User menu

Iron absorption by intestinal epithelial cells: 1. CaCo2 cells cultivated in serum-free medium, on polyethyleneterephthalate microporous membranes, as an in vitro model.

Bibliographic reference Halleux, C. ; Schneider, Yves-Jacques. Iron absorption by intestinal epithelial cells: 1. CaCo2 cells cultivated in serum-free medium, on polyethyleneterephthalate microporous membranes, as an in vitro model.. In: In vitro cellular & developmental biology : journal of the Tissue Culture Association, Vol. 27A, no. 4, p. 293-302 (1991)
Permanent URL http://hdl.handle.net/2078.1/11302
  1. Aboud-Pirak, E.; Sergent, T.; Otte-Slachmuylder, C., et al. Binding and endocytosis of a monoclonal antibody to a high molecular weight human milk fat globule membrane-associated antigen by cultured MCF-7 breast carcinoma cells. Cancer Res. 48:3188–3196; 1988.
  2. Bothwell, T. H.; Charlton, R. W.; Cook, J. D., et al. Iron metabolism in man. Oxford: Blackwell; 1979.
  3. Burnham, D. B.; Fondacaro, J. D. Secretagogue-induced protein phosphorylation and chloride transport in CaCo-2 cells. Am. J. Physiol. 256:G808-G816; 1989.
  4. Chantret, I.; Barbat, A.; Dussaulx, E., et al. Epithelial polarity, villin expression, and enterocytic differentiation of cultured human colon carcinoma cells: a survey of twenty cell lines. Cancer Res. 48:1936–1942;1988.
  5. Crichton, R. R.; Charloteaux-Wauters, M. Iron transport and storage. Eur. J. Biochem. 164:485–506; 1987.
  6. Eilers, U.; Klumperman, J.; Hauri, H.-P. Nocodazole, a microtubuleactive drug, interferes with apical protein delivery in cultured intestinal epithelial cells (CaCo-2). J. Cell Biol. 108:13–22; 1989.
  7. Faust, R. A.; Albers, J. J. Regulated vectorial secretion of cholesteryl ester transfer protein (LTP-I) by the CaCo-2 model of human enterocyte epithelium. J. Biol. Chem. 263:8786–8789; 1988.
  8. Godefroy, O.; Huet, C.; Blair, L. A. C., et al. Differentiation of a clone from the HT29 cell line: polarized distribution of histocompatibility antigens (HLA) and of transferrin receptors. Biol. Cell. 63:41–55; 1988.
  9. Halleux, C.; Schneider, Y.-J. Iron absorption by human CaCo2 cells, used as a model of the intestinal barrier. Arch. Int. Physiol. Biochim. 98:B75; 1990.
  10. Hidalgo Ismael J., Raub Thomas J., Borchardt Ronald T., Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability, 10.1016/0016-5085(89)90897-4
  11. Hidalgo, I. J.; Kato, A.; Borchardt, R. T. Binding of epidermal growth factor by human colon carcinoma cell (CaCo-2) monolayers. Biochem. Biophys. Res. Comm. 160:317–324; 1989.
  12. Hughes, T. E.; Vodek Sasak, W.; Ordovas, J. M., et al. A novel cell line (CaCo-2) for the study of intestinal lipoprotein synthesis. J. Biol. Chem. 262:3762–3767; 1987.
  13. Hughes, T. E.; Ordovas, J. M.; Schaefer, E. J. Regulation of intestinal apolipoprotein B synthesis and secretion by CaCo-2 cells. J. Biol. Chem. 263:3425–3431; 1988.
  14. Hughson, E. J.; Culter, D. F.; Hopkins, C. R. Basolateral secretion of kappa light chain in the polarize epithelial cell line, CaCo-2. J. Cell Sci. 94:327–332; 1989.
  15. Jin, Y.; Crichton, R. R. Iron transfer from ferritin to transferrin. FEBS. Lett. 215:41–46; 1987.
  16. Jin, Y.; Bacquet, A.; Florence, A., et al. Desferrithiocin and desferrioxamine B: cellular pharmacology and storage iron mobilisation. Biochem. Pharmacol. 38:3233–3240; 1989.
  17. Kam, N. T. P.; Albright, E.; Mathur, S. N., et al. Inhibition of acylcoenzyme A: cholesterol acyltransferase activity in CaCo-2 cells results in intracellular triglyceride accumulation. J. Lipid Res. 30:371–377; 1989.
  18. Kleinman, H. K.; McGarvey, M. L.; Liotta, L. A., et al. Isolation and characterization of type IV procollagen, laminin and heparan sulfate proteoglycan from the EHS sarcoma. Biochemistry 21:6188–6193; 1982.
