User menu

Accès à distance ? S'identifier sur le proxy UCLouvain | Saint-Louis

Why the Euler scheme in particle tracking is not enough: the shallow-sea pycnocline test case

  1. Arnold L (1974) Stochastic differential equations: theory and applications. Wiley, London
  2. Beron-Vera F. J., Olascoaga M. J., An Assessment of the Importance of Chaotic Stirring and Turbulent Mixing on the West Florida Shelf, 10.1175/2009jpo4046.1
  3. Blanke Bruno, Raynaud Stéphane, Kinematics of the Pacific Equatorial Undercurrent: An Eulerian and Lagrangian Approach from GCM Results, 10.1175/1520-0485(1997)027<1038:kotpeu>2.0.co;2
  4. Blumberg Alan F., Dunning Dennis J., Li Honghai, Heimbuch Douglas, Rockwell Geyer W., Use of a particle-tracking model for predicting entrainment at power plants on the Hudson River, 10.1007/bf02803543
  5. Brickman David, Smith P. C., Lagrangian Stochastic Modeling in Coastal Oceanography, 10.1175/1520-0426(2002)019<0083:lsmico>2.0.co;2
  6. Brochier Timothée, Lett Christophe, Tam Jorge, Fréon Pierre, Colas François, Ayón Patricia, An individual-based model study of anchovy early life history in the northern Humboldt Current system, 10.1016/j.pocean.2008.10.004
  7. Burchard Hans, Rennau Hannes, Comparative quantification of physically and numerically induced mixing in ocean models, 10.1016/j.ocemod.2007.10.003
  8. Callies U, Plüß A, Kappenberg J, Kapitza H (2011) Particle tracking in the vicinity of Helgoland, North Sea: a model comparison. Ocean Dyn 1–19
  9. Christensen A, Daewel U, Jensen H, Mosegaard H, St John M, Schrum C, Hydrodynamic backtracking of fish larvae by individual-based modelling, 10.3354/meps06980
  10. de Brauwere Anouk, Deleersnijder Eric, Assessing the parameterisation of the settling flux in a depth-integrated model of the fate of decaying and sinking particles, with application to fecal bacteria in the Scheldt Estuary, 10.1007/s10652-009-9151-6
  11. Deleersnijder Eric, Beckers Jean-Marie, Delhez Eric J. M., On the behaviour of the residence time at the bottom of the mixed layer, 10.1007/s10652-006-9003-6
  12. Deleersnijder Eric, Beckers Jean-Marie, Delhez Eric J. M., The Residence Time of Settling Particles in the Surface Mixed Layer, 10.1007/s10652-005-3941-2
  13. d'Ovidio Francesco, Fernández Vicente, Hernández-García Emilio, López Cristóbal, Mixing structures in the Mediterranean Sea from finite-size Lyapunov exponents : MIXING STRUCTURES IN THE MEDITERRANEAN SEA, 10.1029/2004gl020328
  14. Elliott A.J, Dale A.C, Proctor R, Modelling the movement of pollutants in the UK shelf seas, 10.1016/0025-326x(92)90282-b
  15. Gräwe Ulf, Implementation of high-order particle-tracking schemes in a water column model, 10.1016/j.ocemod.2010.10.002
  16. Gräwe Ulf, Wolff Jörg-Olaf, Suspended particulate matter dynamics in a particle framework, 10.1007/s10652-009-9141-8
  17. Huret M, Runge JA, Chen C, Cowles G, Xu Q, Pringle JM, Dispersal modeling of fish early life stages: sensitivity with application to Atlantic cod in the western Gulf of Maine, 10.3354/meps06983
  18. Iskandarani M., Levin J.C., Choi B.-J., Haidvogel D.B., Comparison of advection schemes for high-order h–p finite element and finite volume methods, 10.1016/j.ocemod.2004.09.005
  19. Kloeden P, Platen E (1999) Numerical solution of stochastic differential equations (stochastic modelling and applied probability), 3rd edn. Springer, Berlin
  20. Krestenitis Y. N., Kombiadou K. D., Savvidis Y. G., Modelling the cohesive sediment transport in the marine environment: the case of Thermaikos Gulf, 10.5194/os-3-91-2007
  21. LaBolle Eric M., Quastel Jeremy, Fogg Graham E., Gravner Janko, Diffusion processes in composite porous media and their numerical integration by random walks: Generalized stochastic differential equations with discontinuous coefficients, 10.1029/1999wr900224
