User menu

Accès à distance ? S'identifier sur le proxy UCLouvain | Saint-Louis

Is the astronomical forcing a reliable and unique pacemakerfor climate? A conceptual model study

  1. Abarbanel H. D. I., Brown R., Kennel M. B., Variation of Lyapunov exponents on a strange attractor, 10.1007/bf01209065
  2. Abarbanel Henry D. I., Rulkov Nikolai F., Sushchik Mikhail M., Generalized synchronization of chaos: The auxiliary system approach, 10.1103/physreve.53.4528
  3. Arnold V (1983) Geometrical methods in the theory of ordinary differential equations. Springer, New York (1988 second edition. English translation of the original russian publication: “Dopolnitel’nye Glavy Teorii Obyknovennykh Differentsial’nykh Uravneniî” (Additional Chapters to the Theory of Ordinary Differential Equations, Moscow: Nauka, 1978))
  4. Ashkenazy Yosef, The role of phase locking in a simple model for glacial dynamics, 10.1007/s00382-006-0145-5
  5. Balanov A, Janson N, Postnov D, Sosnovtseva O (2009) Synchronization: from simple to complex. Springer, Berlin
  6. Barnes Belinda, Grimshaw Roger, Analytical and numerical studies of the Bonhoeffer van der Pol system, 10.1017/s0334270000000783
  7. Belogortsev Andrey B., Quasiperiodic resonance and bifurcations of tori in the weakly nonlinear Duffing oscillator, 10.1016/0167-2789(92)90079-3
  8. Benettin Giancarlo, Galgani Luigi, Giorgilli Antonio, Strelcyn Jean-Marie, Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; A method for computing all of them. Part 2: Numerical application, 10.1007/bf02128237
  9. Benoît E, Callot J, Diener F, Diener M (1981) Chasse au canard. Collectanea Mathematica 31–32(1–3):37–119
  10. BENZI ROBERTO, PARISI GIORGIO, SUTERA ALFONSO, VULPIANI ANGELO, Stochastic resonance in climatic change, 10.1111/j.2153-3490.1982.tb01787.x
  11. Berger AndréL., Long-Term Variations of Daily Insolation and Quaternary Climatic Changes, 10.1175/1520-0469(1978)035<2362:ltvodi>;2
  12. Braun H., Ditlevsen P., Kurths J., New measures of multimodality for the detection of a ghost stochastic resonance, 10.1063/1.3274853
  13. Broecker Wallace S., van Donk Jan, Insolation changes, ice volumes, and the O18record in deep-sea cores, 10.1029/rg008i001p00169
  14. Broer HW, Simó C (1998) Hill’s equation with quasi-periodic forcing: resonance tongues, instability pockets and global phenomena. Bol Soc Brasil Mat (N.S.) 29:253–293
  15. Brown Reggie, Kocarev Ljupčo, A unifying definition of synchronization for dynamical systems, 10.1063/1.166500
  16. Bryant Paul, Brown Reggie, Abarbanel Henry D. I., Lyapunov exponents from observed time series, 10.1103/physrevlett.65.1523
  17. Chen Juhn-Horng, Chen Wei-Ching, Chaotic dynamics of the fractionally damped van der Pol equation, 10.1016/j.chaos.2006.05.010
  18. Crucifix M., Oscillators and relaxation phenomena in Pleistocene climate theory, 10.1098/rsta.2011.0315
  19. D’Acunto Mario, Determination of limit cycles for a modified van der Pol oscillator, 10.1016/j.mechrescom.2005.06.012
  20. Degli Esposti Boschi C., Ortega G.J., Louis E., Discriminating dynamical from additive noise in the Van der Pol oscillator, 10.1016/s0167-2789(02)00548-1
  21. Dijkstra Henk A., Weijer Wilbert, Neelin J. David, Imperfections of the Three-Dimensional Thermohaline Circulation: Hysteresis and Unique-State Regimes*, 10.1175/1520-0485(2003)033<2796:iotttc>;2
