User menu

Accès à distance ? S'identifier sur le proxy UCLouvain

Total Synthesis and Biological Evaluation of the Cytotoxic Resin Glycosides Ipomoeassin A–F and Analogues

  1. Pereda-Miranda, Curr. Top. Med. Chem., 3, 111 (2003)
  2. Dembitsky, Chem. Biodiversity, 1, 673 (2004)
  3. Fürstner, Eur. J. Org. Chem., 943 (2004)
  4. Furukawa Jun-ichi, Sakairi Nobuo, Chemical Synthesis of Bioactive Oligosaccharides. Synthetic Studies on Resin Glycosides., 10.4052/tigg.13.1
  5. Larson, J. Org. Chem., 61, 5208 (1996)
  6. Larson, J. Org. Chem., 62, 8406 (1997)
  7. Brito-Arias, J. Org. Chem., 69, 4567 (2004)
  8. Lu, Angew. Chem., 109, 2442 (1997)
  9. Angew. Chem. Int. Ed. Engl. 1997, 36, 2344-2346;
  10. Lu, J. Org. Chem., 62, 8400 (1997)
  11. Fürstner, J. Am. Chem. Soc., 121, 7814 (1999)
  12. Fürstner, J. Org. Chem., 63, 424 (1998)
  13. Fürstner, Angew. Chem., 114, 2203 (2002)
  14. Angew. Chem. Int. Ed. 2002, 41, 2097-2101.
  15. Fürstner, Chem. Eur. J., 9, 307 (2003)
  16. Fürstner, Chem. Eur. J., 9, 320 (2003)
  17. Jiang, Angew. Chem., 107, 2730 (1995)
  18. Angew. Chem. Int. Ed. Engl. 1995, 34, 2520-2524;
  19. Furukawa, Tetrahedron Lett., 41, 3453 (2000)
  20. Zhu, Synlett, 3510 (2006)
  21. Rencurosi, Angew. Chem., 116, 6044 (2004)
  22. Angew. Chem. Int. Ed. 2004, 43, 5918-5922; however, this assumption does not readily explain why closely similar compounds show greatly different activities.
  23. Cao, J. Nat. Prod., 68, 487 (2005)
  24. Cao, Nat. Prod. Res., 21, 872 (2007)
  25. 11-Hydroxy-hexadecoanoic acid (jalapinolic acid) present in ipomoeassin F is by far the most common fatty acid component of the resin glycosides known to date, cf. ref. [1-4].
