User menu

Prebiotic effects of wheat arabinoxylan related to the increase in bifidobacteria, Roseburia and Bacteroides/Prevotella in diet-induced obese mice.

Bibliographic reference Neyrinck, Audrey M. ; Possemiers, Sam ; Druart, Céline ; Van de Wiele, Tom ; De Backer, Fabienne ; et. al. Prebiotic effects of wheat arabinoxylan related to the increase in bifidobacteria, Roseburia and Bacteroides/Prevotella in diet-induced obese mice.. In: PLoS One, Vol. 6, no. 6, p. e20944 (2011)
Permanent URL
  1. Bäckhed Fredrik, Crawford Peter A., Coordinated regulation of the metabolome and lipidome at the host-microbial interface, 10.1016/j.bbalip.2009.09.009
  2. Turnbaugh Peter J., Bäckhed Fredrik, Fulton Lucinda, Gordon Jeffrey I., Diet-Induced Obesity Is Linked to Marked but Reversible Alterations in the Mouse Distal Gut Microbiome, 10.1016/j.chom.2008.02.015
  3. Cani P. D., Neyrinck A. M., Fava F., Knauf C., Burcelin R. G., Tuohy K. M., Gibson G. R., Delzenne N. M., Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia, 10.1007/s00125-007-0791-0
  4. Cani P. D., Possemiers S., Van de Wiele T., Guiot Y., Everard A., Rottier O., Geurts L., Naslain D., Neyrinck A., Lambert D. M., Muccioli G. G., Delzenne N. M., Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability, 10.1136/gut.2008.165886
  5. Cani P. D., Bibiloni R., Knauf C., Waget A., Neyrinck A. M., Delzenne N. M., Burcelin R., Changes in Gut Microbiota Control Metabolic Endotoxemia-Induced Inflammation in High-Fat Diet-Induced Obesity and Diabetes in Mice, 10.2337/db07-1403
  6. Delzenne Nathalie M., Cani Patrice D., Nutritional modulation of gut microbiota in the context of obesity and insulin resistance: Potential interest of prebiotics, 10.1016/j.idairyj.2009.11.006
  7. Roberfroid Marcel, Gibson Glenn R., Hoyles Lesley, McCartney Anne L., Rastall Robert, Rowland Ian, Wolvers Danielle, Watzl Bernhard, Szajewska Hania, Stahl Bernd, Guarner Francisco, Respondek Frederique, Whelan Kevin, Coxam Veronique, Davicco Marie-Jeanne, Léotoing Laurent, Wittrant Yohann, Delzenne Nathalie M., Cani Patrice D., Neyrinck Audrey M., Meheust Agnes, Prebiotic effects: metabolic and health benefits, 10.1017/s0007114510003363
  8. Neyrinck Audrey M, Delzenne Nathalie M, Potential interest of gut microbial changes induced by non-digestible carbohydrates of wheat in the management of obesity and related disorders : , 10.1097/mco.0b013e32833ec3fb
  9. Hughes S. A., Shewry P. R., Li L., Gibson G. R., Sanz M. L., Rastall R. A., In Vitro Fermentation by Human Fecal Microflora of Wheat Arabinoxylans, 10.1021/jf070293g
  10. Vardakou Maria, Palop Carmen Nueno, Christakopoulos Paul, Faulds Craig B., Gasson Michael A., Narbad Arjan, Evaluation of the prebiotic properties of wheat arabinoxylan fractions and induction of hydrolase activity in gut microflora, 10.1016/j.ijfoodmicro.2007.11.007
  11. Grootaert Charlotte, Delcour Jan A., Courtin Christophe M., Broekaert Willem F., Verstraete Willy, Van de Wiele Tom, Microbial metabolism and prebiotic potency of arabinoxylan oligosaccharides in the human intestine, 10.1016/j.tifs.2006.08.004