  22. Doedel E, Champneys A, Dercole F, Fairgrieve T, Kuznetsov Y, Oldeman B, Paffenroth R, Sandstede B, Wang X, Zhang C (2009) Auto: software for continuation and bifurcation problems in ordinary differential equations. Technical report, Montreal
  23. Donges J. F., Zou Y., Marwan N., Kurths J., The backbone of the climate network, 10.1209/0295-5075/87/48007
  24. Feudel Ulrike, Kurths Jürgen, Pikovsky Arkady S., Strange non-chaotic attractor in a quasiperiodically forced circle map, 10.1016/0167-2789(95)00205-i
  25. Ganopolski Andrey, Rahmstorf Stefan, Abrupt Glacial Climate Changes due to Stochastic Resonance, 10.1103/physrevlett.88.038501
  26. Gildor Hezi, Tziperman Eli, Sea ice as the glacial cycles’ Climate switch: role of seasonal and orbital forcing, 10.1029/1999pa000461
  28. Glass L, Mackey M (1988) From clocks to chaos: the rhytms of life. Princeton University Press, Princeton
  29. Glass Leon, Sun Jiong, Periodic forcing of a limit-cycle oscillator: Fixed points, Arnold tongues, and the global organization of bifurcations, 10.1103/physreve.50.5077
  30. Glendinning Paul, Wiersig Jan, Fine structure of mode-locked regions of the quasi-periodically forced circle map, 10.1016/s0375-9601(99)00260-1
  31. Grasman Johan, Verhulst Ferdinand, Shih Shagi-Di, The Lyapunov exponents of the Van der Pol oscillator, 10.1002/mma.606
  32. Grebogi Celso, Ott Edward, Pelikan Steven, Yorke James A., Strange attractors that are not chaotic, 10.1016/0167-2789(84)90282-3
  33. Guckenheimer J, Haiduc R (2005) Canards at folded node. Mosc Math J 5:91–103
  34. Guckenheimer John, Holmes Philip, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, ISBN:9781461270201, 10.1007/978-1-4612-1140-2
  36. Hays J. D., Imbrie J., Shackleton N. J., Variations in the Earth's Orbit: Pacemaker of the Ice Ages, 10.1126/science.194.4270.1121
  37. Hilborn Robert C., Chaos and Nonlinear Dynamics, ISBN:9780198507239, 10.1093/acprof:oso/9780198507239.001.0001
  38. Huybers Peter, Glacial variability over the last two million years: an extended depth-derived agemodel, continuous obliquity pacing, and the Pleistocene progression, 10.1016/j.quascirev.2006.07.013
  39. Hyde W. T., Peltier W. R., Sensitivity Experiments with a Model of the Ice Age Cycle: The Response to Harmonic Forcing, 10.1175/1520-0469(1985)042<2170:sewamo>;2
  40. Hyde W. T., Peltier W. R., Sensitivity Experiments with a Model of the Ice Age Cycle: The Response to Milankovitch Forcing, 10.1175/1520-0469(1987)044<1351:sewamo>;2
  41. Imbrie J., Imbrie J. Z., Modeling the Climatic Response to Orbital Variations, 10.1126/science.207.4434.943
  42. Kantz H, Schreiber T (2004) Nonlinear time series analysis, 2nd edn. Cambridge University Press, Cambridge
  43. Kloeden PE (2000) A Lyapunov function for pullback attractors of nonautonomous differential equations. Electronic J Diff Eqns Conf 05:91–102
  44. Kosmidis Efstratios K., Pakdaman K., 10.1023/a:1021100816798
  45. Langa José A, Robinson James C, Suárez Antonio, Stability, instability, and bifurcation phenomena in non-autonomous differential equations, 10.1088/0951-7715/15/3/322
  46. Laskar J., Robutel P., Joutel F., Gastineau M., Correia A. C. M., Levrard B., A long-term numerical solution for the insolation quantities of the Earth , 10.1051/0004-6361:20041335
