User menu

Sepsis is associated with an upregulation of functional beta3 adrenoceptors in the myocardium.

Bibliographic reference Moniotte, Stéphane ; Belge, Catharina ; Sekkali, Belaïd ; Massion, Paul ; Rozec, B ; et. al. Sepsis is associated with an upregulation of functional beta3 adrenoceptors in the myocardium.. In: European journal of heart failure : journal of the Working Group on Heart Failure of the European Society of Cardiology, Vol. 9, no. 12, p. 1163-71 (2007)
Permanent URL http://hdl.handle.net/2078.1/11188
  1. Rabuel C., Mebazaa A., Septic shock: a heart story since the 1960s, 10.1007/s00134-006-0142-5
  2. Kumar, Am J Physiol, 276, R265 (1999)
  3. Müller-Werdan U, Endotoxin and Tumor Necrosis FactorαExert a Similar Proinflammatory Effect in Neonatal Rat Cardiomyocytes, but have Different Cardiodepressant Profiles,, 10.1006/jmcc.1998.0667
  4. Müller-Werdan Ursula, Schumann Heike, Fuchs Ralph, Reithmann Christopher, Loppnow Harald, Koch Susanne, Zimny-Arndt Ursula, He Chang, Darmer Dorothea, Jungblut Peter, Stadler Josef, Holtz Jürgen, Werdan Karl, Tumor Necrosis Factorα(TNFα) is Cardiodepressant in Pathophysiologically Relevant Concentrations Without Inducing Inducible Nitric Oxide-(NO)-Synthase (iNOS) or Triggering Serious Cytotoxicity, 10.1006/jmcc.1997.0526
  5. Iino Kenji, Watanabe Hiroyuki, Saito Takashi, Kibira Satoshi, Iijima Toshihiko, Miura Mamoru, TNF-α Rapidly Antagonizes the β-Adrenergic Responses of the Chloride Current in Guinea-Pig Ventricular Myocytes, 10.1253/circj.67.347
  6. Oral Hakan, Dorn Gerald W., Mann Douglas L., Sphingosine Mediates the Immediate Negative Inotropic Effects of Tumor Necrosis Factor-α in the Adult Mammalian Cardiac Myocyte, 10.1074/jbc.272.8.4836
  7. Tavernier, FASEB J, 15, 294 (2001)
  8. Balligand J L, Ungureanu D, Kelly R A, Kobzik L, Pimental D, Michel T, Smith T W, Abnormal contractile function due to induction of nitric oxide synthesis in rat cardiac myocytes follows exposure to activated macrophage-conditioned medium., 10.1172/jci116461
  9. Funakoshi Hajime, Kubota Toru, Machida Yoji, Kawamura Natsumi, Feldman Arthur M., Tsutsui Hiroyuki, Shimokawa Hiroaki, Takeshita Akira, Involvement of inducible nitric oxide synthase in cardiac dysfunction with tumor necrosis factor-α, 10.1152/ajpheart.00872.2001
  10. CSONT T, VIAPPIANI S, SAWICKA J, SLEE S, ALTAREJOS J, BATINICHABERLE I, SCHULZ R, The involvement of superoxide and iNOS-derived NO in cardiac dysfunction induced by pro-inflammatory cytokines, 10.1016/j.yjmcc.2005.07.010
  11. Rees D D, Monkhouse J E, Cambridge D, Moncada S, Nitric oxide and the haemodynamic profile of endotoxin shock in the conscious mouse, 10.1038/sj.bjp.0701815
  12. Ullrich R., Scherrer-Crosbie M., Bloch K. D., Ichinose F., Nakajima H., Picard M. H., Zapol W. M., Quezado Z. M. N., Congenital Deficiency of Nitric Oxide Synthase 2 Protects Against Endotoxin-Induced Myocardial Dysfunction in Mice, 10.1161/01.cir.102.12.1440
  13. Ziolo M. T., Katoh H., Bers D. M., Expression of Inducible Nitric Oxide Synthase Depresses  -Adrenergic-Stimulated Calcium Release From the Sarcoplasmic Reticulum in Intact Ventricular Myocytes, 10.1161/hc4901.100379