  26. D. G. I. Kingston, S. Cao, US 2006/0264383A1; Nov. 23, 2006.
  27. Kingston, J. Org. Chem., 73, 3975 (2008)
  28. Lehmann, Z. Kristallogr., 215, 114 (2000)
  29. Fürstner, J. Org. Chem., 65, 8758 (2000)
  30. Fürstner, J. Am. Chem. Soc., 125, 13132 (2003)
  31. Fürstner, J. Am. Chem. Soc., 124, 1168 (2002)
  32. Fürstner, J. Am. Chem. Soc., 124, 10274 (2002)
  33. Fürstner, J. Org. Chem., 69, 459 (2004)
  34. Fürstner, J. Org. Chem., 63, 3072 (1998)
  35. Fürstner, Tetrahedron, 52, 15071 (1996)
  36. Fürstner, J. Am. Chem. Soc., 129, 1906 (2007)
  37. Postema, Org. Lett., 11, 1417 (2009)
  38. Trnka, Acc. Chem. Res., 34, 18 (2001)
  39. Fürstner, Angew. Chem., 112, 3140 (2000)
  40. Angew. Chem. Int. Ed. 2000, 39, 3013-3043;
  41. Schrock, Angew. Chem., 115, 4740 (2003)
  42. Angew. Chem. Int. Ed. 2003, 42, 4592-4633;
  43. Schuster, Angew. Chem., 109, 2124 (1997)
  44. Angew. Chem. Int. Ed. Engl. 1997, 36, 2036-2056;
  45. Fürstner, Top. Catal., 4, 285 (1997)
  46. Nicolaou, Angew. Chem., 117, 4564 (2005)
  47. Angew. Chem. Int. Ed. 2005, 44, 4490-4527;
  48. Gradillas, Angew. Chem., 118, 6232 (2006)
  49. Angew. Chem. Int. Ed. 2006, 45, 6086-6101;
  50. Deiters, Chem. Rev., 104, 2199 (2004)
  51. Fürstner, J. Org. Chem., 61, 3942 (1996)
  52. Fürstner, Tetrahedron Lett., 37, 7005 (1996)
  53. Fürstner, Synthesis, 792 (1997)
  54. Fürstner, J. Am. Chem. Soc., 119, 9130 (1997)
  55. Fürstner, Synlett, 1010 (1997)
  56. Fürstner, J. Org. Chem., 64, 2361 (1999)
  57. Fürstner, Tetrahedron, 55, 8215 (1999)
  58. Fürstner, J. Org. Chem., 65, 7990 (2000)
  59. Fürstner, Org. Lett., 3, 449 (2001)
  60. Fürstner, J. Org. Chem., 64, 8275 (1999)
  61. Fürstner, J. Org. Chem., 65, 1738 (2000)
  62. Fürstner, Angew. Chem., 119, 9425 (2007)
  63. Angew. Chem. Int. Ed. 2007, 46, 9265-9270;
  64. Fürstner, J. Am. Chem. Soc., 129, 9150 (2007)
  65. Fürstner, Angew. Chem., 118, 5969 (2006)
  66. Angew. Chem. Int. Ed. 2006, 45, 5837-5842;
  67. Fürstner, Chem. Eur. J., 15, 3983 (2009)
  68. Fürstner, Chem. Commun., 5583 (2005)
  69. Scheiper, Proc. Natl. Acad. Sci. USA, 101, 11960 (2004)
  70. Aïssa, J. Am. Chem. Soc., 125, 15512 (2003)
  71. Fürstner, J. Am. Chem. Soc., 124, 7061 (2002)
  72. Pospíšil, Chem. Eur. J., 15, 5956 (2009)
  73. Holub, Org. Lett., 7, 1227 (2005)
  74. Paulsen, Angew. Chem., 94, 184 (1982)
  75. Angew. Chem. Int. Ed. Engl. 1982, 21, 155-173.
  76. Zhu, Angew. Chem., 121, 1932 (2009)
  77. Angew. Chem. Int. Ed. 2009, 48, 1900-1934;
  78. Schmidt, Angew. Chem., 98, 213 (1986)
  79. Angew. Chem. Int. Ed. Engl. 1986, 25, 212-235;
  80. Schmidt, Preparative Carbohydrate Chemistry, 283 (1997)
  81. Garegg, Preparative Carbohydrate Chemistry, 53 (1997)
  82. Daragics, Tetrahedron Lett., 50, 2914 (2009)
  83. Johnsson, J. Org. Chem., 73, 5226 (2008)
  84. Chong, Org. Lett., 2, 1093 (2000)
  85. Shie, Angew. Chem., 117, 1693 (2005)
  86. Angew. Chem. Int. Ed. 2005, 44, 1665-1668.
  87. Wu, Eur. J. Org. Chem., 2826 (2004)
  88. Crich, Org. Lett., 7, 1395 (2005)
  89. Chandrasekhar, Chem. Lett., 1273 (1998)
  90. Sakagami, Tetrahedron Lett., 41, 5547 (2000)
  91. Johansson, J. Chem. Soc. Perkin Trans. 1, 2371 (1984)
  92. Fürstner, Synlett, 1523 (1999)
  93. Ukaji, Chem. Lett., 1227 (1993)
  94. Inanaga, Bull. Chem. Soc. Jpn., 52, 1989 (1979)
  95. Oikawa, Tetrahedron Lett., 23, 885 (1982)
  96. Lhommet, Synth. Commun., 26, 3897 (1996)
  97. Scheiper, J. Org. Chem., 69, 3943 (2004)
  98. Scholl, Org. Lett., 1, 953 (1999)
  99. Ackermann, Tetrahedron Lett., 40, 4787 (1999)
  100. Ackermann, Tetrahedron, 56, 2195 (2000)
  101. Fürstner, J. Org. Chem., 65, 2204 (2000)
