User menu

Relevance of nitric oxide for myocardial remodeling.

Bibliographic reference Massion, Paul B ; Balligand, Jean-Luc. Relevance of nitric oxide for myocardial remodeling.. In: Current heart failure reports, Vol. 4, no. 1, p. 18-25 (2007)
Permanent URL
  1. Pfeffer J. M., Pfeffer M. A., Braunwald E., Influence of chronic captopril therapy on the infarcted left ventricle of the rat, 10.1161/01.res.57.1.84
  2. Morita Hiroyuki, Seidman Jonathan, Seidman Christine E., Genetic causes of human heart failure, 10.1172/jci24351
  3. McKinsey Timothy A., Olson Eric N., Toward transcriptional therapies for the failing heart: chemical screens to modulate genes, 10.1172/jci24144
  4. Giordano FJ: Oxygen, oxidative stress, hypoxia, and heart failure. J Clin Invest 2005, 115:500–508.
  5. Nian M, Lee P, Khaper N, et al.: Inflammatory cytokines and postmyocardial infarction remodeling. Circ Res 2004, 94:1543–1553.
  6. Dorn Gerald W., Force Thomas, Protein kinase cascades in the regulation of cardiac hypertrophy, 10.1172/jci24178
  7. Opie LH, Commerford PJ, Gersh BJ, et al.: Controversies in ventricular remodeling. Lancet 2006, 367:356–367.
  8. Webb CS, Bonnema DD, Ahmed SH, et al.: Specific temporal profile of matrix metalloproteinase release occurs in patients after myocardial infarction: relation to left ventricular remodeling. Circulation 2006, 114:1020–1027.
  9. Heymans S, Schroen B, Vermeersch P, et al.: Increased cardiac expression of tissue inhibitor of metalloproteinase-1 and tissue inhibitor of metalloproteinase-2 is related to cardiac fibrosis and dysfunction in the chronic pressure-overloaded human heart. Circulation 2005, 112:1136–1144.
  10. Yano Masafumi, Ikeda Yasuhiro, Matsuzaki Masunori, Altered intracellular Ca2+ handling in heart failure, 10.1172/jci24159
  11. Johar S, Cave AC, Narayanapanicker A, et al.: Aldosterone mediates angiotensin II-induced interstitial cardiac fibrosis via a Nox2-containing NADPH oxidase. FASEB J 2006, 20:1546–1548.
  12. Massion PB, Feron O, Dessy C, et al.: Nitric oxide and cardiac function: ten years after, and continuing. Circ Res 2003, 93:388–398.
  13. Schulz R, Rassaf T, Massion PB, et al.: Recent advances in the understanding of the role of nitric oxide in cardiovascular homeostasis. Pharmacol Ther 2005, 108:225–256.
  14. Hare JM, Stamler JS: NO/redox disequilibrium in the failing heart and cardiovascular system. J Clin Invest 2005, 115:509–517.
  15. Forstermann U, Munzel T: Endothelial nitric oxide synthase in vascular disease: from marvel to menace. Circulation 2006, 113:1708–1714.
  16. Landmesser Ulf, Dikalov Sergey, Price S. Russ, McCann Louise, Fukai Tohru, Holland Steven M., Mitch William E., Harrison David G., Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension, 10.1172/jci200314172
  17. Balligand JL: Heat shock protein 90 in endothelial nitric oxide synthase signaling: following the lead(er)? Circ Res 2002, 90:838–841.
  18. Kupatt C, Dessy C, Hinkel R, et al.: Heat shock protein 90 transfection reduces ischemia-reperfusion-induced myocardial dysfunction via reciprocal endothelial NO synthase serine 1177 phosphorylation and threonine 495 dephosphorylation. Arterioscler Thromb Vasc Biol 2004, 24:1435–1441.
