User menu

Loading and skeletal development and maintenance.

Bibliographic reference Bergmann, P ; Body, J J ; Boonen, S ; Boutsen, Yves ; Devogelaer, Jean-Pierre ; et. al. Loading and skeletal development and maintenance.. In: Journal of Osteoporosis, Vol. 2011, p. 786752 (2010)
Permanent URL
  1. (1892)
  2. Frost H. M., Bone ?mass? and the ?mechanostat?: A proposal, 10.1002/ar.1092190104
  3. Frost Harold M., From Wolff's law to the Utah paradigm: Insights about bone physiology and its clinical applications, 10.1002/ar.1049
  4. Rubin C T, Lanyon L E, Regulation of bone formation by applied dynamic loads. : , 10.2106/00004623-198466030-00012
  5. Mosley J.R., March B.M., Lynch J., Lanyon L.E., Strain magnitude related changes in whole bone architecture in growing rats, 10.1016/s8756-3282(96)00385-7
  6. Gross Ted S., Edwards Jonathan L., Mcleod Kenneth J., Rubin Clinton T., Strain Gradients Correlate with Sites of Periosteal Bone Formation, 10.1359/jbmr.1997.12.6.982
  7. Qin Yi-Xian, Rubin Clinton T., McLeod Kenneth J., Nonlinear dependence of loading intensity and cycle number in the maintenance of bone mass and morphology, 10.1002/jor.1100160414
  8. Nature, 412, 603 (2001)
  9. Journal of Applied Physiology, 87, 189 (1999)
  10. Journal of Bone and Mineral Research, 10, 683 (1995)
  11. LaMothe Jeremy M., Hamilton Nicolas H., Zernicke Ronald F., Strain rate influences periosteal adaptation in mature bone, 10.1016/j.medengphy.2004.04.012
  12. FRITTON J, MYERS E, WRIGHT T, VANDERMEULEN M, Loading induces site-specific increases in mineral content assessed by microcomputed tomography of the mouse tibia, 10.1016/j.bone.2005.02.013
  13. van der Meulen Marjolein C.H., Morgan Timothy G., Yang Xu, Baldini Todd H., Myers Elizabeth R., Wright Timothy M., Bostrom Mathias P.G., Cancellous bone adaptation to in vivo loading in a rabbit model, 10.1016/j.bone.2005.11.026
  14. Chambers Timothy J., Evans Mervyn, Gardner Trevor N., Turner-Smith Alan, Chow Jade W.M., Induction of bone formation in rat tail vertebrae by mechanical loading, 10.1016/s0169-6009(08)80025-6
  15. Huang, R. P., Rubin C. T., McLeod K. J., Changes in Postural Muscle Dynamics as a Function of Age, 10.1093/gerona/54.8.b352
  16. RUBIN C., The anabolic activity of bone tissue, suppressed by disuse, is normalized by brief exposure to extremely low-magnitude mechanical stimuli, 10.1096/fj.01-0166com
  17. Saxon L.K., Robling A.G., Alam I., Turner C.H., Mechanosensitivity of the rat skeleton decreases after a long period of loading, but is improved with time off, 10.1016/j.bone.2004.12.001
  18. Robling Alexander G., Hinant Felicia M., Burr David B., Turner Charles H., Improved Bone Structure and Strength After Long-Term Mechanical Loading Is Greatest if Loading Is Separated Into Short Bouts, 10.1359/jbmr.2002.17.8.1545
  19. Journal of Bone and Mineral Research, 3, 647 (1988)
  20. Mechanosensation and transduction in osteocytes, 3, 7 (2006)
  21. Kamioka H, Honjo T, Takano-Yamamoto T, A three-dimensional distribution of osteocyte processes revealed by the combination of confocal laser scanning microscopy and differential interference contrast microscopy, 10.1016/s8756-3282(00)00421-x
  22. FASEB Journal, 9, 441 (1995)
  23. Weinbaum S., Cowin S.C., Zeng Yu, A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses, 10.1016/0021-9290(94)90010-8
  24. Journal of Experimental Biology, 203, 2737 (2000)
  25. Mikuni-Takagaki Y., Distinct responses of different populations of bone cells to mechanical stress, 10.1210/en.137.5.2028
  26. Aguirre J Ignacio, Plotkin Lilian I, Stewart Scott A, Weinstein Robert S, Parfitt A Michael, Manolagas Stavros C, Bellido Teresita, Osteocyte Apoptosis Is Induced by Weightlessness in Mice and Precedes Osteoclast Recruitment and Bone Loss, 10.1359/jbmr.060107
  27. Gu Guoliang, Mulari Mika, Peng Zhiqi, Hentunen Teuvo A., Väänänen H. Kalervo, Death of osteocytes turns off the inhibition of osteoclasts and triggers local bone resorption, 10.1016/j.bbrc.2005.06.211
  28. Tan S.D., Bakker A.D., Semeins C.M., Kuijpers-Jagtman A.M., Klein-Nulend J., Inhibition of osteocyte apoptosis by fluid flow is mediated by nitric oxide, 10.1016/j.bbrc.2008.03.007
  29. Tan S. Djien, de Vries Teun J., Kuijpers-Jagtman Anne Marie, Semeins Cornelis M., Everts Vincent, Klein-Nulend Jenneke, Osteocytes subjected to fluid flow inhibit osteoclast formation and bone resorption, 10.1016/j.bone.2007.07.019
  30. You Lidan, Temiyasathit Sara, Lee Peling, Kim Chi Hyun, Tummala Padmaja, Yao Wei, Kingery Wade, Malone Amanda M., Kwon Ronald Y., Jacobs Christopher R., Osteocytes as mechanosensors in the inhibition of bone resorption due to mechanical loading, 10.1016/j.bone.2007.09.047
