User menu

Overexpression of the rhodanese PspE, a single cysteine-containing protein, restores disulphide bond formation to an Escherichia coli strain lacking DsbA.

Bibliographic reference Chng, Shu-Sin ; Dutton, Rachel J. ; Denoncin, Katleen ; Vertommen, Didier ; Collet, Jean-François ; et. al. Overexpression of the rhodanese PspE, a single cysteine-containing protein, restores disulphide bond formation to an Escherichia coli strain lacking DsbA.. In: Molecular Microbiology, Vol. 85, no. 5, p. 996-1006 (2012)
Permanent URL http://hdl.handle.net/2078/119733
  1. Adams Hendrik, Teertstra Wieke, Koster Margot, Tommassen Jan, PspE (phage-shock protein E) ofEscherichia coliis a rhodanese, 10.1016/s0014-5793(02)02695-9
  2. Akiyama, J Biol Chem, 267, 22440 (1992)
  3. Bader M. W., Turning a disulfide isomerase into an oxidase: DsbC mutants that imitate DsbA, 10.1093/emboj/20.7.1555
  4. Bardwell J. C., Lee J. O., Jander G., Martin N., Belin D., Beckwith J., A pathway for disulfide bond formation in vivo., 10.1073/pnas.90.3.1038
  5. Bardwell James C.A., McGovern Karen, Beckwith Jon, Identification of a protein required for disulfide bond formation in vivo, 10.1016/0092-8674(91)90532-4
  6. Cheng Hui, Donahue Janet L., Battle Scott E., Ray W. Keith, Larson Timothy J., Biochemical and Genetic Characterization of PspE and GlpE, Two Singledomain Sulfurtransferases of Escherichia coli, 10.2174/1874285800802010018
  7. Cho S.-H., Parsonage D., Thurston C., Dutton R. J., Poole L. B., Collet J.-F., Beckwith J., A New Family of Membrane Electron Transporters and Its Substrates, Including a New Cell Envelope Peroxiredoxin, Reveal a Broadened Reductive Capacity of the Oxidative Bacterial Cell Envelope, 10.1128/mbio.00291-11
  8. Cipollone Rita, Ascenzi Paolo, Visca Paolo, Common themes and variations in the rhodanese superfamily, 10.1080/15216540701206859
  9. Dailey F. E., Berg H. C., Mutants in disulfide bond formation that disrupt flagellar assembly in Escherichia coli., 10.1073/pnas.90.3.1043
  10. Darwin Andrew J., The phage-shock-protein response : The Psp response, 10.1111/j.1365-2958.2005.04694.x
  11. Debarbieux L., Beckwith J., The reductive enzyme thioredoxin 1 acts as an oxidant when it is exported to the Escherichia coli periplasm, 10.1073/pnas.95.18.10751
  12. Dutton R. J., Boyd D., Berkmen M., Beckwith J., Bacterial species exhibit diversity in their mechanisms and capacity for protein disulfide bond formation, 10.1073/pnas.0804621105
  13. Eser M., Masip L., Kadokura H., Georgiou G., Beckwith J., Disulfide bond formation by exported glutaredoxin indicates glutathione's presence in the E. coli periplasm, 10.1073/pnas.0812596106
  14. Giuliani Marie-Cécile, Jourlin-Castelli Cécile, Leroy Gisèle, Hachani Aderrahman, Giudici-Orticoni Marie Thérèse, Characterization of a new periplasmic single-domain rhodanese encoded by a sulfur-regulated gene in a hyperthermophilic bacterium Aquifex aeolicus, 10.1016/j.biochi.2009.12.013
  15. Hänzelmann Petra, Dahl Jan U., Kuper Jochen, Urban Alexander, Müller-Theissen Ursula, Leimkühler Silke, Schindelin Hermann, Crystal structure of YnjE fromEscherichia coli, a sulfurtransferase with three rhodanese domains, 10.1002/pro.260
  16. Hizukuri Y., Yakushi T., Kawagishi I., Homma M., Role of the Intramolecular Disulfide Bond in FlgI, the Flagellar P-Ring Component of Escherichia coli, 10.1128/jb.01896-05
  17. Joly John C., Swartz James R., Protein Folding Activities of Escherichia coli Protein Disulfide Isomerase, 10.1021/bi00180a017
