Accès à distance ? S'identifier sur le proxy UCLouvain
Effects of contraction and insulin on protein synthesis, AMP-activated protein kinase and phosphorylation state of translation factors in rat skeletal muscle.
Primary tabs
- Aslesen R, Jensen J (1998) Effects of epinephrine on glucose metabolism in contracting rat skeletal muscle. Am J Physiol 275:E448–E456
- Atherton PJ, Babraj J, Smith K, Singh J, Rennie MJ, Wackerhage H (2005) Selective activation of AMPK-PGC-1alpha or PKB-TSC2-mTOR signaling can explain specific adaptive responses to endurance or resistance training-like electrical muscle stimulation. FASEB J 19:786–788
- Biolo G, Declan Fleming RY, Wolfe RR (1995) Physiologic hyperinsulinemia stimulates protein synthesis and enhances transport of selected amino acids in human skeletal muscle. J Clin Invest 95:811–819
- Bolster DR, Crozier SJ, Kimball SR, Jefferson LS (2002) AMP-activated protein kinase suppresses protein synthesis in rat skeletal muscle through downregulated mTOR signalling. J Biol Chem 277:23977–23980
- Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254
- Browne GJ, Finn SG, Proud CG (2004) Stimulation of the AMP-activated protein kinase leads to activation of eukaryotic elongation factor 2 kinase and to its phosphorylation at a novel site, serine 398. J Biol Chem 279:12220–12231
- Buttgereit F, Brand M D, A hierarchy of ATP-consuming processes in mammalian cells, 10.1042/bj3120163
- Bylund-Fellenius AC, Ojamaa KM, Flaim KE, Li JB, Wassner SJ, Jefferson LS (1984) Protein synthesis versus energy state in contracting muscles of perfused rat hindlimb. Am J Physiol 246:E297–E305
- Carraro F, Stuart CA, Hartl WH, Rosenblatt J, Wolfe RR (1990) Effect of exercise and recovery on muscle protein synthesis in human subjects. Am J Physiol 259:E470–E476
- Cheng SWY, Fryer LGD, Carling D, Shepherd PR (2004) T2446 is a novel mTOR phosphorylation site regulated by nutrient status. J Biol Chem 279:15719–15722
- Davies SP, Carling D, Hardie DG (1989) Tissue distribution of the AMP-activated protein kinase, and lack of activation by cyclic-AMP-dependent protein kinase, studied a specific and sensitive peptide assay. Eur J Biochem 186:123–128
- Dreyer HC, Fujita S, Cadenas JG, Chinkes DL, Volpi E, Rasmussen BB (2006) Resistance exercise increases AMPK activity and reduces 4E-BP1 phosphorylation and protein synthesis in human skeletal muscle. J. Physiol 576:613–624
- Dubbelhuis PF, Meijer AJ (2002) Hepatic amino acid-dependent signaling is under control of AMP-dependent protein kinase. FEBS Lett 521:39–42
- Gelfand RA, Barrett EJ (1987) Effect of physiologic hyperinsulinemia on skeletal muscle protein synthesis and breakdown in man. J Clin Invest 80:1–6
- Hait WN, Ward MD, Trakht IN, Ryazanov AG (1996) Elongation factor-2 kinase: immunological evidence for the existence of tissue-specific isoforms. FEBS Lett 397:55–60
- Hardie DG, Carling D, Carlson M (1998) The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Annu Rev Biochem 67:821–855
- Hardie DG, Sakamoto K (2006) AMPK: a key sensor of fuel and energy status. Physiology 21:48–60
- Horman S, Beauloye C, Vertommen D, Vanoverschelde J-L, Hue L, Rider MH (2003) Myocardial ischemia and increased heart work modulate the phosphorylation state of eukaryotic elongation factor-2. J Biol Chem 278:41970–41976
- Horman S, Browne GJ, Krause U, Patel JV, Vertommen D, Bertrand L, Lavoine A, Hue L, Proud CG, Rider MH (2002) Activation of AMP-activated protein kinase leads to the phosphorylation of elongation factor 2 and an inhibition of protein synthesis. Curr Biol 12:1419–1423
- Horman S, Hussain N, Dilworth SM, Storey KB, Rider MH (2005) Evaluation of the role of AMP-activated protein kinase and its downstream targets in mammalian hibernation. Comp Biochem Physiol B 142:374–382
- Inoki K, Zhu T, Guan K-L (2003) TSC2 mediates cellular energy response to control cell growth and survival. Cell 115:577–590
- Jakobsen SN, Hardie DG, Morrice N, Tornqvist HE (2001) 5″-AMP-activated protein kinase phosphorylates IRS-1 on Ser-789 in mouse C2C12 myotubes in response to 5-aminoimidazole-4-carboxamide riboside. J Biol Chem 276:46912–46916
- Kahn BB, Alquier T, Carling D, Hardie DG (2005) AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab 1:15–25
- Kemp BE, Mitchelhill KI, Stapleton D, Michell BJ, Chen ZP, Witters LA (1999) Dealing with energy demand: the AMP-activated protein kinase. Trends Biochem Sci 24:22–25
- Kimball Scot R., Farrell Peter A., Jefferson Leonard S., Invited Review: Role of insulin in translational control of protein synthesis in skeletal muscle by amino acids or exercise, 10.1152/japplphysiol.00221.2002
