User menu

An International Collaboration to standardize HIV-2 viral load assays : results from the 2009 ACHIeV2e quality control study

Bibliographic reference Damond, F. ; Benard, A. ; Balotta, Claudia ; Böni, Jürg ; Cotten, Matthew ; et. al. An International Collaboration to standardize HIV-2 viral load assays : results from the 2009 ACHIeV2e quality control study. In: Journal of Clinical Microbiology, Vol. 49, no. 10, p. 3491-3497 (10/2011)
Permanent URL
  1. Aranda Agustín, Jiménez-Martí Elena, Orozco Helena, Matallana Emilia, del Olmo Marcellí, Sulfur and Adenine Metabolisms Are Linked, and Both Modulate Sulfite Resistance in Wine Yeast, 10.1021/jf060851b
  2. Arfi K, Catabolism of volatile sulfur compounds precursors by Brevibacterium linens and Geotrichum candidum, two microorganisms of the cheese ecosystem, 10.1016/j.jbiotec.2003.07.003
  3. Arfi K., Landaud S., Bonnarme P., Evidence for Distinct L-Methionine Catabolic Pathways in the Yeast Geotrichum candidum and the Bacterium Brevibacterium linens, 10.1128/aem.72.3.2155-2162.2006
  4. Avram D, Bakalinsky A T, SSU1 encodes a plasma membrane protein with a central role in a network of proteins conferring sulfite tolerance in Saccharomyces cerevisiae., 10.1128/jb.179.18.5971-5974.1997
  5. Boer Viktor M., de Winde Johannes H., Pronk Jack T., Piper Matthew D. W., The Genome-wide Transcriptional Responses ofSaccharomyces cerevisiaeGrown on Glucose in Aerobic Chemostat Cultures Limited for Carbon, Nitrogen, Phosphorus, or Sulfur, 10.1074/jbc.m209759200
  6. Bonnarme P, Amarita F, Chambellon E, Semon E, Spinnler HE, Yvon M (2004) Methylthioacetaldehyde, a possible intermediate metabolite for the production of volatile sulphur compounds from l-methionine by Lactococcus lactis. FEMS Microbiol Lett 236:85–90. doi: 10.1016/j.femsle.2004.05.022
  7. Chan Sherwin Y., Appling Dean R., Regulation ofS-Adenosylmethionine Levels inSaccharomyces cerevisiae, 10.1074/jbc.m308696200
  8. Cholet O., Henaut A., Casaregola S., Bonnarme P., Gene Expression and Biochemical Analysis of Cheese-Ripening Yeasts: Focus on Catabolism of L-Methionine, Lactate, and Lactose, 10.1128/aem.02720-06
  9. Cholet O., Henaut A., Hebert A., Bonnarme P., Transcriptional Analysis of L-Methionine Catabolism in the Cheese-Ripening Yeast Yarrowia lipolytica in Relation to Volatile Sulfur Compound Biosynthesis, 10.1128/aem.00644-07
  10. Cordente Antonio G., Heinrich Anthony, Pretorius Isak S., Swiegers Jan H., Isolation of sulfite reductase variants of a commercial wine yeast with significantly reduced hydrogen sulfide production, 10.1111/j.1567-1364.2009.00489.x
  11. Lopez del Castillo Lozano M., Tâche R., Bonnarme P., Landaud S., Evaluation of a quantitative screening method for hydrogen sulfide production by cheese-ripening microorganisms: The first step towards l-cysteine catabolism, 10.1016/j.mimet.2006.12.001
  12. Delmar P., Robin S. p., Daudin J. J., VarMixt: efficient variance modelling for the differential analysis of replicated gene expression data, 10.1093/bioinformatics/bti023
  13. DUJON B, Yeasts illustrate the molecular mechanisms of eukaryotic genome evolution, 10.1016/j.tig.2006.05.007
  14. Fauchon Mirène, Lagniel Gilles, Aude Jean-Christophe, Lombardia Luis, Soularue Pascal, Petat Cyrille, Marguerie Gérard, Sentenac André, Werner Michel, Labarre Jean, Sulfur Sparing in the Yeast Proteome in Response to Sulfur Demand, 10.1016/s1097-2765(02)00500-2
  15. Fontecave Marc, Atta Mohamed, Mulliez Etienne, S-adenosylmethionine: nothing goes to waste, 10.1016/j.tibs.2004.03.007
  16. Forquin M.-P., Duvergey H., Proux C., Loux V., Mounier J., Landaud S., Coppee J.-Y., Gibrat J.-F., Bonnarme P., Martin-Verstraete I., Vallaeys T., Identification of Brevibacteriaceae by Multilocus Sequence Typing and Comparative Genomic Hybridization Analyses, 10.1128/aem.00224-09