  12. Maes C., Delcour J.A., Structural Characterisation of Water-extractable and Water-unextractable Arabinoxylans in Wheat Bran, 10.1006/jcrs.2001.0439
  13. Lopez Hubert W., Levrat Marie-Anne, Guy Christine, Messager Arnaud, Demigné Christian, Rémésy Christian, Effects of soluble corn bran arabinoxylans on cecal digestion, lipid metabolism, and mineral balance (Ca, Mg) in rats, 10.1016/s0955-2863(99)00036-4
  14. ZX Lu, Am J Clin Nutr, 71, 1123 (2000)
  15. Lu Z X, Walker K Z, Muir J G, O'Dea K, Arabinoxylan fibre improves metabolic control in people with Type II diabetes, 10.1038/sj.ejcn.1601857
  16. Garcia A L, Otto B, Reich S-C, Weickert M O, Steiniger J, Machowetz A, Rudovich N N, Möhlig M, Katz N, Speth M, Meuser F, Doerfer J, Zunft H-J F, Pfeiffer A H F, Koebnick C, Arabinoxylan consumption decreases postprandial serum glucose, serum insulin and plasma total ghrelin response in subjects with impaired glucose tolerance, 10.1038/sj.ejcn.1602525
  17. Monobe Manami, Maeda-Yamamoto Mari, Matsuoka Yuki, Kaneko Akihiro, Hiramoto Shigeru, Immunostimulating Activity and Molecular Weight Dependence of an Arabinoxylan Derived from Wheat Bran, 10.3136/nskkk.55.245
  18. M Marzorati, Agro Food Industry Hi-Tech, 20, 50 (2009)
  19. P Van den Abbeele, 233 (2009)
  20. Wiele Tom, Boon Nico, Possemiers Sam, Jacobs Heidi, Verstraete Willy, Prebiotic effects of chicory inulin in the simulator of the human intestinal microbial ecosystem, 10.1016/j.femsec.2004.07.014
  21. Possemiers Sam, Verthé Kristof, Uyttendaele Sofie, Verstraete Willy, PCR-DGGE-based quantification of stability of the microbial community in a simulator of the human intestinal microbial ecosystem, 10.1016/j.femsec.2004.05.002
  22. S Possemiers, J Nutr, 136, 1862 (2006)
  23. Ramirez-Farias Carlett, Slezak Kathleen, Fuller Zoë, Duncan Alan, Holtrop Grietje, Louis Petra, Effect of inulin on the human gut microbiota: stimulation of Bifidobacterium adolescentis and Faecalibacterium prausnitzii, 10.1017/s0007114508019880
  24. Rinttila T., Kassinen A., Malinen E., Krogius L., Palva A., Development of an extensive set of 16S rDNA-targeted primers for quantification of pathogenic and indigenous bacteria in faecal samples by real-time PCR, 10.1111/j.1365-2672.2004.02409.x
  25. Ventura M., Reniero R., Zink R., Specific Identification and Targeted Characterization of Bifidobacterium lactis from Different Environmental Isolates by a Combined Multiplex-PCR Approach, 10.1128/aem.67.6.2760-2765.2001
  26. Abdul-Ghani M. A., Matsuda M., Balas B., DeFronzo R. A., Muscle and Liver Insulin Resistance Indexes Derived From the Oral Glucose Tolerance Test, 10.2337/dc06-1519
  27. WT Friedewald, Clin Chem, 18, 499 (1972)
  28. AM Neyrinck, J Nutr Biochem (2011)
  29. Linn Tracy C., Purification and crystallization of rat liver fatty acid synthetase, 10.1016/0003-9861(81)90320-9
  30. EM Dewulf, J Nutr Biochem (2010)
  31. Cani P. D., Amar J., Iglesias M. A., Poggi M., Knauf C., Bastelica D., Neyrinck A. M., Fava F., Tuohy K. M., Chabo C., Waget A., Delmee E., Cousin B., Sulpice T., Chamontin B., Ferrieres J., Tanti J.-F., Gibson G. R., Casteilla L., Delzenne N. M., Alessi M. C., Burcelin R., Metabolic Endotoxemia Initiates Obesity and Insulin Resistance, 10.2337/db06-1491