  19. Feron O., Dessy C., Desager J.-P., Balligand J.-L., Hydroxy-Methylglutaryl-Coenzyme A Reductase Inhibition Promotes Endothelial Nitric Oxide Synthase Activation Through a Decrease in Caveolin Abundance, 10.1161/01.cir.103.1.113
  20. Feron O, Balligand JL: Caveolins and the regulation of endothelial nitric oxide synthase in the heart. Cardiovasc Res 2006, 69:788–797.
  21. Barouch Lili A., Harrison Robert W., Skaf Michel W., Rosas Gisele O., Cappola Thomas P., Kobeissi Zoulficar A., Hobai Ion A., Lemmon Christopher A., Burnett Arthur L., O'Rourke Brian, Rodriguez E. Rene, Huang Paul L., Lima João A. C., Berkowitz Dan E., Hare Joshua M., Nitric oxide regulates the heart by spatial confinement of nitric oxide synthase isoforms, 10.1038/416337a
  22. Barouch LA, Cappola TP, Harrison RW, et al.: Combined loss of neuronal and endothelial nitric oxide synthase causes premature mortality and age-related hypertrophic cardiac remodeling in mice. J Mol Cell Cardiol 2003, 35:637–644.
  23. Dawson D, Lygate CA, Zhang MH, et al.: nNOS gene deletion exacerbates pathological left ventricular remodeling and functional deterioration after myocardial infarction. Circulation 2005, 112:3729–3737.
  24. Saraiva RM, Minhas KM, Raju SV, et al.: Deficiency of neuronal nitric oxide synthase increases mortality and cardiac remodeling after myocardial infarction: role of nitroso-redox equilibrium. Circulation 2005, 112:3415–3422.
  25. Khan SA, Lee K, Minhas KM, et al.: Neuronal nitric oxide synthase negatively regulates xanthine oxidoreductase inhibition of cardiac excitation-contraction coupling. Proc Natl Acad Sci U S A 2004, 101:15944–15948.
  26. Damy T, Ratajczak P, Shah AM, et al.: Increased neuronal nitric oxide synthase-derived NO production in the failing human heart. Lancet 2004, 363:1365–1367.
  27. Hataishi R, Rodrigues AC, Morgan JG, et al.: Nitric oxide synthase 2 and pressure-overload-induced left ventricular remodeling in mice. Exp Physiol 2006, 91:633–639.
  28. Kobayashi N, Horinaka S, Mita S, et al.: Aminoguanidine inhibits mitogen-activated protein kinase and improves cardiac performance and cardiovascular remodeling in failing hearts of salt-sensitive hypertensive rats. J Hypertens 2002, 20:2475–2485.
  29. Gealekman O, Abassi Z, Rubinstein I, et al.: Role of myocardial inducible nitric oxide synthase in contractile dysfunction and beta-adrenergic hyporesponsiveness in rats with experimental volume-overload heart failure. Circulation 2002, 105:236–243.
  30. Feng Q, Lu X, Jones DL, et al.: Increased inducible nitric oxide synthase expression contributes to myocardial dysfunction and higher mortality after myocardial infarction in mice. Circulation 2001, 104:700–704.
  31. Sam F, Sawyer DB, Xie Z, et al.: Mice lacking inducible nitric oxide synthase have improved left ventricular contractile function and reduced apoptotic cell death late after myocardial infarction. Circ Res 2001, 89:351–356.
  32. Liu YH, Carretero OA, Cingolani OH, et al.: Role of inducible nitric oxide synthase in cardiac function and remodeling in mice with heart failure due to myocardial infarction. Am J Physiol Heart Circ Physiol 2005, 289: H2616–H2623.
  33. Jones SP, Greer JJ, Ware PD, et al.: Deficiency of iNOS does not attenuate severe congestive heart failure in mice. Am J Physiol Heart Circ Physiol 2005, 288: H365–H370.