  31. Vezeridis Peter S., Semeins Cornelis M., Chen Qian, Klein-Nulend Jenneke, Osteocytes subjected to pulsating fluid flow regulate osteoblast proliferation and differentiation, 10.1016/j.bbrc.2006.07.146
  32. van Oers René F.M., Ruimerman Ronald, Tanck Esther, Hilbers Peter A.J., Huiskes Rik, A unified theory for osteonal and hemi-osteonal remodeling, 10.1016/j.bone.2007.10.009
  33. Rawlinson S.C.F., Pitsillides A.A., Lanyon L.E., Involvement of different ion channels in osteoblasts' and osteocytes' early responses to mechanical strain, 10.1016/s8756-3282(96)00260-8
  34. Rubin Janet, Rubin Clinton, Jacobs Christopher Rae, Molecular pathways mediating mechanical signaling in bone, 10.1016/j.gene.2005.10.028
  35. Liu Dawei, Genetos Damian C., Shao Ying, Geist Derik J., Li Jiliang, Ke Hua Zhu, Turner Charles H., Duncan Randall L., Activation of extracellular-signal regulated kinase (ERK1/2) by fluid shear is Ca2+- and ATP-dependent in MC3T3-E1 osteoblasts, 10.1016/j.bone.2007.09.058
  36. Kapur Sonia, Baylink David J, William Lau K.-H, Fluid flow shear stress stimulates human osteoblast proliferation and differentiation through multiple interacting and competing signal transduction pathways, 10.1016/s8756-3282(02)00979-1
  37. Peake Matthew A., El Haj Alicia J., Preliminary characterisation of mechanoresponsive regions of the c-fospromoter in bone cells, 10.1016/s0014-5793(03)00108-x
  38. Miyauchi Akimitsu, Notoya Kohei, Mikuni-Takagaki Yuko, Takagi Yasuyuki, Goto Masayuki, Miki Yoshiki, Takano-Yamamoto Teruko, Jinnai Kenji, Takahashi Keiichi, Kumegawa Masayoshi, Chihara Kazuo, Fujita Takuo, Parathyroid Hormone-activated Volume-sensitive Calcium Influx Pathways in Mechanically Loaded Osteocytes, 10.1074/jbc.275.5.3335
  39. Kim Chi Hyun, Takai Erica, Zhou Hua, Von Stechow Dietrich, Müller Ralph, Dempster David W, Guo X Edward, Trabecular Bone Response to Mechanical and Parathyroid Hormone Stimulation: The Role of Mechanical Microenvironment : BONE RESPONSE TO MECHANICAL LOADING AND PTH, 10.1359/jbmr.2003.18.12.2116
  40. Ma Yanfei, Jee Webster S. S., Yuan Zhongzhi, Wei Wei, Chen Hongka, Pun Sunwah, Liang Haohai, Lin Chaohua, Parathyroid Hormone and Mechanical Usage Have a Synergistic Effect in Rat Tibial Diaphyseal Cortical Bone, 10.1359/jbmr.1999.14.3.439
  41. Tanaka Shinya, Sakai Akinori, Tanaka Masahiro, Otomo Hajime, Okimoto Nobukazu, Sakata Takeshi, Nakamura Toshitaka, Skeletal Unloading Alleviates the Anabolic Action of Intermittent PTH(1-34) in Mouse Tibia in Association With Inhibition of PTH-Induced Increase in c-fos mRNA in Bone Marrow Cells, 10.1359/jbmr.040808
  42. Turner Russell T., Evans Glenda L., Cavolina Jason M., Halloran Bernard, Morey-Holton Emily, Programmed Administration of Parathyroid Hormone Increases Bone Formation and Reduces Bone Loss in Hindlimb-Unloaded Ovariectomized Rats1, 10.1210/endo.139.10.6227
  43. Turner R. T., Disuse in adult male rats attenuates the bone anabolic response to a therapeutic dose of parathyroid hormone, 10.1152/japplphysiol.01622.2005
  44. Zaman Gul, Jessop Helen L, Muzylak Mariusz, De Souza Roberto L, Pitsillides Andrew A, Price Joanna S, Lanyon Lance L, Osteocytes Use Estrogen Receptor α to Respond to Strain but Their ERα Content Is Regulated by Estrogen, 10.1359/jbmr.060504
  45. Kato S., Endoh H., Masuhiro Y., Kitamoto T., Uchiyama S., Sasaki H., Masushige S., Gotoh Y., Nishida E., Kawashima H., Metzger D., Chambon P., Activation of the Estrogen Receptor Through Phosphorylation by Mitogen-Activated Protein Kinase, 10.1126/science.270.5241.1491
  46. Jessop H. L., Sjöberg M., Cheng M. Z., Zaman G., Wheeler-Jones C. P. D., Lanyon L. E., Mechanical Strain and Estrogen Activate Estrogen Receptor α in Bone Cells, 10.1359/jbmr.2001.16.6.1045
  47. Jessop Helen L, Suswillo Rosemary FL, Rawlinson Simon CF, Zaman Gul, Lee Karla, Das-Gupta Vicky, Pitsillides Andrew A, Lanyon Lance E, Osteoblast-Like Cells From Estrogen Receptor α Knockout Mice Have Deficient Responses to Mechanical Strain, 10.1359/jbmr.2004.19.6.938
  48. Journal of Bone and Mineral Research, 11, 502 (1996)
  49. Damien E., Price J. S., Lanyon L. E., The Estrogen Receptor's Involvement in Osteoblasts' Adaptive Response to Mechanical Strain, 10.1359/jbmr.1998.13.8.1275
  50. Cheng Ming Zhao, Zaman Gul, Rawlinson Simon C. F., Pitsillides Andrew A., Suswillo Rosemary F. L., Lanyon Lance E., Enhancement by Sex Hormones of the Osteoregulatory Effects of Mechanical Loading and Prostaglandins in Explants of Rat Ulnae, 10.1359/jbmr.1997.12.9.1424
  51. American Journal of Physiology, 280, E436 (2001)
  52. Lanyon L, Is estrogen receptor alpha key to controlling bones' resistance to fracture?, 10.1677/joe.0.1820183
  53. Tomkinson A., The Death of Osteocytes via Apoptosis Accompanies Estrogen Withdrawal in Human Bone, 10.1210/jc.82.9.3128