  19. Laburthe, M.; Rousset, M.; Rouyer-Fessard, C., et al. Development of vasoactive intestinal peptide-responsive adenylate cyclase during enterocytic differentiation of CaCo-2 cells in culture. J. Biol. Chem. 262:10180–10184; 1987.
  20. Le Bivic, A.; Bosc-Biern, I.; Reggio, H. Characterization of a glycoprotein expressed on the basolateral membrane of human intestinal epithelial cells and cultured colonic cell lines. Eur. J. Cell Biol. 46:113–120; 1988.
  21. Lee, D. M.; Dashti, N.; Mok, T. Apolipoprotein B-100 is the major form of this apolipoprotein secreted by human intestinal CaCo-2 cells. Biochem. Biophys. Res. Commun. 156:581–587; 1988.
  22. Legras R.; Jogen, Y. Procédé de réalisation de performation dans un matériau solide en feuille; dispositif d’irradiation pour la mise en oeuvre du procédé et matériau ainsi obtenu. Eur. Patent noW 087/05850.
  23. Lowry, O. H. Rosebrough, N. J.; Farr, A. L., et al. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193:265–275; 1951.
  24. McKeehan, W. L.; Hamilton, W. G.; Ham, R. G. Selenium is an essential trace nutrient for growth of WI-38 diploid human fibroblasts. Proc. Natl. Acad. Sci. USA 73:2023–2026; 1976.
  25. Octave, J.-N.; Schneider, Y.-J.; Crichton, R. R., et al. Transferrin uptake by rat embryo fibroblasts. Eur. J. Biochem. 115:611–618; 1981.
  26. Pinto, M.; Robine-Leon, S.; Appay, M. D., et al. Enterocyte-like differentiation and polarization of the human colon carcinoma cell line CaCo-2 in culture. Biol. Cell 47:323–330; 1983.
  27. RAMA R., OCTAVE J.-N., SCHNEIDER Y.-J., Iron Mobilization from Cultured Rat Macrophages Loaded with 59Fe Labelled Erythroblasts, Protides of the Biological Fluids (1984) ISBN:9780080307640 p.207-210, 10.1016/b978-0-08-030764-0.50050-1
  28. Ramond M. J., Martinot-Peignoux M., Erlinger S., Dome formation in the human colon carcinoma cell line Caco-2 in culture. Influence of ouabain and permeable supports, 10.1111/j.1768-322x.1985.tb00383.x
  29. Rindler, N. J.; Traber, M. G. A specific sorting signal is not required for the polarized secretion of newly synthesized proteins from cultured intestinal epithelial cells. J. Cell Biol. 107:471–479; 1988.
  30. Rindler, M. J.; Traber, M. G. Polarized secretion of newly synthesized proteins by cultured intestinal epithelial cells: a basolaterally-directed default pathway. J. Cell Biol. 105:4, 58a; 1987.
  31. Roiron, D.; Amouric, M.; Marvaldi, J., et al. Lactoferrin-binding sites at the surface of HT29-D cells; comparison with transferrin. Eur. J. Biochem. 186:367–373; 1989.
  32. Sergent-Engelen, T.; Halleux, C.; Ferain, E., et al. Improved cultivation of polarized animal cells on culture inserts with new transparent polyethylene terephthalate or polycarbonate microporous membranes. Biotechnol. Techniques. 4:89–96; 1990.
  33. Schneider, Y.-J. Optimisation of hybridoma cell growth and monoclonal antibody secretion in a chemically defined, serum- and proteinfree culture medium. J. Immunol. Methods 116:65–77; 1989.
  34. Schneider, Y.-J.; Lavoix, A. Monoclonal antibody production in semicontration and serum- and protein-free culture: effect of glutamine concentration and culture conditions on cell growth and antibody secretion. J. Immunol. Methods. 129:251–268; 1990.
  35. Sibille, J.-C.; Kondo, H.; Aisen, P. Interactions between isolated hepatocytes and Kupffer cells in iron metabolism: a possible role for ferritin as an iron carrier protein. Hepatology 8:296–301; 1988.
  36. Sibille J C, Ciriolo M, Kondo H, Crichton R R, Aisen P, Subcellular localization of ferritin and iron taken up by rat hepatocytes, 10.1042/bj2620685
  37. Traber, M. G.; Kayden, H. J.; Rindler, M. J. Polarized secretion of newly synthesized lipoproteins by the CaCo-2 human intestinal cell line. J. Lipid Res. 28:1350–1363; 1987.