  102. Fürstner, Chem. Eur. J., 7, 3236 (2001)
  103. Birch, Org. React., 24, 1 (1976)
  104. Noyori, J. Am. Chem. Soc., 105, 1598 (1983)
  105. Scheidt, J. Org. Chem., 63, 6436 (1998)
  106. Fürstner, Angew. Chem., 118, 5636 (2006)
  107. Angew. Chem. Int. Ed. 2006, 45, 5510-5515.
  108. Lemieux, J. Am. Chem. Soc., 97, 4069 (1975)
  109. Chevalier, Tetrahedron, 62, 563 (2006)
  110. Wilson, J. Org. Chem., 71, 8329 (2006)
  111. Fürstner, Proc. Natl. Acad. Sci. USA, 102, 8103 (2005)
  112. Fürstner, Chem. Eur. J., 13, 115 (2007)
  113. Fürstner, Chem. Eur. J., 13, 135 (2007)
  114. Fürstner, Chem. Asian J., 3, 310 (2008)
  115. Fürstner, Chem. Eur. J., 13, 1452 (2007)
  116. Fürstner, J. Am. Chem. Soc., 122, 11799 (2000)
  117. Fürstner, Chem. Eur. J., 15, 4011 (2009)
  118. Fürstner, Chem. Eur. J., 15, 4030 (2009)
  119. Fürstner, Chem. Eur. J., 13, 1929 (2007)
  120. Fürstner, Tetrahedron, 60, 9543 (2004)
  121. Buchgraber, Tetrahedron, 65, 6519 (2009)
  122. Ho, Synth. Commun., 13, 207 (1983)
  123. Kusakabe, J. Org. Chem., 54, 2085 (1989)
  124. Kametani, J. Chem. Soc. Perkin Trans. 1, 639 (1990)
  125. Georgiadis, Synthesis, 929 (1991)
  126. Kang, Synth. Commun., 25, 203 (1995)
  127. Nicolaou, J. Am. Chem. Soc., 115, 7625 (1993)
  128. Hong, Angew. Chem., 117, 3544 (2005)
  129. Angew. Chem. Int. Ed. 2005, 44, 3478-3481.
  130. Hodgson, Chem. Eur. J., 7, 4465 (2001)
  131. For the total synthesis of other resin glycosides see:
  132. Early sudies:
  133. For recent total syntheses based on RCM-macrocyclizations reported by our group, see:
  134. The total synthesis of 6 reported by the Eisai group later confirmed this forecast. Specifically, the introduction of the cinnamate at O-4′′ required 6-7 evaporative cycles to give 62 % combined yield, and the attachment of the tiglic acid residue to O-3′′ gave only 45 % of the desired product.
  135. Attempts to trap the organoaluminum intermediate directly with PhMe2SiCl were low yielding.
  136. Although the regiomers 20 and 21 can be separated by preparative HPLC, the mixture can be used in this step. The resulting acylated products are conveniently separated by routine flash chromatography.
  137. For closely related second generation catalysts that were almost simultaneously reported by our group, see:
  138. TBAF was found unsuitable in this case as it also cleaves the tiglate ester.
  139. Diverted total synthesis” allows for the preparation of analogues that cannot (or hardly) be obtained by chemical manipulation of the lead compound itself. Therefore it should be distinguished from the traditional methods of derivatization of natural products, as commonly practiced in medicinal chemistry.
  140. For previous exercises in “diverted total synthesis” from this group, see inter alia:
  141. Alternative but less satisfactory syntheses of (−)-40 relied on a Noyori-transfer hydrogenation of the corresponding ketone which afforded the desired product in 77 % with 93 % ee, whereas an asymmetric addition of bis(3-butenyl)zinc to furan-2-carbaldehyde mediated by Ti(OiPr)4 (1.2 equiv) and trans-N,N′-1,2-cyclohexandiyl bistrifluoromethanesulfonamide (5 mol %) in toluene at −20 °C gave only 70 % ee.
  142. Attempts to form diene 45 directly by reaction of 28 with lactone 42 were low yielding.
Bibliographic reference Nagano, Takashi ; Pospisil, Jiri ; Chollet, Guillaume ; Schulthoff, Saskia ; Hickmann, Volker ; et. al. Total Synthesis and Biological Evaluation of the Cytotoxic Resin Glycosides Ipomoeassin A–F and Analogues. In: Chemistry: A European Journal, Vol. 15, no. 38, p. 9697 – 9706
Permanent URL http://hdl.handle.net/2078.1/105755