User menu

A multiscale parametric study of mode I fracture in metal-to-metal low-toughness adhesive joints

Bibliographic reference Martiny, Philippe ; Lani, Frédéric ; Kinloch, A.J. ; Pardoen, Thomas. A multiscale parametric study of mode I fracture in metal-to-metal low-toughness adhesive joints. In: International Journal of Fracture, Vol. 172, no. 2, p. 105-133
Permanent URL
  1. Bascom W. D., Cottington R. L., Jones R. L., Peyser P., The fracture of epoxy- and elastomer-modified epoxy polymers in bulk and as adhesives, 10.1002/app.1975.070190917
  2. Blackman B.R.K, Hadavinia H, Kinloch A.J, Paraschi M, Williams J.G, The calculation of adhesive fracture energies in mode I: revisiting the tapered double cantilever beam (TDCB) test, 10.1016/s0013-7944(02)00031-0
  3. Blackman B.R.K., 10.1023/a:1023998013255
  4. Blackman B.R.K., Kinloch A.J., Paraschi M., Teo W.S., Measuring the mode I adhesive fracture energy, GIC, of structural adhesive joints: the results of an international round-robin, 10.1016/s0143-7496(03)00047-2
  5. Chai H (1986) Bond thickness effect in adhesive joints and its significance for mode I interlaminar fracture of composites. In: Composite materials testing and design, ASTM-STP 893, pp 209–231
  6. Chai Herzl, Fracture work of thin bondline adhesive joints, 10.1007/bf01730756
  7. Chai Herzl, Chiang Martin Y.M., Finite element analysis of interfacial crack propagation based on local shear, part II—Fracture, 10.1016/s0020-7683(97)00086-3
  8. Cooper V, Ivankovic A, Karac A, Murphy N (2009) The effect of constraint on the fracture toughness of adhesively bonded joints. In: Proceedings of the 32nd annual meeting of the Adhesion Society, Savannah, pp 33–35
  9. Cui J., Wang R., Sinclair A.N., Spelt J.K., A calibrated finite element model of adhesive peeling, 10.1016/s0143-7496(03)00012-5
  10. Dean RH, Hutchinson JW (1980) Quasi-static steady crack growth in small-scale yielding. In: Fracture mechanics, ASTM-STP 700, pp 383–405
  11. Drugan W.J., Rice J.R., Sham T-L., Asymptotic analysis of growing plane strain tensile cracks in elastic-ideally plastic solids, 10.1016/0022-5096(82)90027-8
  12. Ferracin T (2003) Mechanics of failure in adhesively bonded steel assemblies. PhD Thesis, Université catholique de Louvain, Belgium
  13. Ferracin T, Landis C.M, Delannay F, Pardoen T, On the determination of the cohesive zone properties of an adhesive layer from the analysis of the wedge-peel test, 10.1016/s0020-7683(03)00076-3
  14. Hadavinia H., Kawashita L., Kinloch A.J., Moore D.R., Williams J.G., A numerical analysis of the elastic-plastic peel test, 10.1016/j.engfracmech.2006.04.022
  15. Hunston D. L., Kinloch A. J., Wang S. S., Micromechanics of Fracture in Structural Adhesive Bonds, 10.1080/00218468908030877
  16. Hutchinson J.W, Evans A.G, Mechanics of materials: top-down approaches to fracture, 10.1016/s1359-6454(99)00291-8
  17. Kafkalidis M. S., Thouless M. D., Yang Q. D., Ward S. M., Deformation and fracture of adhesive layers constrained by plastically-deforming adherends, 10.1163/156856100742401
  18. Kawashita L.F., Kinloch A.J., Moore D.R., Williams J.G., The influence of bond line thickness and peel arm thickness on adhesive fracture toughness of rubber toughened epoxy–aluminium alloy laminates, 10.1016/j.ijadhadh.2007.05.005
  19. Kinloch A. J., Adhesion and Adhesives, ISBN:9789048140039, 10.1007/978-94-015-7764-9
  20. Kin Loch A. J., Shaw S. J., The Fracture Resistance of a Toughened Epoxy Adhesive, 10.1080/00218468108071189
  21. Landis Chad M., Pardoen Thomas, Hutchinson John W., Crack velocity dependent toughness in rate dependent materials, 10.1016/s0167-6636(00)00031-4
  22. Martiny Ph., Lani F., Kinloch A.J., Pardoen T., Numerical analysis of the energy contributions in peel tests: A steady-state multilevel finite element approach, 10.1016/j.ijadhadh.2007.06.005
  23. McAuliffe D, Karac A, Murphy N, Ivankovic A (2011) Transferability of adhesive fracture toughness measurements between peel and TDCB test methods for a nano-toughened epoxy. In: Proceedings of the 34th annual meeting of the Adhesion Society, Savannah (USA)
  24. Minamo (2010) Web page:
  25. Needleman A., A Continuum Model for Void Nucleation by Inclusion Debonding, 10.1115/1.3173064
  26. Pardoen T, Marchal Y, Delannay F, Thickness dependence of cracking resistance in thin aluminium plates, 10.1016/s0022-5096(99)00011-3
  27. Pardoen T., Ferracin T., Landis C.M., Delannay F., Constraint effects in adhesive joint fracture, 10.1016/j.jmps.2005.04.009
  28. Rice JR (1967) Fatigue crack propagation. In: Fatigue crack propagation, ASTM-STP 415, p 247
  29. Salomonsson Kent, Andersson Tobias, Modeling and parameter calibration of an adhesive layer at the meso level, 10.1016/j.mechmat.2007.06.004
  30. Siegmund T, Brocks W (1998) Local fracture criteria: lengthscales and applications. In: Proceedings of the 2nd Euromech-Mecamat conference, Magdeburg, pp 347–354
  31. Tvergaard Viggo, Effect of fibre debonding in a whisker-reinforced metal, 10.1016/0921-5093(90)90170-8
  32. Tvergaard Viggo, Hutchinson John W., The relation between crack growth resistance and fracture process parameters in elastic-plastic solids, 10.1016/0022-5096(92)90020-3
  33. Tvergaard Viggo, Hutchinson John W., Toughness of an interface along a thin ductile layer joining elastic solids, 10.1080/01418619408242253
  34. Tvergaard V., Hutchinson J.W., Effect of strain-dependent cohesive zone model on predictions of crack growth resistance, 10.1016/0020-7683(95)00261-8
  35. Wei Yueguang, Hutchinson John W., Nonlinear delamination mechanics for thin films, 10.1016/s0022-5096(96)00122-6
  36. YANG Q, Numerical simulations of adhesively-bonded beams failing with extensive plastic deformation, 10.1016/s0022-5096(98)00101-x
  37. Yang Q. D., Thouless M. D., Ward S. M., Analysis of the Symmetrical 90°-peel Test with Extensive Plastic Deformation, 10.1080/00218460008029274