  22. Lalescu C.C., Teaca B., Carati D., Implementation of high order spline interpolations for tracking test particles in discretized fields, 10.1016/j.jcp.2009.10.046
  23. Lane Andrew, Prandle David, Random-walk particle modelling for estimating bathymetric evolution of an estuary, 10.1016/j.ecss.2006.01.016
  24. Mariano A.J., Kourafalou V.H., Srinivasan A., Kang H., Halliwell G.R., Ryan E.H., Roffer M., On the modeling of the 2010 Gulf of Mexico Oil Spill, 10.1016/j.dynatmoce.2011.06.001
  25. Marsaglia George, Xorshift RNGs, 10.18637/jss.v008.i14
  26. Marsaglia George, Tsang Wai Wan, The Ziggurat Method for Generating Random Variables, 10.18637/jss.v005.i08
  27. Maruyama Gisiro, Continuous Markov processes and stochastic equations, 10.1007/bf02846028
  28. Milstein GN (1974) Approximate integration of stochastic differential equations. Theory Probab Appl 19:557–562
  29. Mil’shtein G. N., A Method of Second-Order Accuracy Integration of Stochastic Differential Equations, 10.1137/1123045
  30. North E.W., Hood R.R., Chao S.-Y., Sanford L.P., Using a random displacement model to simulate turbulent particle motion in a baroclinic frontal zone: A new implementation scheme and model performance tests, 10.1016/j.jmarsys.2005.08.003
  31. Ohlmann J. Carter, Mitarai Satoshi, Lagrangian assessment of simulated surface current dispersion in the coastal ocean : LAGRANGIAN MODEL ASSESSMENT, 10.1029/2010gl044436
  32. Penland C (2003) A stochastic approach to nonlinear dynamics: a review. Bull Am Meteorol Soc 84(7):43–52
  33. Pietrzak Julie, The Use of TVD Limiters for Forward-in-Time Upstream-Biased Advection Schemes in Ocean Modeling, 10.1175/1520-0493(1998)126<0812:tuotlf>2.0.co;2
  34. Prather Michael J., Numerical advection by conservation of second-order moments, 10.1029/jd091id06p06671
  35. Proehl Jeffrey A., Lynch Daniel R., McGillicuddy Dennis J., Ledwell James R., Modeling turbulent dispersion on the North Flank of Georges Bank using Lagrangian Particle Methods, 10.1016/j.csr.2004.09.022
  36. Shah S.H.A.M., Heemink A.W., Deleersnijder E., Assessing Lagrangian schemes for simulating diffusion on non-flat isopycnal surfaces, 10.1016/j.ocemod.2011.05.008
  37. Silverman B. W., Density Estimation for Statistics and Data Analysis, ISBN:9780412246203, 10.1007/978-1-4899-3324-9
  38. Soomere Tarmo, Andrejev Oleg, Myrberg Kai, Sokolov Alexander, The use of Lagrangian trajectories for the identification of the environmentally safe fairways, 10.1016/j.marpolbul.2011.04.041
  39. Spivakovskaya Darya, Heemink Arnold W., Deleersnijder Eric, Lagrangian modelling of multi-dimensional advection-diffusion with space-varying diffusivities: theory and idealized test cases, 10.1007/s10236-007-0102-9
  40. Spivakovskaya D., Heemink A. W., Deleersnijder E., The backward Îto method for the Lagrangian simulation of transport processes with large space variations of the diffusivity, 10.5194/os-3-525-2007
  41. Stijnen J. W., Heemink A. W., Lin H. X., An efficient 3D particle transport model for use in stratified flow, 10.1002/fld.1132
  42. Thomson D. J., Criteria for the selection of stochastic models of particle trajectories in turbulent flows, 10.1017/s0022112087001940
  43. van der Lee EM, Umlauf L (2011) Internal-wave mixing in the Baltic Sea: Near-inertial waves in the absence of tides. J Geophys Res 116(C10016)
  44. Visser AW, Using random walk models to simulate the vertical distribution of particles in a turbulent water column, 10.3354/meps158275
  45. Vitousek Sean, Fringer Oliver B., Physical vs. numerical dispersion in nonhydrostatic ocean modeling, 10.1016/j.ocemod.2011.07.002
Bibliographic reference Gräwe, Ulf ; Deleersnijder, Eric ; Shah, S.H.A.M. ; Heemink, Arnold. Why the Euler scheme in particle tracking is not enough: the shallow-sea pycnocline test case. In: Ocean Dynamics : theoretical, computational oceanography and monitoring, Vol. 62, p. 501-514
Permanent URL http://hdl.handle.net/2078.1/109750