User menu

Transforming carbonic anhydrase into epoxide synthase by metal exchange.

Bibliographic reference Fernandez-Gacio, Ana ; Codina, Antonio ; Fastrez, Jacques ; Riant, Olivier ; Soumillion, Patrice. Transforming carbonic anhydrase into epoxide synthase by metal exchange.. In: Chembiochem : a European journal of chemical biology, Vol. 7, no. 7, p. 1013-6 (2006)
Permanent URL
  1. O'Brien Patrick J, Herschlag Daniel, Catalytic promiscuity and the evolution of new enzymatic activities, 10.1016/s1074-5521(99)80033-7
  2. Kazlauskas Romas J, Enhancing catalytic promiscuity for biocatalysis, 10.1016/j.cbpa.2005.02.008
  3. Gomes Cláudio M., Frazão Carlos, Xavier António V., Legall Jean, Teixeira Miguel, Functional control of the binuclear metal site in the metallo-β-lactamase-like fold by subtle amino acid replacements, 10.1110/ps.31202
  4. Qi Dongfeng, Tann Cheng-Min, Haring Dietmar, Distefano Mark D., Generation of New Enzymes via Covalent Modification of Existing Proteins, 10.1021/cr000059o
  5. Thomas Christophe M., Ward Thomas R., Artificial metalloenzymes: proteins as hosts for enantioselective catalysis, 10.1039/b314695m
  6. Wilson Michael E., Whitesides George M., Conversion of a protein to a homogeneous asymmetric hydrogenation catalyst by site-specific modification with a diphosphinerhodium(I) moiety, 10.1021/ja00469a064
  7. Letondor C., Humbert N., Ward T. R., Artificial metalloenzymes based on biotin-avidin technology for the enantioselective reduction of ketones by transfer hydrogenation, 10.1073/pnas.0409684102
  8. Skander Myriem, Humbert Nicolas, Collot Jérôme, Gradinaru Julieta, Klein Gérard, Loosli Andreas, Sauser Jérôme, Zocchi Andrea, Gilardoni François, Ward Thomas R., Artificial Metalloenzymes:  (Strept)avidin as Host for Enantioselective Hydrogenation by Achiral Biotinylated Rhodium−Diphosphine Complexes, 10.1021/ja0476718
  9. Collot Jérôme, Gradinaru Julieta, Humbert Nicolas, Skander Myriem, Zocchi Andrea, Ward Thomas R., Artificial Metalloenzymes for Enantioselective Catalysis Based on Biotin−Avidin, 10.1021/ja035545i
  10. van de Velde Fred, Könemann Lars, Enantioselective sulfoxidation mediated by vanadium-incorporated phytase: a hydrolase acting as a peroxidase, 10.1039/a804702b
  11. Velde, J. Inorg. Chem., 80, 81 (2000)
  12. Ohashi Masataka, Koshiyama Tomomi, Ueno Takafumi, Yanase Manabu, Fujii Hiroshi, Watanabe Yoshihito, 10.1002/ange.200390231
  13. Ohashi Masataka, Koshiyama Tomomi, Ueno Takafumi, Yanase Manabu, Fujii Hiroshi, Watanabe Yoshihito, Preparation of Artificial Metalloenzymes by Insertion of Chromium(III) Schiff Base Complexes into Apomyoglobin Mutants, 10.1002/anie.200390256
  14. Davies Ronald R., Kuang Hao, Qi Dongfeng, Mazhary Aram, Mayaan Evelyn, Distefano Mark D., Artificial metalloenzymes based on protein cavities: Exploring the effect of altering the metal ligand attachment position by site directed mutagenesis, 10.1016/s0960-894x(98)00684-2
  15. Carey James R., Ma Steven K., Pfister Thomas D., Garner Dewain K., Kim Hyeon K., Abramite Joseph A., Wang Zhilin, Guo Zijian, Lu Yi, A Site-Selective Dual Anchoring Strategy for Artificial Metalloprotein Design, 10.1021/ja046908x
  16. Lane Benjamin S., Vogt Matthew, DeRose Victoria J., Burgess Kevin, Manganese-Catalyzed Epoxidations of Alkenes in Bicarbonate Solutions, 10.1021/ja025956j
  17. Zhang Wei, Loebach Jennifer L., Wilson Scott R., Jacobsen Eric N., Enantioselective epoxidation of unfunctionalized olefins catalyzed by salen manganese complexes, 10.1021/ja00163a052
  18. Lindskog Sven, Liljas Anders, Carbonic anhydrase and the role of orientation in catalysis, 10.1016/0959-440x(93)90156-f
  19. Lanir Amos, Gradstajn Sonia, Navon Gil, Temperature and frequency dependence of solvent proton relaxation rates in solutions of manganese(II) carbonic anhydrase, 10.1021/bi00673a008
  20. Roy Bidhan C., Banerjee Abir L., Swanson Michael, Jia Xiao G., Haldar Manas K., Mallik Sanku, Srivastava D. K., Two-Prong Inhibitors for Human Carbonic Anhydrase II, 10.1021/ja047271k
  21. Lundblad, Chemical Reagents for Protein Modification, Vol. 1, 105 (1984)
  22. Martinez Carlos, Stewart Jon, Cytochrome P450s: Potential Catalysts for Asymmetric Olefin Epoxidations, 10.2174/1385272003376265
  23. Farinas Edgardo T, Alcalde Miguel, Arnold Frances, Alkene epoxidation catalyzed by cytochrome P450 BM-3 139-3, 10.1016/j.tet.2003.10.099
  24. Yi X., Mroczko M., Manoj K. M., Wang X., Hager L. P., Replacement of the proximal heme thiolate ligand in chloroperoxidase with a histidine residue, 10.1073/pnas.96.22.12412
  25. Dexter Annette F., Lakner Frederick J., Campbell Robert A., Hager Lowell P., Highly Enantioselective Epoxidation of 1,1-Disubstituted Alkenes Catalyzed by Chloroperoxidase, 10.1021/ja00128a053
  26. Krebs, J. Biol. Chem., 268, 27458 (1993)
  27. Ippolito J. A., Baird T. T., McGee S. A., Christianson D. W., Fierke C. A., Structure-assisted redesign of a protein-zinc-binding site with femtomolar affinity., 10.1073/pnas.92.11.5017
  28. Krebs, J. Biol. Chem., 268, 948 (1993)