  34. Mungrue Imran N., Gros Robert, You Xiaomang, Pirani Asif, Azad Azar, Csont Tamas, Schulz Richard, Butany Jagdish, Stewart Duncan J., Husain Mansoor, Cardiomyocyte overexpression of iNOS in mice results in peroxynitrite generation, heart block, and sudden death, 10.1172/jci0213265
  35. Heger J, Godecke A, Flogel U, et al.: Cardiac-specific overexpression of inducible nitric oxide synthase does not result in severe cardiac dysfunction. Circ Res 2002, 90:93–99.
  36. Ziolo MT, Maier LS, Piacentino V 3rd, et al.: Myocyte nitric oxide synthase 2 contributes to blunted beta-adrenergic response in failing human hearts by decreasing Ca2+ transients. Circulation 2004, 109:1886–1891.
  37. Li Q, Guo Y, Tan W, et al.: Gene therapy with iNOS provides long-term protection against myocardial infarction without adverse functional consequences. Am J Physiol Heart Circ Physiol 2006, 290:H584–H589.
  38. Bolli R., Manchikalapudi S., Tang X.-L., Takano H., Qiu Y., Guo Y., Zhang Q., Jadoon A. K., The Protective Effect of Late Preconditioning Against Myocardial Stunning in Conscious Rabbits Is Mediated by Nitric Oxide Synthase : Evidence That Nitric Oxide Acts Both as a Trigger and as a Mediator of the Late Phase of Ischemic Preconditioning, 10.1161/01.res.81.6.1094
  39. Das A, Xi L, Kukreja RC: Phosphodiesterase-5 inhibitor sildenafil preconditions adult cardiac myocytes against necrosis and apoptosis. Essential role of nitric oxide signaling. J Biol Chem 2005, 280:12944–12955.
  40. Marfella R, Di Filippo C, Esposito K, et al.: Absence of inducible nitric oxide synthase reduces myocardial damage during ischemia reperfusion in streptozotocin-induced hyperglycemic mice. Diabetes 2004, 53:454–462.
  41. Jones SP, Bolli R: The ubiquitous role of nitric oxide in cardioprotection. J Mol Cell Cardiol 2006, 40:16–23.
  42. Calderone A, Thaik CM, Takahashi N, et al.: Nitric oxide, atrial natriuretic peptide, and cyclic GMP inhibit the growth-promoting effects of norepinephrine in cardiac myocytes and fibroblasts. J Clin Invest 1998, 101:812–818.
  43. Fiedler B, Lohmann SM, Smolenski A, et al.: Inhibition of calcineurin-NFAT hypertrophy signaling by cGMP-dependent protein kinase type I in cardiac myocytes. Proc Natl Acad Sci U S A 2002, 99:11363–11368.
  44. Pilz RB, Casteel DE: Regulation of gene expression by cyclic GMP. Circ Res 2003, 93:1034–1046.
  45. Wollert KC, Drexler H: Regulation of cardiac remodeling by nitric oxide: focus on cardiac myocyte hypertrophy and apoptosis. Heart Fail Rev 2002, 7:317–325.
  46. Massion PB, Balligand JL: Modulation of cardiac contraction, relaxation and rate by the endothelial nitric oxide synthase (eNOS): lessons from genetically modified mice. J Physiol 2003, 546:63–75.
  47. Champion HC, Georgakopoulos D, Takimoto E, et al.: Modulation of in vivo cardiac function by myocyte-specific nitric oxide synthase-3. Circ Res 2004, 94:657–663.
  48. Massion PB, Dessy C, Desjardins F, et al.: Cardiomyocyte-restricted overexpression of endothelial nitric oxide synthase (NOS3) attenuates beta-adrenergic stimulation and rein-forces vagal inhibition of cardiac contraction. Circulation 2004, 110:2666–2672.
  49. Takimoto E, Champion HC, Belardi D, et al.: cGMP catabolism by phosphodiesterase 5A regulates cardiac adrenergic stimulation by NOS3-dependent mechanism. Circ Res 2005, 96:100–109.