  14. Drexler Helmut, Kästner Stephanie, Strobel Armin, Studer Roland, Brodde Otto E, Hasenfuß Gerd, Expression, activity and functional significance of inducible nitric oxide synthase in the failing human heart, 10.1016/s0735-1097(98)00336-2
  15. Hare J. M., Givertz M. M., Creager M. A., Colucci W. S., Increased Sensitivity to Nitric Oxide Synthase Inhibition in Patients With Heart Failure : Potentiation of  -Adrenergic Inotropic Responsiveness, 10.1161/01.cir.97.2.161
  16. Yamamoto S., Tsutsui H., Tagawa H., Saito K., Takahashi M., Tada H., Yamamoto M., Katoh M., Egashira K., Takeshita A., Role of Myocyte Nitric Oxide in  -Adrenergic Hyporesponsiveness in Heart Failure, 10.1161/01.cir.95.5.1111
  17. Ziolo M. T., Myocyte Nitric Oxide Synthase 2 Contributes to Blunted  -Adrenergic Response in Failing Human Hearts by Decreasing Ca2+ Transients, 10.1161/01.cir.0000124231.98250.a8
  18. Finkel M., Oddis C., Jacob T., Watkins S., Hattler B., Simmons R., Negative inotropic effects of cytokines on the heart mediated by nitric oxide, 10.1126/science.1631560
  19. Goldhaber, Am J Physiol, 271, H1449 (1996)
  20. Connelly Linda, Madhani Melanie, Hobbs Adrian J., Resistance to Endotoxic Shock in Endothelial Nitric-oxide Synthase (eNOS) Knock-out Mice : A PRO-INFLAMMATORY ROLE FOR eNOS-DERIVED NOIN VIVO, 10.1074/jbc.m411991200
  21. Yamashita T., Kawashima S., Ohashi Y., Ozaki M., Ueyama T., Ishida T., Inoue N., Hirata K.-i., Akita H., Yokoyama M., Resistance to Endotoxin Shock in Transgenic Mice Overexpressing Endothelial Nitric Oxide Synthase, 10.1161/01.cir.101.8.931
  22. Ichinose F., Buys E. S., Neilan T. G., Furutani E. M., Morgan J. G., Jassal D. S., Graveline A. R., Searles R. J., Lim C. C., Kaneki M., Picard M. H., Scherrer-Crosbie M., Janssens S., Liao R., Bloch K. D., Cardiomyocyte-Specific Overexpression of Nitric Oxide Synthase 3 Prevents Myocardial Dysfunction in Murine Models of Septic Shock, 10.1161/01.res.0000253888.09574.7a
  23. Gauthier C, Tavernier G, Charpentier F, Langin D, Le Marec H, Functional beta3-adrenoceptor in the human heart., 10.1172/jci118823
  24. Moniotte S., Kobzik L., Feron O., Trochu J.-N., Gauthier C., Balligand J.-L., Upregulation of  3-Adrenoceptors and Altered Contractile Response to Inotropic Amines in Human Failing Myocardium, 10.1161/01.cir.103.12.1649
  25. Varghese Paul, Harrison Robert W., Lofthouse Robert A., Georgakopoulos Dimitrios, Berkowitz Dan E., Hare Joshua M., β3-adrenoceptor deficiency blocks nitric oxide–dependent inhibition of myocardial contractility, 10.1172/jci9323
  26. Brain, J Appl Physiol, 25, 63 (1968)
  27. Massion P. B., Cardiomyocyte-Restricted Overexpression of Endothelial Nitric Oxide Synthase (NOS3) Attenuates  -Adrenergic Stimulation and Reinforces Vagal Inhibition of Cardiac Contraction, 10.1161/01.cir.0000145608.80855.bc
  28. Moniotte S., Vaerman J.L., Kockx M.M., Larrouy D., Langin D., Noirhomme P., Balligand J.L., Real-time RT-PCR for the Detection of Beta-adrenoceptor Messenger RNAs in Small Human Endomyocardial Biopsies, 10.1006/jmcc.2001.1475