  17. Forquin M.-P., Hebert A., Roux A., Aubert J., Proux C., Heilier J.-F., Landaud S., Junot C., Bonnarme P., Martin-Verstraete I., Global Regulation of the Response to Sulfur Availability in the Cheese-Related Bacterium Brevibacterium aurantiacum, 10.1128/aem.01708-10
  18. Ganguli D., Kumar C., Bachhawat A. K., The Alternative Pathway of Glutathione Degradation Is Mediated by a Novel Protein Complex Involving Three New Genes in Saccharomyces cerevisiae, 10.1534/genetics.106.066944
  19. Godard P., Urrestarazu A., Vissers S., Kontos K., Bontempi G., van Helden J., Andre B., Effect of 21 Different Nitrogen Sources on Global Gene Expression in the Yeast Saccharomyces cerevisiae, 10.1128/mcb.01084-06
  20. Hansen J., Johannesen P. Francke, Cysteine is essential for transcriptional regulation of the sulfur assimilation genes in Saccharomyces cerevisiae, 10.1007/s004380051199
  21. Hazelwood Lucie A., Tai Siew Leng, Boer Viktor M., de Winde Johannes H., Pronk Jack T., Daran Jean Marc, A new physiological role for Pdr12p inSaccharomyces cerevisiae: export of aromatic and branched-chain organic acids produced in amino acid catabolism, 10.1111/j.1567-1364.2006.00094.x
  22. Hébert A, Casaregola S, Beckerich J (2011) Biodiversity in the sulfur metabolism in hemiascomycetous yeasts. FEMS Yeast Res. doi: 10.1111/j.1567-1364.2011.00725.x
  23. Hellborg Linda, Woolfit Megan, Arthursson-Hellborg Mattias, Piškur Jure, Complex evolution of the DAL5 transporter family, 10.1186/1471-2164-9-164
  24. Hogan DA, Auchtung TA, Hausinger RP (1999) Cloning and characterization of a sulfonate/alpha-ketoglutarate dioxygenase from Saccharomyces cerevisiae. J Bacteriol 181:5876–5879
  25. Jacquemin-Faure Ir�ne, Thomas Dominique, Laporte Jean, Cibert Christian, Surdin-Kerjan Yolande, The vacuolar compartment is required for sulfur amino acid homeostasis inSaccharomyces cerevisiae, 10.1007/bf00583903
  26. Kagkli D.-M., Bonnarme P., Neuveglise C., Cogan T. M., Casaregola S., L-Methionine Degradation Pathway in Kluyveromyces lactis: Identification and Functional Analysis of the Genes Encoding L-Methionine Aminotransferase, 10.1128/aem.72.5.3330-3335.2006
  27. Kagkli Dafni-Maria, Tâche Roselyne, Cogan Timothy M., Hill Colin, Casaregola Serge, Bonnarme Pascal, Kluyveromyces lactis and Saccharomyces cerevisiae, two potent deacidifying and volatile-sulphur-aroma-producing microorganisms of the cheese ecosystem, 10.1007/s00253-006-0461-z
  28. Kaur J., Bachhawat A. K., Yct1p, a Novel, High-Affinity, Cysteine-Specific Transporter From the Yeast Saccharomyces cerevisiae, 10.1534/genetics.107.070342
  29. Kaur Hardeep, Kumar Chitranshu, Junot Christophe, Toledano Michel B., Bachhawat Anand K., Dug1p Is a Cys-Gly Peptidase of the γ-Glutamyl Cycle ofSaccharomyces cerevisiaeand Represents a Novel Family of Cys-Gly Peptidases, 10.1074/jbc.m808952200
  30. Knijnenburg Theo A, Daran Jean-Marc G, van den Broek Marcel A, Daran-Lapujade Pascale AS, de Winde Johannes H, Pronk Jack T, Reinders Marcel JT, Wessels Lodewyk FA, Combinatorial effects of environmental parameters on transcriptional regulation in Saccharomyces cerevisiae: A quantitative analysis of a compendium of chemostat-based transcriptome data, 10.1186/1471-2164-10-53
  31. Landaud Sophie, Helinck Sandra, Bonnarme Pascal, Formation of volatile sulfur compounds and metabolism of methionine and other sulfur compounds in fermented food, 10.1007/s00253-007-1288-y
  32. Luikenhuis S., Perrone G., Dawes I. W., Grant C. M., The Yeast Saccharomyces cerevisiae Contains Two Glutaredoxin Genes That Are Required for Protection against Reactive Oxygen Species, 10.1091/mbc.9.5.1081
  33. Mansour S., Beckerich J. M., Bonnarme P., Lactate and Amino Acid Catabolism in the Cheese-Ripening Yeast Yarrowia lipolytica, 10.1128/aem.01519-08