  54. Tomkinson A., Gevers E. F., Wit J. M., Reeve J., Noble B. S., The Role of Estrogen in the Control of Rat Osteocyte Apoptosis, 10.1359/jbmr.1998.13.8.1243
  55. Noble B. S., Peet N., Stevens H. Y., Brabbs A., Mosley J. R., Reilly G. C., Reeve J., Skerry T. M., Lanyon L. E., Mechanical loading: biphasic osteocyte survival and targeting of osteoclasts for bone destruction in rat cortical bone, 10.1152/ajpcell.00234.2002
  56. Devlin M. J., Lieberman D. E., Variation in estradiol level affects cortical bone growth in response to mechanical loading in sheep, 10.1242/jeb.02675
  57. Saxon Leanne K., Turner Charles H., Low-dose estrogen treatment suppresses periosteal bone formation in response to mechanical loading, 10.1016/j.bone.2006.06.030
  58. Järvinen T.L.N, Kannus P, Pajamäki I, Vuohelainen T, Tuukkanen J, Järvinen M, Sievänen H, Estrogen deposits extra mineral into bones of female rats in puberty, but simultaneously seems to suppress the responsiveness of female skeleton to mechanical loading, 10.1016/s8756-3282(03)00100-5
  59. Suuriniemi Miia, Suominen Harri, Mahonen Anitta, Alén Markku, Cheng Sulin, Estrogen Receptor α Polymorphism Modifies the Association between Childhood Exercise and Bone Mass: Follow-Up Study, 10.1123/pes.19.4.444
  60. Heino Terhi J, Hentunen Teuvo A, Väänänen H.Kalervo, Conditioned medium from osteocytes stimulates the proliferation of bone marrow mesenchymal stem cells and their differentiation into osteoblasts, 10.1016/j.yexcr.2003.11.016
  61. Zaman G., Pitsillides A. A., Rawlinson S. C. F., Suswillo R. F. L., Mosley J. R., Cheng M. Z., Platts L. A. M., Hukkanen M., Polak J. M., Lanyon L. E., Mechanical Strain Stimulates Nitric Oxide Production by Rapid Activation of Endothelial Nitric Oxide Synthase in Osteocytes, 10.1359/jbmr.1999.14.7.1123
  62. Vatsa Aviral, Smit Theo H., Klein-Nulend Jenneke, Extracellular NO signalling from a mechanically stimulated osteocyte, 10.1016/j.jbiomech.2007.02.015
  63. Basso Nick, Heersche Johan N.M., Effects of hind limb unloading and reloading on nitric oxide synthase expression and apoptosis of osteocytes and chondrocytes, 10.1016/j.bone.2006.04.014
  64. Van 't Hof Robert J., Ralston Stuart H., Cytokine-Induced Nitric Oxide Inhibits Bone Resorption by Inducing Apoptosis of Osteoclast Progenitors and Suppressing Osteoclast Activity, 10.1359/jbmr.1997.12.11.1797
  65. Otsuka Eri, Hirano Kiyoko, Matsushita Shouji, Inoue Atsuto, Shigehisa Hirose, Yamaguchi Akira, Hagiwara Hiromi, Effects of nitric oxide from exogenous nitric oxide donors on osteoblastic metabolism, 10.1016/s0014-2999(98)00190-3
  66. American Journal of Physiology, 270, E634 (1996)
  67. Watanuki Makoto, Sakai Akinori, Sakata Takeshi, Tsurukami Hiroshi, Miwa Masao, Uchida Yasuo, Watanabe Ken, Ikeda Kyoji, Nakamura Toshitaka, Role of Inducible Nitric Oxide Synthase in Skeletal Adaptation to Acute Increases in Mechanical Loading, 10.1359/jbmr.2002.17.6.1015
  68. Ajubi N.E., Klein-Nulend J., Nijweide P.J., Vrijheid-Lammers T., Alblas M.J., Burger E.H., Pulsating Fluid Flow Increases Prostaglandin Production by Cultured Chicken Osteocytes—A Cytoskeleton-Dependent Process, 10.1006/bbrc.1996.1131
  69. Klein-Nulend Jenneke, Burger Elisabeth H., Semeins Cornelis M., Raisz Lawrence G., Pilbeam Carol C., Pulsating Fluid Flow Stimulates Prostaglandin Release and Inducible Prostaglandin G/H Synthase mRNA Expression in Primary Mouse Bone Cells, 10.1359/jbmr.1997.12.1.45
  70. Wadhwa Sunil, Godwin Stephen L., Peterson Donald R., Epstein Mary A., Raisz Lawrence G., Pilbeam Carol C., Fluid Flow Induction of Cyclo-Oxygenase 2 Gene Expression in Osteoblasts Is Dependent on an Extracellular Signal-Regulated Kinase Signaling Pathway, 10.1359/jbmr.2002.17.2.266
  71. Raisz L. G., Effects of prostaglandin E2 on bone formation in cultured fetal rat calvariae: role of insulin-like growth factor-I, 10.1210/en.133.4.1504
  72. American Journal of Physiology, 268, E318 (1995)
  73. Cheng Ming Zhao, Zaman Gul, Rawlinson Simon C. F., Mohan Subburaman, Baylink David J., Lanyon Lance E., Mechanical Strain Stimulates ROS Cell Proliferation Through IGF-II and Estrogen Through IGF-I, 10.1359/jbmr.1999.14.10.1742
  74. Cheng Ming Zhao, Rawlinson Simon C. F., Pitsillides Andrew A., Zaman Gul, Mohan Subburaman, Baylink David J., Lanyon Lance E., Human Osteoblasts' Proliferative Responses to Strain and 17β-Estradiol Are Mediated by the Estrogen Receptor and the Receptor for Insulin-Like Growth Factor I, 10.1359/jbmr.2002.17.4.593
  75. Journal of Bone and Mineral Research, 4, 209 (1989)
  76. Raisz L. G., Pathogenesis of osteoporosis: concepts, conflicts, and prospects, 10.1172/jci27071