  47. Le Treut Hervé, Ghil Michael, Orbital forcing, climatic interactions, and glaciation cycles, 10.1029/jc088ic09p05167
  48. Lichtenberg A. J., Lieberman M. A., Regular and Stochastic Motion, ISBN:9781475742596, 10.1007/978-1-4757-4257-2
  49. Lisiecki LE, Raymo ME (2005) A pliocene-pleistocene stack of 57 globally distributed benthic δ18 O records. Paleoceanography 20:PA1003
  50. Lisiecki Lorraine E., Raymo Maureen E., Plio–Pleistocene climate evolution: trends and transitions in glacial cycle dynamics, 10.1016/j.quascirev.2006.09.005
  51. Liu Hai-Feng, Dai Zheng-Hua, Li Wei-Feng, Gong Xin, Yu Zun-Hong, Noise robust estimates of the largest Lyapunov exponent, 10.1016/j.physleta.2005.04.048
  52. Lüthi Dieter, Le Floch Martine, Bereiter Bernhard, Blunier Thomas, Barnola Jean-Marc, Siegenthaler Urs, Raynaud Dominique, Jouzel Jean, Fischer Hubertus, Kawamura Kenji, Stocker Thomas F., High-resolution carbon dioxide concentration record 650,000–800,000 years before present, 10.1038/nature06949
  53. Marwan Norbert, Donges Jonathan F., Zou Yong, Donner Reik V., Kurths Jürgen, Complex network approach for recurrence analysis of time series, 10.1016/j.physleta.2009.09.042
  54. McCaffrey Daniel F., Ellner Stephen, Gallant A. Ronald, Nychka Douglas W., Estimating the Lyapunov Exponent of a Chaotic System with Nonparametric Regression, 10.1080/01621459.1992.10475270
  56. Milankovitch M (1941) Kanon der Erdbestrahlung und seine Anwendung auf das Eiszeitenproblem. Königlich Serbische Akademie, Belgrade
  57. Oseledec V (1968) A multiplicative ergodic theorem: Ljapunov characteristic numbers for dynamical systems. Trans Moscow Math Soc 19:197–231
  58. Osinga H, Wiersig J, Glendinning P, Feudel U (2000) Multistability and nonsmooth bifurcations in the quasiperiodically forced circle map. ArXiv Nonlinear Sci e-prints:
  59. Ott Edward, Chaos in Dynamical Systems, ISBN:9780511803260, 10.1017/cbo9780511803260
  60. Paillard Didier, 10.1038/34891
  61. Paillard Didier, Glacial cycles: Toward a new paradigm, 10.1029/2000rg000091
  62. Paillard Didier, Parrenin Frédéric, The Antarctic ice sheet and the triggering of deglaciations, 10.1016/j.epsl.2004.08.023
  63. Parlitz Ulrich, Lauterborn Werner, Period-doubling cascades and devil’s staircases of the driven van der Pol oscillator, 10.1103/physreva.36.1428
  64. Pikovsky Arkady, Rosenblum Michael, Kurths Jurgen, Synchronization : A universal concept in nonlinear sciences, ISBN:9780511755743, 10.1017/cbo9780511755743
  65. van der Pol Balth., LXXXVIII.On “relaxation-oscillations”, 10.1080/14786442608564127
  66. Rahmstorf Stefan, Crucifix Michel, Ganopolski Andrey, Goosse Hugues, Kamenkovich Igor, Knutti Reto, Lohmann Gerrit, Marsh Robert, Mysak Lawrence A., Wang Zhaomin, Weaver Andrew J., Thermohaline circulation hysteresis: A model intercomparison, 10.1029/2005gl023655
  67. Ramasubramanian K., Sriram M.S., A comparative study of computation of Lyapunov spectra with different algorithms, 10.1016/s0167-2789(99)00234-1
  68. Rial JA, Saha R (2011) Modeling abrupt climate change as the interaction between sea ice extent and mean ocean temperature under orbital insolation forcing. In: Rashid H, Polyak L, Mosley-Thompson E (eds) AGU geophysics monograph 193, understanding the causes, mechanisms and extent of abrupt climate change, pp 57–74