  34. Masselot Monique, Surdin-Kerjan Yolande, Methionine biosynthesis in Saccharomyces cerevisiae : II. Gene-enzyme relationships in the sulfate assimilation pathway, 10.1007/bf00265572
  35. Patton E.E., SCFMet30-mediated control of the transcriptional activator Met4 is required for the G1-S transition, 10.1093/emboj/19.7.1613
  36. Peng Zhaohua, Verma Desh Pal S., A RiceHAL2-like Gene Encodes a Ca2+-sensitive 3′(2′),5′-Diphosphonucleoside 3′(2′)-Phosphohydrolase and Complements Yeastmet22andEscherichia coli cysQMutations, 10.1074/jbc.270.49.29105
  37. Reymond N., Charles H., Duret L., Calevro F., Beslon G., Fayard J.-M., ROSO: optimizing oligonucleotide probes for microarrays, 10.1093/bioinformatics/btg401
  38. Samanta M. P., Liang S., Predicting protein functions from redundancies in large-scale protein interaction networks, 10.1073/pnas.2132527100
  39. Schaffrath Raffael, Breunig Karin D., Genetics and Molecular Physiology of the Yeast Kluyveromyces lactis, 10.1006/fgbi.2000.1221
  40. Smith Colin A., Want Elizabeth J., O'Maille Grace, Abagyan Ruben, Siuzdak Gary, XCMS:  Processing Mass Spectrometry Data for Metabolite Profiling Using Nonlinear Peak Alignment, Matching, and Identification, 10.1021/ac051437y
  41. Suh J.-K., Poulsen L. L., Ziegler D. M., Robertus J. D., Yeast flavin-containing monooxygenase generates oxidizing equivalents that control protein folding in the endoplasmic reticulum, 10.1073/pnas.96.6.2687
  42. Suleau A., Gourdon P., Reitz-Ausseur J., Casaregola S., Transcriptomic Analysis of Extensive Changes in Metabolic Regulation in Kluyveromyces lactis Strains, 10.1128/ec.00087-06
  43. Thomas D, Surdin-Kerjan Y (1997) Metabolism of sulfur amino acids in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 61:503–532
  44. Thomas D, Barbey R, Surdin-Kerjan Y (1990) Gene–enzyme relationship in the sulfate assimilation pathway of Saccharomyces cerevisiae. Study of the 3'-phosphoadenylylsulfate reductase structural gene. J Biol Chem 265:15518–15524
  45. Thomas D., Barbey R., Henry D., Surdin-Kerjan Y., Physiological analysis of mutants of Saccharomyces cerevisiae impaired in sulphate assimilation, 10.1099/00221287-138-10-2021
  46. Thorsen Michael, Lagniel Gilles, Kristiansson Erik, Junot Christophe, Nerman Olle, Labarre Jean, Tamás Markus J., Quantitative transcriptome, proteome, and sulfur metabolite profiling of theSaccharomyces cerevisiaeresponse to arsenite, 10.1152/physiolgenomics.00236.2006
  47. Uria-Nickelsen Maria R., Leadbetter Edward R., Godchaux Walter, Sulfonate-sulfur assimilation by yeasts resembles that of bacteria, 10.1111/j.1574-6968.1993.tb06553.x
  48. Wheeler Glen L., Quinn Kathryn A., Perrone Gabriel, Dawes Ian W., Grant Chris M., Glutathione regulates the expression of γ-glutamylcysteine synthetase via the Met4 transcription factor : Regulation of GSH biosynthesis, 10.1046/j.1365-2958.2002.03174.x
  49. Wheeler Glen L., Trotter Eleanor W., Dawes Ian W., Grant Chris M., Coupling of the Transcriptional Regulation of Glutathione Biosynthesis to the Availability of Glutathione and Methionine via the Met4 and Yap1 Transcription Factors, 10.1074/jbc.m310156200
  50. Wood AF, Aston JW, Douglas GK (1985) The determination of free aminoacids in cheese by capillary column gas liquid chromatography. Aust J Dairy Technol 40:166–169
  51. Yang Y. H., Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation, 10.1093/nar/30.4.e15
  52. Zhang Nianshu, Merlotti Cristina, Wu Jian, Ismail Thamir, El-Moghazy Abdel-Nasser, Ahmed Khan Shakeel, Butt Amna, Gardner David C. J., Sims Paul F. G., Oliver Stephen G., Functional Analysis of six novel ORFs on the left arm of Chromosome XII ofSaccharomyces cerevisiae reveals three of them responding to S-starvation, 10.1002/1097-0061(20010315)18:4<325::aid-yea669>;2-k