  18. Jonda S., Complementation of DsbA deficiency with secreted thioredoxin variants reveals the crucial role of an efficient dithiol oxidant for catalyzed protein folding in the bacterial periplasm, 10.1093/emboj/18.12.3271
  19. Kadokura H., Snapshots of DsbA in Action: Detection of Proteins in the Process of Oxidative Folding, 10.1126/science.1091724
  20. Kadokura Hiroshi, Beckwith Jon, Mechanisms of Oxidative Protein Folding in the Bacterial Cell Envelope, 10.1089/ars.2010.3187
  21. Katzen F., Evolutionary domain fusion expanded the substrate specificity of the transmembrane electron transporter DsbD, 10.1093/emboj/cdf405
  22. Kobayashi T., Kishigami S., Sone M., Inokuchi H., Mogi T., Ito K., Respiratory chain is required to maintain oxidized states of the DsbA-DsbB disulfide bond formation system in aerobically growing Escherichia coli cells, 10.1073/pnas.94.22.11857
  23. Leverrier Pauline, Declercq Jean-Paul, Denoncin Katleen, Vertommen Didier, Hiniker Annie, Cho Seung-Hyun, Collet Jean-François, Crystal Structure of the Outer Membrane Protein RcsF, a New Substrate for the Periplasmic Protein-disulfide Isomerase DsbC, 10.1074/jbc.m111.224865
  24. Li Hongwei, Yang Fan, Kang Xue, Xia Bin, Jin Changwen, Solution Structures and Backbone Dynamics of Escherichia coli Rhodanese PspE in Its Sulfur-Free and Persulfide-Intermediate Forms: Implications for the Catalytic Mechanism of Rhodanese†,‡, 10.1021/bi800039n
  25. Masip L., An Engineered Pathway for the Formation of Protein Disulfide Bonds, 10.1126/science.1092612
  26. Nandi Dhirendra L., Horowitz Paul M., Westley John, Rhodanese as a thioredoxin oxidase, 10.1016/s1357-2725(99)00035-7
  27. Pan Jonathan L., Sliskovic Inga, Bardwell James C.A., Mutants in DsbB that Appear to Redirect Oxidation through the Disulfide Isomerization Pathway, 10.1016/j.jmb.2008.01.058
  28. Pyr Dit Ruys Sébastien, Wang Xuemin, Smith Ewan M., Herinckx Gaëtan, Hussain Nusrat, Rider Mark H., Vertommen Didier, Proud Christopher G., Identification of autophosphorylation sites in eukaryotic elongation factor-2 kinase, 10.1042/bj20111530
  29. Reddie Khalilah G, Carroll Kate S, Expanding the functional diversity of proteins through cysteine oxidation, 10.1016/j.cbpa.2008.07.028
  30. Ren Guoping, Bardwell James C.A., Engineered Pathways for Correct Disulfide Bond Oxidation, 10.1089/ars.2010.3782
  31. Rietsch A., Belin D., Martin N., Beckwith J., An in vivo pathway for disulfide bond isomerization in Escherichia coli, 10.1073/pnas.93.23.13048
  32. Rietsch A, Bessette P, Georgiou G, Beckwith J, Reduction of the periplasmic disulfide bond isomerase, DsbC, occurs by passage of electrons from cytoplasmic thioredoxin., 10.1128/jb.179.21.6602-6608.1997
  33. Rogov Vladimir V., Rogova Natalia Yu., Bernhard Frank, Löhr Frank, Dötsch Volker, A Disulfide Bridge Network within the Soluble Periplasmic Domain Determines Structure and Function of the Outer Membrane Protein RCSF, 10.1074/jbc.m111.230185
  34. Segatori Laura, Murphy Lori, Arredondo Silvia, Kadokura Hiroshi, Gilbert Hiram, Beckwith Jon, Georgiou George, Conserved Role of the Linker α-Helix of the Bacterial Disulfide Isomerase DsbC in the Avoidance of Misoxidation by DsbB, 10.1074/jbc.m505453200
  35. Shouldice Stephen R., Cho Seung-Hyun, Boyd Dana, Heras Begoña, Eser Markus, Beckwith Jon, Riggs Paul, Martin Jennifer L., Berkmen Mehmet, In vivooxidative protein folding can be facilitated by oxidation–reduction cycling, 10.1111/j.1365-2958.2009.06952.x
  36. Wunderlich Martina, Otto Angelika, Seckler Robert, Glockshuber Rudi, Bacterial protein disulfide isomerase: Efficient catalysis of oxidative protein folding at acidic pH, 10.1021/bi00096a039