User menu

Accès à distance ? S'identifier sur le proxy UCLouvain

Constrained Optimization: Projected Gradient Flows

  1. Jongen, H.Th., Stein, O.: Constrained global optimization: adaptive gradient flows. In: Floudas, C.A., Pardalos, P.M. (eds.) Frontiers in Global Optimization, pp. 223–236. Kluwer Academic, Dordrecht (2003)
  2. Rosen, J.B.: The gradient projection method for nonlinear programming: part II, nonlinear constraints. SIAM J. Appl. Math. 9, 514–532 (1961)
  3. Botsaris, C.A.: Differential gradient methods. J. Math. Anal. Appl. 63, 177–198 (1978)
  4. Tanabe, K.: An algorithm for constrained maximization in nonlinear programming. J. Oper. Res. Soc. Jpn. 17, 184–201 (1974)
  5. Tanabe, K.: A geometric method in nonlinear programming. J. Optim. Theory Appl. 30, 181–210 (1980)
  6. Yamashita, H.: Differential equation approach to nonlinear programming. Comput. Anal. 7, 11–38 (1976)
  7. Yamashita, H.: A differential equation approach to nonlinear programming. Math. Program. 18, 155–168 (1980)
  8. Bartholomew-Biggs, M.C., Brown, A.A.: ODE versus SQP methods for constrained optimization. Technical Report 179, The Hatfield Polytechnic Optimization Centre (1987)
  9. Bartholomew-Biggs, M.C., Brown, A.A.: ODE versus SQP methods for constrained optimization. J. Optim. Theory Appl. 62, 371–386 (1989)
  10. Evtushenko, Y.G., Zhadan, V.G.: Stable Barrier-projection and Barrier-Newton methods in nonlinear programming. Optim. Methods Softw. 3, 237–256 (1994)
  11. Schropp, J.: One- and multistep procedures for constrained minimization problems. IMA J. Numer. Anal. 20(1), 135–152 (2000)
  12. Schropp, J.: A dynamical systems approach to constrained minimization. Numer. Funct. Anal. Optim. 21(3,4), 537–551 (2000)
  13. Jongen, H.Th., Stein, O.: On the complexity of equalizing inequalities. J. Glob. Optim. 27, 367–374 (2003)
  14. Jongen, H.Th., Jonker, P., Twilt, F.: Nonlinear Optimization in Finite Dimensions: Morse Theory, Chebyshev Approximation, Transversality, Flows, Parametric Aspects. Kluwer Academic, Dordrecht (2000)
  15. Rapcsák Tamás, Smooth Nonlinear Optimization in R n, ISBN:9781461379201, 10.1007/978-1-4615-6357-0
  16. Jongen, H.Th., Meer, K., Triesch, E.: Optimization Theory. Kluwer Academic, Dordrecht (2004)
  17. Shikhman, V.: Ein projezierter Gradientenfluss für restringierte Optimierungsprobleme: Singularitäten, Asymptotik und Diskretisierungseigenschaften. Diploma Thesis, Department of Mathematics—C, RWTH Aachen University (2006)
  18. Perko, L.: Differential Equation and Dynamical Systems. Springer, New York (2000)
  19. La Salle J. P., The Stability of Dynamical Systems, ISBN:9780898710229, 10.1137/1.9781611970432
Bibliographic reference Shikhman, Vladimir ; Stein, Olivier. Constrained Optimization: Projected Gradient Flows. In: Journal of Optimization Theory and Applications, Vol. 139, no. 2, p. 117-130 (2008)
Permanent URL http://hdl.handle.net/2078/115741