Rubio Angel, Mayou Didier, Electrical transport in carbon nanotubes: Role of disorder and helical symmetries, 10.1103/physrevb.69.121410
  38. Latil Sylvain, Roche Stephan, Mayou Didier, Charlier Jean-Christophe, Mesoscopic Transport in Chemically Doped Carbon Nanotubes, 10.1103/physrevlett.92.256805
  39. Goodnick S. M., Ferry D. K., Wilmsen C. W., Liliental Z., Fathy D., Krivanek O. L., Surface roughness at the Si(100)-SiO2interface, 10.1103/physrevb.32.8171
  40. D. K. Ferry, Transport in Nanostructures (1997)
  41. N. F. Mott, Electronic Processes in Non Crystalline Materials (1971)
  42. Weiße Alexander, Wellein Gerhard, Alvermann Andreas, Fehske Holger, The kernel polynomial method, 10.1103/revmodphys.78.275
  43. Allan G, A linear prediction of the recursion coefficients, 10.1088/0022-3719/17/22/013
  44. Thouless D. J., Maximum Metallic Resistance in Thin Wires, 10.1103/physrevlett.39.1167
  45. Beenakker C. W. J., Random-matrix theory of quantum transport, 10.1103/revmodphys.69.731
  46. Grosso G., Moroni S., Parravicini G. Pastori, Electronic structure of the InAs-GaSb superlattice studied by the renormalization method, 10.1103/physrevb.40.12328
  47. Triozon François, Lambin Philippe, Roche Stephan, Electronic transport properties of carbon nanotube based metal/semiconductor/metal intramolecular junctions, 10.1088/0957-4484/16/2/008
  48. Dong Jianjun, Drabold D. A., Atomistic Structure of Band-Tail States in Amorphous Silicon, 10.1103/physrevlett.80.1928
  49. Trivedi Nandini, Ashcroft N. W., Quantum size effects in transport properties of metallic films, 10.1103/physrevb.38.12298
  50. Tobben D, Wharam D A, Abstreiter G, Kolthaus J P, Schaffler F, Ballistic electron transport through a quantum point contact defined in a Si/Si0.7Ge0.3heterostructure, 10.1088/0268-1242/10/5/025
  51. Takahashi Yasuo, Fujiwara Akira, Murase Katsumi, Quantized conductance in a small one-dimensional Si wire on a thin silicon-on-insulator substrate fabricated using SiN-film-masked oxidation, 10.1088/0268-1242/13/9/014
  52. Tilke A. T., Simmel F. C., Lorenz H., Blick R. H., Kotthaus J. P., Quantum interference in a one-dimensional silicon nanowire, 10.1103/physrevb.68.075311
  53. Zhuang Lei, Guo Lingjie, Chou Stephen Y., Silicon single-electron quantum-dot transistor switch operating at room temperature, 10.1063/1.121014
  54. Sanquer M., Specht M., Ghenim L., Deleonibus S., Guegan G., Coulomb blockade in low-mobility nanometer size Si MOSFET’s, 10.1103/physrevb.61.7249
  55. Avriller Rémi, Latil Sylvain, Triozon François, Blase X., Roche Stephan, Chemical disorder strength in carbon nanotubes: Magnetic tuning of quantum transport regimes, 10.1103/physrevb.74.121406
  56. Markussen Troels, Rurali Riccardo, Jauho Antti-Pekka, Brandbyge Mads, Scaling Theory Put into Practice: First-Principles Modeling of Transport in Doped Silicon Nanowires, 10.1103/physrevlett.99.076803
  57. Wang J., Rahman A., Ghosh A., Klimeck G., Lundstrom M., On the Validity of the Parabolic Effective-Mass Approximation for the I–V Calculation of Silicon Nanowire Transistors, 10.1109/ted.2005.850945
  58. Zheng Y., Rivas C., Lake R., Alam K., Boykin T.B., Klimeck G., Electronic Properties of Silicon Nanowires, 10.1109/ted.2005.848077
  59. Martinez A., Bescond M., Barker J.R., Svizhenko A., Anantram M.P., Millar C., Asenov A., A Self-Consistent Full 3-D Real-Space NEGF Simulator for Studying Nonperturbative Effects in Nano-MOSFETs, 10.1109/ted.2007.902867