  77. Robling Alexander G., Niziolek Paul J., Baldridge Lee A., Condon Keith W., Allen Matthew R., Alam Imranul, Mantila Sara M., Gluhak-Heinrich Jelica, Bellido Teresita M., Harris Stephen E., Turner Charles H., Mechanical Stimulation of Bonein VivoReduces Osteocyte Expression of Sost/Sclerostin, 10.1074/jbc.m705092200
  78. Sawakami Kimihiko, Robling Alexander G., Ai Minrong, Pitner Nathaniel D., Liu Dawei, Warden Stuart J., Li Jiliang, Maye Peter, Rowe David W., Duncan Randall L., Warman Matthew L., Turner Charles H., The Wnt Co-receptor LRP5 Is Essential for Skeletal Mechanotransduction but Not for the Anabolic Bone Response to Parathyroid Hormone Treatment, 10.1074/jbc.m601000200
  79. Bonewald Lynda F., Johnson Mark L., Osteocytes, mechanosensing and Wnt signaling, 10.1016/j.bone.2007.12.224
  80. Kim Chi Hyun, You Lidan, Yellowley Clare E., Jacobs Christopher R., Oscillatory fluid flow-induced shear stress decreases osteoclastogenesis through RANKL and OPG signaling, 10.1016/j.bone.2006.05.017
  81. Heino Terhi J., Hentunen Teuvo A., Väänänen H. Kalervo, Osteocytes inhibit osteoclastic bone resorption through transforming growth factor-β: Enhancement by estrogen* : Interactions Between Osteocytes & Osteoclasts, 10.1002/jcb.10109
  82. Weyts F.A.A., Bosmans B., Niesing R., Leeuwen J.P.T.M., Weinans H., Mechanical Control of Human Osteoblast Apoptosis and Proliferation in Relation to Differentiation, 10.1007/s00223-002-2027-0
  83. Tang Lin, Lin Zhu, Li Yong-ming, Effects of different magnitudes of mechanical strain on Osteoblasts in vitro, 10.1016/j.bbrc.2006.03.123
  84. Rubin Janet, Biskobing Diane, Fan Xian, Rubin Clinton, McLeod Ken, Taylor W. Robert, Pressure regulates osteoclast formation and MCSF expression in marrow culture, 10.1002/(sici)1097-4652(199701)170:1<81::aid-jcp9>;2-h
  85. Miao D., Osteoblast-derived PTHrP is a potent endogenous bone anabolic agent that modifies the therapeutic efficacy of administered PTH 1-34, 10.1172/jci24918
  86. Laino Gregorio, D'Aquino Riccardo, Graziano Antonio, Lanza Vladimiro, Carinci Francesco, Naro Fabio, Pirozzi Giuseppe, Papaccio Gianpaolo, A New Population of Human Adult Dental Pulp Stem Cells: A Useful Source of Living Autologous Fibrous Bone Tissue (LAB) : ADULT SBP/DPSCS FORMING LAB, 10.1359/jbmr.050325
  87. Chen Xuesong, Macica Carolyn, Nasiri Ali, Judex Stefan, Broadus Arthur E., Mechanical regulation of PTHrP expression in entheses, 10.1016/j.bone.2007.07.020
  88. Tsangari Helen, Findlay David M., Fazzalari Nicola L., Structural and remodeling indices in the cancellous bone of the proximal femur across adulthood, 10.1016/j.bone.2006.07.007
  89. Journal of Applied Physiology, 89, 840 (2000)
  90. Vico Laurence, Collet Philippe, Guignandon Alain, Lafage-Proust Marie-Hélène, Thomas Thierry, Rehailia Mohamed, Alexandre Christian, Effects of long-term microgravity exposure on cancellous and cortical weight-bearing bones of cosmonauts, 10.1016/s0140-6736(00)02217-0
  91. Clinical Chemistry, 44, 578 (1998)
  92. Smith S. M., Collagen Cross-Link Excretion during Space Flight and Bed Rest, 10.1210/jc.83.10.3584
  93. Hefferan T. E., Evans G. L., Lotinun S., Zhang M., Morey-Holton E., Turner R. T., Effect of gender on bone turnover in adult rats during simulated weightlessness, 10.1152/japplphysiol.00455.2002
  94. Zayzafoon Majd, Gathings William E., McDonald Jay M., Modeled Microgravity Inhibits Osteogenic Differentiation of Human Mesenchymal Stem Cells and Increases Adipogenesis, 10.1210/en.2003-1156
  95. Journal of Bone and Mineral Research, 5, 843 (1990)
  96. Zerwekh Joseph E., Ruml Lisa A., Gottschalk Frank, Pak Charles Y. C., The Effects of Twelve Weeks of Bed Rest on Bone Histology, Biochemical Markers of Bone Turnover, and Calcium Homeostasis in Eleven Normal Subjects, 10.1359/jbmr.1998.13.10.1594
  97. McCarthy Ian D., Fluid Shifts Due to Microgravity and Their Effects on Bone: A Review of Current Knowledge, 10.1007/s10439-005-8967-6
  98. European Journal of Clinical Investigation, 20, 330 (1990)
  99. Wilmet E, Ismail A A, Heilporn A, Welraeds D, Bergmann P, Longitudinal study of the bone mineral content and of soft tissue composition after spinal cord section, 10.1038/sc.1995.141
  100. Jiang Sheng-Dan, Jiang Lei-Sheng, Dai Li-Yang, Mechanisms of osteoporosis in spinal cord injury, 10.1111/j.1365-2265.2006.02683.x
  101. Zehnder Yvonne, L�thi Markus, Michel Dieter, Knecht Hans, Perrelet Romain, Neto Isolde, Kraenzlin Marius, Z�ch Guido, Lippuner Kurt, Long-term changes in bone metabolism, bone mineral density, quantitative ultrasound parameters, and fracture incidence after spinal cord injury: a cross-sectional observational study in 100 paraplegic men, 10.1007/s00198-003-1529-6
  102. Goemaere S., Van Laere M., De Neve P., Kaufman J. M., Bone mineral status in paraplegic patients who do or do not perform standing, 10.1007/bf01623058