  50. Takimoto E, Champion HC, Li M, et al.: Chronic inhibition of cyclic GMP phosphodiesterase 5A prevents and reverses cardiac hypertrophy. Nat Med 2005, 11:214–222.
  51. Petroff MG, Kim SH, Pepe S, et al.: Endogenous nitric oxide mechanisms mediate the stretch dependence of Ca2+ release in cardiomyocytes. Nat Cell Biol 2001, 3:867–873.
  52. Brancaccio M, Fratta L, Notte A, et al.: Melusin, a muscle-specific integrin beta1-interacting protein, is required to prevent cardiac failure in response to chronic pressure overload. Nat Med 2003, 9:68–75.
  53. De Acetis M, Notte A, Accornero F, et al.: Cardiac overexpression of melusin protects from dilated cardiomyopathy due to long-standing pressure overload. Circ Res 2005, 96:1087–1094.
  54. Fulton D, Gratton JP, McCabe TJ, et al.: Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature 1999, 399:597–601. [Published erratum appears in Nature 1999, 400:792.]
  55. Dimmeler S, Fleming I, Fisslthaler B, et al.: Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 1999, 399:601–605.
  56. Massion PB, Pelat M, Belge C, et al.: Regulation of the mammalian heart function by nitric oxide. Comp Biochem Physiol A Mol Integr Physiol 2005, 142:144–150.
  57. Cappola Thomas P., Cope Leslie, Cernetich Amy, Barouch Lili A., Minhas Khalid, Irizarry Rafael A., Parmigiani Giovanni, Durrani Sarfraz, Lavoie Tera, Hoffman Eric P., Ye Shui Q., Garcia Joe G. N., Hare Joshua M., Deficiency of different nitric oxide synthase isoforms activates divergent transcriptional programs in cardiac hypertrophy, 10.1152/physiolgenomics.00156.2002
  58. Ichinose F, Bloch KD, Wu JC, et al.: Pressure overload-induced LV hypertrophy and dysfunction in mice are exacerbated by congenital NOS3 deficiency. Am J Physiol Heart Circ Physiol 2004, 286:H1070–H1075.
  59. Ruetten H, Dimmeler S, Gehring D, et al.: Concentric left ventricular remodeling in endothelial nitric oxide synthase knockout mice by chronic pressure overload. Cardiovasc Res 2005, 66:444–453.
  60. Takimoto Eiki, Champion Hunter C., Li Manxiang, Ren Shuxun, Rodriguez E. Rene, Tavazzi Barbara, Lazzarino Giuseppe, Paolocci Nazareno, Gabrielson Kathleen L., Wang Yibin, Kass David A., Oxidant stress from nitric oxide synthase–3 uncoupling stimulates cardiac pathologic remodeling from chronic pressure load, 10.1172/jci21968
  61. Bubikat A, De Windt LJ, Zetsche B, et al.: Local atrial natriuretic peptide signaling prevents hypertensive cardiac hypertrophy in endothelial nitric-oxide synthase-deficient mice. J Biol Chem 2005, 280:21594–21599.
  62. Jones SP, Greer JJ, Kakkar AK, et al.: Endothelial nitric oxide synthase overexpression attenuates myocardial reperfusion injury. Am J Physiol Heart Circ Physiol 2004, 286:H276–H282.
  63. Brunner F, Maier R, Andrew P, et al.: Attenuation of myocardial ischemia/reperfusion injury in mice with myocyte-specific overexpression of endothelial nitric oxide synthase. Cardiovasc Res 2003, 57:55–62.
  64. Elrod JW, Greer JJ, Bryan NS, et al.: Cardiomyocyte-specific overexpression of NO synthase-3 protects against myocardial ischemia-reperfusion injury. Arterioscler Thromb Vasc Biol 2006, 26:1517–1523.