- Krause U, Bertrand L, Hue L (2002) Control of p70 ribosomal protein S6 kinase and acetyl-CoA carboxylase by AMP-activated protein kinase and protein phosphatases in isolated hepatocytes. Eur J Biochem 269:3751–3759
- Long X, Lin Y, Ortiz-Vega S, Yonezawa K, Avruch J (2005) Rheb binds and regulates the mTOR kinase. Curr Biol 15:702–713
- Marin P, Nastiuk KL, Daniel N, Girault J, Czernik AJ, Glowinski J, Nairn AC, Premont J (1997) Glutamate-dependent phosphorylation of elongation factor-2 and inhibition of protein synthesis in neurons. J Neurosci 17:3445–3454
- Plumb-Rudewiez N, Clotman F, Strick-Marchand H, Pierreux CE, Weiss MC, Rousseau GG, Lemaigre F (2004) Transcription factor HNF-6/OC-1 inhibits the stimulation of the HNF-3a/Foxa1 gene by TGF-b in mouse liver. Hepatology 40:1266–1274
- Proud CG (2007) Signalling to translation: how signal transduction pathways control the protein synthesis machinery. Biochem J 403:217–234
- Redpath NT, Price NT, Proud CG (1996) Cloning and expression of cDNA encoding protein synthesis elongation factor-2 kinase. J Biol Chem 271:17547–17554
- Rennie MJ (1996) Influence of exercise on protein and amino acid metabolism. In: Rowell LB, Shepherd JT (eds) Handbook of physiology; exercise: regulation and integration of multiple systems. Oxford University Press, New York, pp. 995–1035
- Reynolds TH, Bodine SC, Lawrence JC (2002) Control of Ser2448 phosphorylation in the mammalian target of rapamycin by insulin and skeletal muscle load. J Biol Chem 277:17657–17662
- Rider MH, Hussain N, Horman S, Dilworth SM, Storey KB (2006) Stress-induced activation of the AMP-activated protein kinase in the freeze-tolerant frog Rana sylvatica. Cryobiology 53:297–309
- Rose AJ, Broholm C, Kiillerich K, Finn SG, Proud CG, Rider MH, Richter EA, Kiens B (2005) Exercise rapidly increases eukaryotic elongation factor 2 phosphorylation in skeletal muscle of men. J Physiol 569:223–228
- Roskoski R Jr (1983) Assays of protein kinase. Methods Enzymol 99:3–6
- Ruvinsky I, Meyuhas O (2006) Ribosomal protein S6 phosphorylation: from protein synthesis to cell size. Trends Biochem Sci 31:342–348
- Ryder JW, Fahlman R, Wallberg-Henriksson H, Alessi DR, Krook A, Zierath JR (2000) Effect of contraction on mitogen-activated protein kinase signal transduction in skeletal muscle. Involvement of the mitogen- and stress-activated protein kinase 1. J Biol Chem 275:1457–1462
- Sancak Y, Thoreen CC, Peterson TR, Lindquist RA, Kang SA, Spooner E, Carr SA, Sabatini DM (2007) PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol Cell 25:903–915
- Sanders MJ, Grondin PO, Hegarty BD, Snowden MA, Carling D (2007) Investigating the mechanism for AMP activation of the AMP-activated protein kinase cascade. Biochem J 403:139–148
- Smith K, Barua JM, Watt PW, Scrimgeour CM, Rennie MJ (1992) Flooding with L-[1–13C]leucine stimulates human muscle protein incorporation of continuously infused L-[1–13C]valine. Am J Physiol 262:E372–E376
- Stirewalt W S, Low R B, Effects of insulinin vitroon protein turnover in rat epitrochlearis muscle, 10.1042/bj2100323
- Tzatsos A, Tsichlis PN (2007) Energy depletion inhibits phosphatidylinositol 3-kinase/akt signaling and induces apoptosis via amp-activated protein kinase-dependent phosphorylation of IRS-1 at Ser-794. J Biol Chem 282:18069–18082
- Wagenmakers Anton J. M., Protein and Amino Acid Metabolism in Human Muscle, Advances in Experimental Medicine and Biology (1998) ISBN:9781489919304 p.307-319, 10.1007/978-1-4899-1928-1_28
- WHITEHEAD Jonathan P., SOOS Maria A., ASLESEN Rune, O'RAHILLY Stephen, JENSEN Jørgen, Contraction inhibits insulin-stimulated insulin receptor substrate-1/2-associated phosphoinositide 3-kinase activity, but not protein kinase B activation or glucose uptake, in rat muscle, 10.1042/bj3490775
- Wieser G, Krumschnabel G (2001) Hierarchies of ATP-consuming processes: direct compared with indirect measurements, and comparative aspects. Biochem J 355:389–395
- Williamson DL, Bolster DR, Kimball SR, Jefferson LS (2006) Time course changes in signaling pathways and protein synthesis in C2C12 myotubes following AMPK activation by AICAR. Am J Physiol Endocrinol Metab 291:80–89
- Witters LA, Kemp BE, Means AR (2006) Chutes and Ladders: the search for protein kinases that act on AMPK. Trends Biochem Sci 31:13–16
Bibliographic reference | Miranda, Lisa ; Horman, Sandrine ; De Potter, Isabelle ; Hue, Louis ; Jensen, Jørgen ; et. al. Effects of contraction and insulin on protein synthesis, AMP-activated protein kinase and phosphorylation state of translation factors in rat skeletal muscle.. In: Pflügers Archiv : European journal of physiology, Vol. 455, no. 6, p. 1129-40 (2008) |
---|---|
Permanent URL | http://hdl.handle.net/2078.1/11163 |