  29. Vincent Jean-Louis, de Mendonca Arnaldo, Cantraine Francis, Moreno Rui, Takala Jukka, Suter Peter M., Sprung Charles L., Colardyn Francis, Blecher Serge, Use of the SOFA score to assess the incidence of organ dysfunction/failure in intensive care units : Results of a multicenter, prospective study, 10.1097/00003246-199811000-00016
  30. Gulick T., Chung M. K., Pieper S. J., Lange L. G., Schreiner G. F., Interleukin 1 and tumor necrosis factor inhibit cardiac myocyte beta-adrenergic responsiveness., 10.1073/pnas.86.17.6753
  31. Susulic Vedrana S., Frederich Robert C., Lawitts Joel, Tozzo Effie, Kahn Barbara B., Harper Mary-Ellen, Himms-Hagen Jean, Flier Jeffrey S., Lowell Bradford B., Targeted Disruption of the β3-Adrenergic Receptor Gene, 10.1074/jbc.270.49.29483
  32. Dincer U. D., Bidasee K. R., Guner S., Tay A., Ozcelikay A. T., Altan V. M., The Effect of Diabetes on Expression of  1-,  2-, and  3-Adrenoreceptors in Rat Hearts, 10.2337/diabetes.50.2.455
  33. Germack R., Induction of  3-Adrenergic Receptor Functional Expression following Chronic Stimulation with Noradrenaline in Neonatal Rat Cardiomyocytes, 10.1124/jpet.105.090597
  34. Gauthier C, Leblais V, Kobzik L, Trochu J N, Khandoudi N, Bril A, Balligand J L, Le Marec H, The negative inotropic effect of beta3-adrenoceptor stimulation is mediated by activation of a nitric oxide synthase pathway in human ventricle., 10.1172/jci2191
  35. Devuyst, Am J Physiol, 275, H234 (1998)
  36. Mery P. F., Lohmann S. M., Walter U., Fischmeister R., Ca2+ current is regulated by cyclic GMP-dependent protein kinase in mammalian cardiac myocytes., 10.1073/pnas.88.4.1197
  37. Wahler, Am J Physiol, 268, C45 (1995)
  38. Zhang Qihang, Scholz Peter M., He Yiqi, Tse James, Weiss Harvey R., Cyclic GMP signaling and regulation of SERCA activity during cardiac myocyte contraction, 10.1016/j.ceca.2004.10.007
  39. Shah A. M., Spurgeon H. A., Sollott S. J., Talo A., Lakatta E. G., 8-bromo-cGMP reduces the myofilament response to Ca2+ in intact cardiac myocytes, 10.1161/01.res.74.5.970
  40. Beavo, Physiol Rev, 75, 725 (1995)
  41. Mery, J Biol Chem, 268, 26286 (1993)
  42. Joe Edwin K., Schussheim Adam E., Longrois Dan, Mäki Tiina, Kelly Ralph A., Smith Thomas W., Balligand Jean-Luc, Regulation of Cardiac Myocyte Contractile Function by Inducible Nitric Oxide Synthase (iNOS): Mechanisms of Contractile Depression by Nitric Oxide, 10.1006/jmcc.1997.0593
  43. Ungureanu-Longrois D., Balligand J.-L., Simmons W. W., Okada I., Kobzik L., Lowenstein C. J., Kunkel S. L., Michel T., Kelly R. A., Smith T. W., Induction of Nitric Oxide Synthase Activity by Cytokines in Ventricular Myocytes Is Necessary but Not Sufficient to Decrease Contractile Responsiveness to  -Adrenergic Agonists, 10.1161/01.res.77.3.494
  44. Strosberg A. Donny, Structure and Function of the β3 Adrenoreceptor, Advances in Pharmacology (1997) ISBN:9780120329434 p.511-513, 10.1016/s1054-3589(08)60801-7
  45. Engelhardt S., Hein L., Wiesmann F., Lohse M. J., Progressive hypertrophy and heart failure in  1-adrenergic receptor transgenic mice, 10.1073/pnas.96.12.7059
  46. Heymes C., Vanderheyden M., Bronzwaer J. G. F., Shah A. M., Paulus W. J., Endomyocardial Nitric Oxide Synthase and Left Ventricular Preload Reserve in Dilated Cardiomyopathy, 10.1161/01.cir.99.23.3009