  103. Zehnder Yvonne, Risi Simone, Michel Dieter, Knecht Hans, Perrelet Romain, Kraenzlin Marius, Zäch Guido A, Lippuner Kurt, Prevention of Bone Loss in Paraplegics Over 2 Years With Alendronate, 10.1359/jbmr.040313
  104. Gilchrist N. L., Frampton C. M., Acland R. H., Nicholls M. G., March R. L., Maguire P., Heard A., Reilly P., Marshall K., Alendronate Prevents Bone Loss in Patients with Acute Spinal Cord Injury: A Randomized, Double-Blind, Placebo-Controlled Study, 10.1210/jc.2006-2013
  105. Taguchi A., Bone mineral density and mandibular bone quality in patients receiving dental implants, 10.1007/s00198-006-0232-9
  106. YAVUZER G??NE??, ATAMAN ??EBNEM, S??LD??R NURBEN, ATAY MESUT, Bone mineral density in patients with stroke : , 10.1097/00004356-200209000-00010
  107. Sato Yoshihiro, Fujimatsu Yukiko, Kikuyama Munetsugu, Kaji Masahide, Oizumic Kotaro, Influence of immobilization on bone mass and bone metabolism in hemiplegic elderly patients with a long-standing stroke, 10.1016/s0022-510x(98)00041-0
  108. Ramnemark A., Nyberg L., Borssén B., Olsson T., Gustafson Y., Fractures after Stroke, 10.1007/s001980050053
  109. Krølner Bjørn, Toft Birte, Vertebral Bone Loss: An Unheeded Side Effect of Therapeutic Bed Rest, 10.1042/cs0640537
  110. Heaney Robert P., Valent David J., Barton Ian P., Hospitalization-related bone loss and the protective effect of risedronate, 10.1007/s00198-005-1975-4
  111. Journal of Bone and Mineral Research, 7, 761 (1992)
  112. Journal of Bone and Mineral Research, 11, 412 (1996)
  113. Forwood M. R., Mechanical Effects on the Skeleton: Are There Clinical Implications?, 10.1007/s001980170161
  114. STEWART ARTHUR D., HANNAN JAMES, Total and regional bone density in male runners, cyclists, and controls : , 10.1097/00005768-200008000-00003
  115. Rector R. Scott, Rogers Robert, Ruebel Meghan, Hinton Pamela S., Participation in road cycling vs running is associated with lower bone mineral density in men, 10.1016/j.metabol.2007.09.005
  116. Barry Daniel W, Kohrt Wendy M, BMD Decreases Over the Course of a Year in Competitive Male Cyclists, 10.1359/jbmr.071203
  117. Acta Medica Scandinavica, 221, 83 (1987)
  118. ZERATH E., HOLY X., DOUCE P., GUEZENNEC C. Y., CHATARD J. C., Effect of endurance training on postexercise parathyroid hormone levels in elderly men : , 10.1097/00005768-199709000-00004
  119. ZANKER CATHY L., COOKE CARLTON B., Energy Balance, Bone Turnover, and Skeletal Health in Physically Active Individuals : , 10.1249/01.mss.0000135978.80362.aa
  120. Nichols Jeanne F., Rauh Mitchell J., Barrack Michelle T., Barkai Hava-Shoshana, Bone mineral density in female high school athletes: Interactions of menstrual function and type of mechanical loading, 10.1016/j.bone.2007.05.003
  121. Karlsson M., Is exercise of value in the prevention of fragility fractures in men?, 10.1034/j.1600-0838.2002.00207.x
  122. Karlsson Magnus, Has exercise an antifracture efficacy in women?, 10.1111/j.1600-0838.2003.00322.x
  123. Karlsson Magnus K., Johnell Olof, Obrant Karl J., Bone mineral density in weight lifters, 10.1007/bf00298721
  124. Dowthwaite Jodi N., DiStefano James G., Ploutz-Snyder Robert J., Kanaley Jill A., Scerpella Tamara A., Maturity and activity-related differences in bone mineral density: Tanner I vs. II and gymnasts vs. non-gymnasts, 10.1016/j.bone.2006.04.007
  125. VICENTE-RODRIGUEZ GERMAN, ARA IGNACIO, PEREZ-GOMEZ JORGE, SERRANO-SANCHEZ JOSE A., DORADO CECILIA, CALBET JOSE A. L., High Femoral Bone Mineral Density Accretion in Prepubertal Soccer Players : , 10.1249/01.mss.0000142311.75866.d7
  126. Journal of Bone and Mineral Research, 11, 1751 (1996)
  127. Haapasalo H, Kontulainen S, Sievänen H, Kannus P, Järvinen M, Vuori I, Exercise-induced bone gain is due to enlargement in bone size without a change in volumetric bone density: a peripheral quantitative computed tomography study of the upper arms of male tennis players, 10.1016/s8756-3282(00)00331-8
  128. Kannus Pekka, Effect of Starting Age of Physical Activity on Bone Mass in the Dominant Arm of Tennis and Squash Players, 10.7326/0003-4819-123-1-199507010-00003
  129. Journal of Bone and Mineral Research, 11, 864 (1996)
  130. Heinonen A, Mckay H.A, Whittall K.P, Forster B.B, Khan K.M, Muscle cross-sectional area is associated with specific site of bone in prepubertal girls: a quantitative magnetic resonance imaging study, 10.1016/s8756-3282(01)00588-9
  131. Ducher Gaële, Tournaire Nicolas, Meddahi-Pellé Anne, Benhamou Claude-Laurent, Courteix Daniel, Short-term and long-term site-specific effects of tennis playing on trabecular and cortical bone at the distal radius, 10.1007/s00774-006-0710-3