  69. Rial J. A., Yang M., Is the frequency of abrupt climate change modulated by the orbital insolation?, Ocean Circulation: Mechanisms and Impacts—Past and Future Changes of Meridional Overturning (2007) ISBN:9780875904382 p.167-174, 10.1029/173gm12
  70. Rosenstein Michael T., Collins James J., De Luca Carlo J., A practical method for calculating largest Lyapunov exponents from small data sets, 10.1016/0167-2789(93)90009-p
  71. Ruelle D., The Claude Bernard Lecture, 1989. Deterministic Chaos: The Science and the Fiction, 10.1098/rspa.1990.0010
  72. Ruihong Li, Wei Xu, Shuang Li, Chaos control and synchronization of the Φ6-Van der Pol system driven by external and parametric excitations, 10.1007/s11071-007-9313-3
  73. Rulkov Nikolai F., Sushchik Mikhail M., Tsimring Lev S., Abarbanel Henry D. I., Generalized synchronization of chaos in directionally coupled chaotic systems, 10.1103/physreve.51.980
  74. Saltzman B (2002) Dynamical paleoclimatology: generalized theory of global climate change (international geophysics). Academic Press, London
  75. Saltzman Barry, Maasch Kirk A., A first-order global model of late Cenozoic climatic change, 10.1017/s0263593300020824
  76. Saltzman Barry, Maasch Kirk A, A first-order global model of late Cenozoic climatic change II. Further analysis based on a simplification of CO2 dynamics, 10.1007/bf00210005
  77. Saltzman Barry, Hansen Anthony R., Maasch Kirk A., The Late Quaternary Glaciations as the Response of a Three-Component Feedback System to Earth-Orbital Forcing, 10.1175/1520-0469(1984)041<3380:tlqgat>;2
  78. Savi MA (2005) Chaos and order in biomedical rhythms. J Braz Soc Mech Sci Eng 27(2):157–169
  79. Shimada I., Nagashima T., A Numerical Approach to Ergodic Problem of Dissipative Dynamical Systems, 10.1143/ptp.61.1605
  80. Strogatz SH (1994) Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering (studies in nonlinearity). Studies in nonlinearity, 1st edn. Perseus Books Group, Cambridge
  82. Tziperman Eli, Gildor Hezi, On the mid-Pleistocene transition to 100-kyr glacial cycles and the asymmetry between glaciation and deglaciation times : TRANSITION TO 100-KYR GLACIAL CYCLES, 10.1029/2001pa000627
  83. Tziperman Eli, Raymo Maureen E., Huybers Peter, Wunsch Carl, Consequences of pacing the Pleistocene 100 kyr ice ages by nonlinear phase locking to Milankovitch forcing : HOW TO PACE AN ICE AGE, 10.1029/2005pa001241
  84. Wieczorek Sebastian, Stochastic bifurcation in noise-driven lasers and Hopf oscillators, 10.1103/physreve.79.036209
  85. Wieczorek SM (2011) Noise synchronisation and stochastic bifurcations in lasers.
  86. Wiggins S (2003) Introduction to applied nonlinear dynamical systems and chaos. Texts in applied mathematics, 2nd edn. Springer, Berlin
  87. Wolf Alan, Swift Jack B., Swinney Harry L., Vastano John A., Determining Lyapunov exponents from a time series, 10.1016/0167-2789(85)90011-9
  88. Wu Liang, Zhu Shiqun, Li Juan, Synchronization on fast and slow dynamics in drive-response systems, 10.1016/j.physd.2006.09.006
Bibliographic reference De Saedeleer, Bernard ; Crucifix, Michel ; Wieczorek, Sebastian. Is the astronomical forcing a reliable and unique pacemakerfor climate? A conceptual model study. In: Climate Dynamics : observational, theoretical and computational research on the climate system, Vol. 40, p. 273-294 (2013)
Permanent URL