Accès à distance ? S'identifier sur le proxy UCLouvain
Probability masses fitting in the analysis of manufacturing flow lines
Primary tabs
- Open access
- 712.38 K
Document type | Article de périodique (Journal article) |
---|---|
Access type | Accès libre |
Publication date | 2011 |
Language | Anglais |
Journal information | "Annals of Operations Research" - Vol. 182, no. 1, p. 163-191 (jan. 2011) |
Peer reviewed | yes |
Publisher | Springer Netherlands |
issn | 0254-5330 |
Publication status | Publié |
Affiliations |
Louvain School of Management
- Operations and Information UCL - SSH/ILSM/ILSM - Research Institute of Louvain School of Management FUCaM - Sciences de gestion |
Keywords | Manufacturing flow lines ; Probability masses fitting ; Discretization ; Bounds ; Performance measures ; Distributions |
Links |
- Adan, I. J., van Eenige, M. J., & Resing, J. A. (1995). Fitting discrete distributions on the first two moments. Probability in the Engineering and Informational Sciences, 9, 623–632.
- Aldous, D., & Shepp, L. (1987). The least variable phase type distribution is Erlang. Stochastic Models, 3, 467–473.
- Altiok, T. (1985). On the phase-type approximations of general distributions. IIE Transactions, 17(2), 110–116.
- Altiok, T. (1996). Performance analysis of manufacturing systems. New York: Springer.
- Asmussen, S., Nerman, A., & Olsson, M. (1996). Fitting phase-type distributions via the em algorithm. Scandinavian Journal of Statistics, 23, 419–441.
- Baccelli, F., & Liu, Z. (1992). Comparison properties of stochastic decision free Petri nets. IEEE Transactions on Automatic Control, 37, 1905–1920.
- Baccelli, F., & Makowski, A. M. (1989). Queueing models for systems with synchronization constraints. Proceedings of the IEEE, 77, 138–161.
- Bobbio, A., & Cumani, A. (1992). Ml estimation of the parameters of a ph distribution in triangular canonical form. In G. Balbo & G. Serazzi (Eds.), Computer performance evaluation (pp. 33–46). Amsterdam: Elsevier.
- Bobbio, A., Horváth, A., & Telek, M. (2004). The scale factor: a new degree of freedom in phase-type approximation. Performance Evaluation, 56(1–4), 121–144.
- Bobbio, A., Horváth, A., Scarpa, M., & Telek, M. (2003). Acyclic discrete phase type distributions: properties and a parameter estimation algorithm. Performance Evaluation, 54, 1–32.
- Bobbio, A., Horváth, A., & Telek, M. (2005). Matching three moments with minimal acyclic phase type distributions. Stochastic Models, 21, 303–326.
- Botta, R. F., & Harris, C. M. (1986). Approximation with generalized hyperexponential distributions: weak convergence results. Queueing Systems, 1(2), 169–190.
- Buzacott, J. A., & Shanthikumar, J. G. (1993). Stochastic models of manufacturing systems. Englewood Cliffs: Prentice-Hall.
- Dallery, Y., & Frein, Y. (1993). On decomposition methods for tandem queueing networks with blocking. Operations Research, 41(2), 386–399.
- Dallery, Y., & Gershwin, S. B. (1992). Manufacturing flow line systems: a review of models and analytical results. Queueing Systems, 12, 3–94.
- Dallery, Y., Liu, Z., & Towsley, D. (1994). Equivalence, reversibility, symmetry and concavity properties in fork/join queueing networks with blocking. Journal of the ACM, 41, 903–942.
- Gershwin, S. B. (1994). Manufacturing systems engineering. Englewood Cliffs: Prentice-Hall.
- Hillier, F. S., & Boling, R. W. (1967). Finite queues in series with exponential or Erlang service times—a numerical approach. Operations Research, 15(2), 286–303.
- Johnson, M. A., & Taaffe, M. R. (1989). Matching moments to phase distributions: Mixtures of Erlang distributions of common order. Stochastic Models, 5(4), 711–743.
- Kerbache, L., & MacGregor Smith, J. (1987). The generalized expansion method for open finite queueing networks. European Journal of Operational Research, 32, 448–461.
- Klincewicz J. G., Whitt W., On Approximations for Queues, II: Shape Constraints, 10.1002/j.1538-7305.1984.tb00006.x
- Lang, A., & Arthur, J. L. (1997). Parameter approximation for phase-type distributions. In S. R. Chakravarthy & A. S. Alfa (Eds.), Matrix analytical methods in stochastic models (pp. 151–206). New York: Dekker.
- Lindsay, B. G., & Basak, P. (2000). Moments determine the tail of a distribution (but not much else). The American Statistician, 54(4), 248–251.
- Marie, R. (1980). Calculating equilibrium probabilities for λ(n)/ck/1/n queues. In PERFORMANCE ’80: Proceedings of the 1980 international symposium on computer performance modelling, measurement and evaluation (pp. 117–125). New York: ACM.
- McCullagh, P. (1994). Does the moment-generating function characterize a distribution? The American Statistician, 48(3), 208.
- Osogami, T., & Harchol-Balter, M. (2006). Closed form solutions for mapping general distributions to quasi-minimal ph distributions. Performance Evaluation, 63(6), 524–552.
- Papadopoulos, H. T., & Heavey, C. (1996). Queueing theory in manufacturing systems analysis and design: A classification of models for production and transfer lines. European Journal of Operational Research, 92, 1–27.
- Pearson, E. S., Johnson, N. L., & Burr, I. W. (1979). Comparisons of the percentage points of distributions with the same first four moments, chosen from eight different systems of frequency curves. Communications in Statistics–Simulation and Computation, 8(3), 191–229.
- Perros, H. G. (1994). Queueing networks with blocking: exact and approximate solutions. Oxford: Oxford University Press.
- Sauer, C. H., & Chandy, K. M. (1975). Approximate analysis of central server models. IBM Journal of Research and Development, 19(3), 301–313.
- Schmickler, L. (1992). Meda: mixed Erlang distributions as phase-type representations of empirical distribution functions. Stochastic Models, 8(1), 131–156.
- Tancrez, J.-S., & Semal, P. (2006). The bounding discrete phase-type method. In A. N. Langville & W. J. Stewart (Eds.), MAM 2006: Markov anniversary meeting (pp. 257–269). Raleigh: Boson.
- Tancrez, J.-S., Semal, P., & Chevalier, P. (2008, in press). Histogram based bounds and approximations for production lines. European Journal of Operational Research. doi: 10.1016/j.ejor.2008.03.032 .
- Telek, M. (2000). Minimal coefficient of variation of discrete phase type distributions. In 3rd international conference on matrix-analytic methods in stochastic models, MAM3 (pp. 391–400). Leuven: Notable Publications.
- Varah, J. M. (1985). On fitting exponentials by nonlinear least squares. SIAM Journal on Scientific and Statistical Computing, 6(1), 30–44.
- Whitt, W. (1982). Approximating a point process by a renewal process, i: Two basic methods. Operations Research, 30(1), 125–147.
- Whitt W., On Approximations for Queues, I: Extremal Distributions, 10.1002/j.1538-7305.1984.tb00005.x
See also | |||
![]() |
[boreal:12673] | Probability masses fitting in the analysis of manufacturing flow lines |
Bibliographic reference | Tancrez, Jean-Sébastien ; Chevalier, Philippe ; Semal, Pierre. Probability masses fitting in the analysis of manufacturing flow lines. In: Annals of Operations Research, Vol. 182, no. 1, p. 163-191 (jan. 2011) |
---|---|
Permanent URL | http://hdl.handle.net/2078/115568 |