  132. Janz Kathleen F., Gilmore Julie M. Eichenberger, Levy Steven M., Letuchy Elena M., Burns Trudy L., Beck Thomas J., Physical activity and femoral neck bone strength during childhood: The Iowa Bone Development Study, 10.1016/j.bone.2007.05.001
  133. Tobias Jon H, Steer Colin D, Mattocks Calum G, Riddoch Chris, Ness Andy R, Habitual Levels of Physical Activity Influence Bone Mass in 11-Year-Old Children From the United Kingdom: Findings From a Large Population-Based Cohort, 10.1359/jbmr.060913
  134. Baxter-Jones Adam D.G., Kontulainen Saija A., Faulkner Robert A., Bailey Donald A., A longitudinal study of the relationship of physical activity to bone mineral accrual from adolescence to young adulthood, 10.1016/j.bone.2008.07.245
  135. Lorentzon Mattias, Mellström Dan, Ohlsson Claes, Association of Amount of Physical Activity With Cortical Bone Size and Trabecular Volumetric BMD in Young Adult Men: The GOOD Study, 10.1359/jbmr.050709
  136. Alwis Gayani, Linden Christian, Stenevi-Lundgren Susanna, Ahlborg Henrik G, Besjakov Jack, Gardsell Per, Karlsson Magnus K, A one-year exercise intervention program in pre-pubertal girls does not influence hip structure, 10.1186/1471-2474-9-9
  137. Linden Christian, Ahlborg Henrik G, Besjakov Jack, Gardsell Per, Karlsson Magnus K, A School Curriculum-Based Exercise Program Increases Bone Mineral Accrual and Bone Size in Prepubertal Girls: Two-Year Data From the Pediatric Osteoporosis Prevention (POP) Study, 10.1359/jbmr.060304
  138. Heinonen A., Sievänen H., Kannus P., Oja P., Pasanen M., Vuori I., High-Impact Exercise and Bones of Growing Girls: A 9-Month Controlled Trial, 10.1007/s001980070021
  139. MacKelvie Kerry J, Petit Moira A, Khan Karim M, Beck Thomas J, McKay Heather A, Bone mass and structure are enhanced following a 2-year randomized controlled trial of exercise in prepubertal boys, 10.1016/j.bone.2003.12.017
  140. Petit M. A., Mckay H. A., Mackelvie K. J., Heinonen A., Khan K. M., Beck T. J., A Randomized School-Based Jumping Intervention Confers Site and Maturity-Specific Benefits on Bone Structural Properties in Girls: A Hip Structural Analysis Study, 10.1359/jbmr.2002.17.3.363
  141. Macdonald Heather M, Kontulainen Saija A, Khan Karim M, McKay Heather A, Is a School-Based Physical Activity Intervention Effective for Increasing Tibial Bone Strength in Boys and Girls?, 10.1359/jbmr.061205
  142. Fuchs Robyn K., Bauer Jeremy J., Snow Christine M., Jumping Improves Hip and Lumbar Spine Bone Mass in Prepubescent Children: A Randomized Controlled Trial, 10.1359/jbmr.2001.16.1.148
  143. Gunter Katherine, Baxter-Jones Adam DG, Mirwald Robert L, Almstedt Hawley, Fuchs Robyn K, Durski Shantel, Snow Christine, Impact Exercise Increases BMC During Growth: An 8-Year Longitudinal Study, 10.1359/jbmr.071201
  144. Journal of Bone and Mineral Research, 11, 1539 (1996)
  145. Journal of Musculoskeletal Neuronal Interactions, 5, 239 (2005)
  146. Ward K.A., Roberts S.A., Adams J.E., Lanham-New S., Mughal M.Z., Calcium supplementation and weight bearing physical activity—Do they have a combined effect on the bone density of pre-pubertal children?, 10.1016/j.bone.2007.06.007
  147. Chevalley Thierry, Bonjour Jean-Philippe, Ferrari Serge, Rizzoli René, High-Protein Intake Enhances the Positive Impact of Physical Activity on BMC in Prepubertal Boys, 10.1359/jbmr.070907
  148. Cells Materials, s1, 151 (1991)
  149. Wu J., High bone mass gained by exercise in growing male mice is increased by subsequent reduced exercise, 10.1152/japplphysiol.01169.2003
  150. Iwamoto Jun, Yeh James K., Aloia John F., Effect of Deconditioning on Cortical and Cancellous Bone Growth in the Exercise Trained Young Rats, 10.1359/jbmr.2000.15.9.1842
  151. Modlesky Christopher M., Lewis Richard D., Does Exercise During Growth Have a Long-Term Effect on Bone Health? : , 10.1097/00003677-200210000-00006
  152. Kontulainen Saija, Kannus Pekka, Haapasalo Heidi, Sievänen Harri, Pasanen Matti, Heinonen Ari, Oja Pekka, Vuori Ilkka, Good Maintenance of Exercise-Induced Bone Gain with Decreased Training of Female Tennis and Squash Players: A Prospective 5-Year Follow-Up Study of Young and Old Starters and Controls, 10.1359/jbmr.2001.16.2.195
  153. Bass S., Pearce G., Bradney M., Hendrich E., Delmas Pierre D., Harding A., Seeman E., Exercise Before Puberty May Confer Residual Benefits in Bone Density in Adulthood: Studies in Active Prepubertal and Retired Female Gymnasts, 10.1359/jbmr.1998.13.3.500
  154. Zanker C. L., Osborne C., Oldroyd B., Truscott J. G., Cooke C. B., Bone density, body composition and menstrual history of sedentary female former gymnasts, aged 20?32 years, 10.1007/s00198-003-1524-y