  65. Iwata A., Sai S., Nitta Y., Chen M., de Fries-Hallstrand R., Dalesandro J., Thomas R., Allen M. D., Liposome-Mediated Gene Transfection of Endothelial Nitric Oxide Synthase Reduces Endothelial Activation and Leukocyte Infiltration in Transplanted Hearts, 10.1161/01.cir.103.22.2753
  66. Ueda K, Takano H, Hasegawa H, et al.: Granulocyte colony stimulating factor directly inhibits myocardial ischemia-reperfusion injury through Akt-endothelial NO synthase pathway. Arterioscler Thromb Vasc Biol 2006, 26:e108–e113.
  67. Scherrer-Crosbie M, Ullrich R, Bloch KD, et al.: Endothelial nitric oxide synthase limits left ventricular remodeling after myocardial infarction in mice. Circulation 2001, 104:1286–1291.
  68. Liu YH, Xu J, Yang XP, et al.: Effect of ACE inhibitors and angiotensin II type 1 receptor antagonists on endothelial NO synthase knockout mice with heart failure. Hypertension 2002, 39:375–381.
  69. Janssens S, Pokreisz P, Schoonjans L, et al.: Cardiomyocyte-specific overexpression of nitric oxide synthase 3 improves left ventricular performance and reduces compensatory hypertrophy after myocardial infarction. Circ Res 2004, 94:1256–1262.
  70. Aicher A, Heeschen C, Mildner-Rihm C, et al.: Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells. Nat Med 2003, 9:1370–1376.
  71. Iwakura A, Shastry S, Luedemann C, et al.: Estradiol enhances recovery after myocardial infarction by augmenting incorporation of bone marrow-derived endothelial progenitor cells into sites of ischemia-induced neovascularization via endothelial nitric oxide synthase-mediated activation of matrix metalloproteinase-9. Circulation 2006, 113:1605–1614.
  72. Landmesser U, Engberding N, Bahlmann FH, et al.: Statin-induced improvement of endothelial progenitor cell mobilization, myocardial neovascularization, left ventricular function, and survival after experimental myocardial infarction requires endothelial nitric oxide synthase. Circulation 2004, 110:1933–1939.
  73. Morawietz H, Rohrdach S, Rueckschloss U, et al.: Increased cardiac endothelial nitric oxide synthase expression in patients taking angiotensin-converting enzyme inhibitor therapy. Eur J Clin Invest 2006, 36:705–712.
  74. Mollnau H, Oelze M, August M, et al.: Mechanisms of increased vascular superoxide production in an experimental model of idiopathic dilated cardiomyopathy. Arterioscler Thromb Vasc Biol 2005, 25:2554–2559.
  75. Liao Y, Asakura M, Takashima S, et al.: Celiprolol, a vasodilatory beta-blocker, inhibits pressure overload-induced cardiac hypertrophy and prevents the transition to heart failure via nitric oxide-dependent mechanisms in mice. Circulation 2004, 110:692–699.
  76. Ignarro LJ, Napoli C, Loscalzo J: Nitric oxide donors and cardiovascular agents modulating the bioactivity of nitric oxide: an overview. Circ Res 2002, 90:21–28.
  77. Dessy C, Saliez J, Ghisdal P, et al.: Endothelial beta3-adrenoreceptors mediate nitric oxide-dependent vasorelaxation of coronary microvessels in response to the third-generation beta-blocker nebivolol. Circulation 2005, 112:1198–1205.
  78. Oelze M, Daiber A, Brandes RP, et al.: Nebivolol inhibits superoxide formation by NADPH oxidase and endothelial dysfunction in angiotensin II-treated rats. Hypertension 2006, 48:677–684.
  79. Mason RP, Kalinowski L, Jacob RF, et al.: Nebivolol reduces nitroxidative stress and restores nitric oxide bioavailability in endothelium of black Americans. Circulation 2005, 112:3795–3801.