  155. Nordström Anna, Karlsson Caroline, Nyquist Fredrik, Olsson Tommy, Nordström Peter, Karlsson Magnus, Bone Loss and Fracture Risk After Reduced Physical Activity, 10.1359/jbmr.041012
  156. Lehtonen-Veromaa M., Möttönen T., Kautiainen H., Heinonen O.J., Viikari J., Influence of Physical Activity and Cessation of Training on Calcaneal Quantitative Ultrasound Measurements in Peripubertal Girls: A 1-Year Prospective Study, 10.1007/s002230001209
  157. Karlsson MK, Linden C, Karlsson C, Johnell O, Obrant K, Seeman E, Exercise during growth and bone mineral density and fractures in old age, 10.1016/s0140-6736(00)82020-6
  158. American Journal of Clinical Nutrition, 63, 72 (1996)
  159. Uusi-Rasi Kirsti, Sievänen Harri, Pasanen Matti, Oja Pekka, Vuori Ilkka, Associations of Calcium Intake and Physical Activity With Bone Density and Size in Premenopausal and Postmenopausal Women: A Peripheral Quantitative Computed Tomography Study, 10.1359/jbmr.2002.17.3.544
  160. Bakker Ingrid, Twisk Jos WR, Van Mechelen Willem, Roos Jan C, Kemper Han CG, Ten-Year Longitudinal Relationship Between Physical Activity and Lumbar Bone Mass in (Young) Adults, 10.1359/jbmr.2003.18.2.325
  161. Vainionpää A., Korpelainen R., Vihriälä E., Rinta–Paavola A., Leppäluoto J., Jämsä T., Intensity of exercise is associated with bone density change in premenopausal women, 10.1007/s00198-005-0005-x
  162. Vainionpää Aki, Korpelainen Raija, Sievänen Harri, Vihriälä Erkki, Leppäluoto Juhani, Jämsä Timo, Effect of impact exercise and its intensity on bone geometry at weight-bearing tibia and femur, 10.1016/j.bone.2006.10.005
  163. Young N., Bone density at weight-bearing and nonweight-bearing sites in ballet dancers: the effects of exercise, hypogonadism, and body weight, 10.1210/jc.78.2.449
  164. Tromp A. M., Bravenboer N., Tanck E., Oostlander A., Holzmann P. J., Kostense P. J., Roos J. C., Burger E. H., Huiskes R., Lips P., Additional Weight Bearing during Exercise and Estrogen in the Rat: The Effect on Bone Mass, Turnover, and Structure, 10.1007/s00223-006-0045-z
  165. Bassey E. J., Rothwell M. C., Littlewood J. J., Pye D. W., Pre- and Postmenopausal Women Have Different Bone Mineral Density Responses to the Same High-Impact Exercise, 10.1359/jbmr.1998.13.12.1805
  166. Wallace B. A. , Cumming R. G. , Systematic Review of Randomized Trials of the Effect of Exercise on Bone Mass in Pre- and Postmenopausal Women, 10.1007/s00223001089
  167. Martyn-St James M., Carroll S., High-intensity resistance training and postmenopausal bone loss: a meta-analysis, 10.1007/s00198-006-0083-4
  168. Maddalozzo Gianni F., Widrick Jeffrey J., Cardinal Bradley J., Winters-Stone Kerri M., Hoffman Mark A., Snow Christine M., The effects of hormone replacement therapy and resistance training on spine bone mineral density in early postmenopausal women, 10.1016/j.bone.2006.12.059
  169. Going Scott, Lohman Timothy, Houtkooper Linda, Stanford Vanessa, Cussler Ellen, Martin Jane, Teixeira Pedro, Harris Margaret, Milliken Laura, Figueroa-Galvez Arturo, Weber Judith, Metcalfe Lauve, Flint-Wagner Hilary, Blew Robert, Effects of exercise on bone mineral density in calcium-replete postmenopausal women with and without hormone replacement therapy, 10.1007/s00198-003-1436-x
  170. Bergström I., Landgren BM., Brinck J., Freyschuss B., Physical training preserves bone mineral density in postmenopausal women with forearm fractures and low bone mineral density, 10.1007/s00198-007-0445-6
  171. SHEDD KRISTINE M., HANSON KATHY B., ALEKEL D. LEE, SCHIFERL DANIEL J., HANSON LAURA N., VAN LOAN MARTA D., Quantifying Leisure Physical Activity and Its Relation to Bone Density and Strength : , 10.1249/mss.0b013e318155a7fe
  172. Journal of Bone and Mineral Research, 10, 1544 (1995)
  173. Kallinen Mauri, Markku Alen, Aging, Physical Activity and Sports Injuries : An Overview of Common Sports Injuries in the Elderly, 10.2165/00007256-199520010-00004
  174. Karinkanta S., Heinonen A., Sievänen H., Uusi-Rasi K., Pasanen M., Ojala K., Fogelholm M., Kannus P., A multi-component exercise regimen to prevent functional decline and bone fragility in home-dwelling elderly women: randomized, controlled trial, 10.1007/s00198-006-0256-1
  175. Fuchs R.K., Shea M., Durski S.L., Winters-Stone K.M., Widrick J., Snow C.M., Individual and combined effects of exercise and alendronate on bone mass and strength in ovariectomized rats, 10.1016/j.bone.2007.04.179
  176. Uusi-Rasi K, Kannus P, Cheng S, Sievänen H, Pasanen M, Heinonen A, Nenonen A, Halleen J, Fuerst T, Genant H, Vuori I, Effect of alendronate and exercise on bone and physical performance of postmenopausal women: a randomized controlled trial, 10.1016/s8756-3282(03)00082-6
  177. Braith Randy W, Magyari Peter M, Fulton Michael N, Aranda Juan, Walker Tracy, Hill James A, Resistance exercise training and alendronate reverse Glucocorticoid-Induced osteoporosis in heart transplant recipients, 10.1016/s1053-2498(02)01184-1
  178. Braith Randy W., Conner Jill A., Fulton Michael N., Lisor Clem F., Casey Darren P., Howe Kathy S., Baz Maher A., Comparison of Alendronate vs Alendronate Plus Mechanical Loading as Prophylaxis for Osteoporosis in Lung Transplant Recipients: a Pilot Study, 10.1016/j.healun.2006.11.004
  179. Li Chao Yang, Price Christopher, Delisser Kemesha, Nasser Philip, Laudier Damien, Clement Mariza, Jepsen Karl J, Schaffler Mitchell B, Long-Term Disuse Osteoporosis Seems Less Sensitive to Bisphosphonate Treatment Than Other Osteoporosis, 10.1359/jbmr.2005.20.1.117
  180. Petrovic S., Ma L., Wang Z., Soleimani M., Identification of an apical Cl-/HCO-3 exchanger in rat kidney proximal tubule, 10.1152/ajpcell.00084.2003
  181. Ryder Kimberly D., Duncan Randall L., Parathyroid Hormone Enhances Fluid Shear-Induced [Ca2+]i Signaling in Osteoblastic Cells Through Activation of Mechanosensitive and Voltage-Sensitive Ca2+ Channels, 10.1359/jbmr.2001.16.2.240
  182. American Journal of Physiology, 274, E146 (1998)
  183. Li Jiliang, Duncan Randall L., Burr David B., Gattone Vincent H., Turner Charles H., Parathyroid Hormone Enhances Mechanically Induced Bone Formation, Possibly Involving L-Type Voltage-Sensitive Calcium Channels, 10.1210/en.2002-220821
  184. Grigoriev Anatoly I., Morukov Boris V., Oganov Victor S., Rakhmanov Alexander S., Buravkova Ludmilla B., Effect of exercise and bisphosphonate on mineral balance and bone density during 360 day antiorthostatic hypokinesia, 10.1002/jbmr.5650071416
  185. RITTWEGER J, FROST H, SCHIESSL H, OHSHIMA H, ALKNER B, TESCH P, FELSENBERG D, Muscle atrophy and bone loss after 90 days' bed rest and the effects of flywheel resistive exercise and pamidronate: Results from the LTBR study, 10.1016/j.bone.2004.11.014
  186. Frotzler Angela, Coupaud Sylvie, Perret Claudio, Kakebeeke Tanja H., Hunt Kenneth J., Donaldson Nick de N., Eser Prisca, High-volume FES-cycling partially reverses bone loss in people with chronic spinal cord injury, 10.1016/j.bone.2008.03.004
  187. Nature, 412, 603 (2001)
  188. Oxlund B.S, Ørtoft G, Andreassen T.T, Oxlund H, Low-intensity, high-frequency vibration appears to prevent the decrease in strength of the femur and tibia associated with ovariectomy of adult rats, 10.1016/s8756-3282(02)00916-x
  189. Rubin C., Turner A.S., Mallinckrodt C., Jerome C., Mcleod K., Bain S., Mechanical strain, induced noninvasively in the high-frequency domain, is anabolic to cancellous bone, but not cortical bone, 10.1016/s8756-3282(01)00689-5
  190. Rubin Clinton, Turner A. Simon, Müller Ralph, Mittra Erik, McLeod Kenneth, Lin Wei, Qin Yi-Xian, Quantity and Quality of Trabecular Bone in the Femur Are Enhanced by a Strongly Anabolic, Noninvasive Mechanical Intervention, 10.1359/jbmr.2002.17.2.349
  191. Rubin Clinton, Recker Robert, Cullen Diane, Ryaby John, McCabe Joan, McLeod Kenneth, Prevention of Postmenopausal Bone Loss by a Low-Magnitude, High-Frequency Mechanical Stimuli: A Clinical Trial Assessing Compliance, Efficacy, and Safety, 10.1359/jbmr.0301251
  192. Verschueren Sabine MP, Roelants Machteld, Delecluse Christophe, Swinnen Stephan, Vanderschueren Dirk, Boonen Steven, Effect of 6-Month Whole Body Vibration Training on Hip Density, Muscle Strength, and Postural Control in Postmenopausal Women: A Randomized Controlled Pilot Study, 10.1359/jbmr.0301245
  193. Torvinen Saila, Kannus Pekka, Sievänen Harri, Järvinen Tero AH, Pasanen Matti, Kontulainen Saija, Nenonen Arja, Järvinen Teppo LN, Paakkala Timo, Järvinen Markku, Vuori Ilkka, Effect of 8-Month Vertical Whole Body Vibration on Bone, Muscle Performance, and Body Balance: A Randomized Controlled Study, 10.1359/jbmr.2003.18.5.876
  194. Xie Liqin, Jacobson Jeffrey M., Choi Edna S., Busa Bhavin, Donahue Leah Rae, Miller Lisa M., Rubin Clinton T., Judex Stefan, Low-level mechanical vibrations can influence bone resorption and bone formation in the growing skeleton, 10.1016/j.bone.2006.05.012
  195. Xie L., Rubin C., Judex S., Enhancement of the adolescent murine musculoskeletal system using low-level mechanical vibrations, 10.1152/japplphysiol.00764.2007
  196. Gilsanz Vicente, Wren Tishya AL, Sanchez Monique, Dorey Frederick, Judex Stefan, Rubin Clinton, Low-Level, High-Frequency Mechanical Signals Enhance Musculoskeletal Development of Young Women With Low BMD, 10.1359/jbmr.060612
  197. Narkar Vihang A., Downes Michael, Yu Ruth T., Embler Emi, Wang Yong-Xu, Banayo Ester, Mihaylova Maria M., Nelson Michael C., Zou Yuhua, Juguilon Henry, Kang Heonjoong, Shaw Reuben J., Evans Ronald M., AMPK and PPARδ Agonists Are Exercise Mimetics, 10.1016/j.cell.2008.06.051