  32. Suzuki Sayoko, Ishikawa Shin-ichi, Arihara Keizou, Itoh Makoto, Molecular species-specific differences in composition of triacylglycerols of mouse adipose tissue and diet, 10.1016/j.nutres.2008.02.007
  33. AB Awad, J Nutr, 111, 34 (1981)
  34. Devillard E., McIntosh F. M., Paillard D., Thomas N. A., Shingfield K. J., Wallace R. J., Differences between human subjects in the composition of the faecal bacterial community and faecal metabolism of linoleic acid, 10.1099/mic.0.023416-0
  35. Cani Patrice, Delzenne Nathalie, The Role of the Gut Microbiota in Energy Metabolism and Metabolic Disease, 10.2174/138161209788168164
  36. Larsen Nadja, Vogensen Finn K., van den Berg Frans W. J., Nielsen Dennis Sandris, Andreasen Anne Sofie, Pedersen Bente K., Al-Soud Waleed Abu, Sørensen Søren J., Hansen Lars H., Jakobsen Mogens, Gut Microbiota in Human Adults with Type 2 Diabetes Differs from Non-Diabetic Adults, 10.1371/journal.pone.0009085
  37. Armougom Fabrice, Henry Mireille, Vialettes Bernard, Raccah Denis, Raoult Didier, Monitoring Bacterial Community of Human Gut Microbiota Reveals an Increase in Lactobacillus in Obese Patients and Methanogens in Anorexic Patients, 10.1371/journal.pone.0007125
  38. Hildebrandt Marie A., Hoffmann Christian, Sherrill–Mix Scott A., Keilbaugh Sue A., Hamady Micah, Chen Ying–Yu, Knight Rob, Ahima Rexford S., Bushman Frederic, Wu Gary D., High-Fat Diet Determines the Composition of the Murine Gut Microbiome Independently of Obesity, 10.1053/j.gastro.2009.08.042
  39. Fleissner Christine K., Huebel Nora, Abd El-Bary Mohamed Mostafa, Loh Gunnar, Klaus Susanne, Blaut Michael, Absence of intestinal microbiota does not protect mice from diet-induced obesity, 10.1017/s0007114510001303
  40. Kok N., Roberfroid M., Delzenne N., Dietary oligofructose modifies the impact of fructose on hepatic triacylglycerol metabolism, 10.1016/s0026-0495(96)90186-9
  41. Delzenne Nathalie M., Williams Christine M., Prebiotics and lipid metabolism : , 10.1097/00041433-200202000-00009
  42. NM Delzenne, Am J Clin Nutr, 73, 456S (2001)
  43. Wall R., Ross R P., Shanahan F., O'Mahony L., O'Mahony C., Coakley M., Hart O., Lawlor P., Quigley E. M, Kiely B., Fitzgerald G. F, Stanton C., Metabolic activity of the enteric microbiota influences the fatty acid composition of murine and porcine liver and adipose tissues, 10.3945/ajcn.2008.27023
  44. Benjamin Sailas, Spener Friedrich, Conjugated linoleic acids as functional food: an insight into their health benefits, 10.1186/1743-7075-6-36
  45. Devillard E., McIntosh F. M., Duncan S. H., Wallace R. J., Metabolism of Linoleic Acid by Human Gut Bacteria: Different Routes for Biosynthesis of Conjugated Linoleic Acid, 10.1128/jb.01359-06
  46. McIntosh F. M., Shingfield K. J., Devillard E., Russell W. R., Wallace R. J., Mechanism of conjugated linoleic acid and vaccenic acid formation in human faecal suspensions and pure cultures of intestinal bacteria, 10.1099/mic.0.022921-0
  47. Nakano Ryosuke, Kurosaki Eiji, Yoshida Shigeru, Yokono Masanori, Shimaya Akiyoshi, Maruyama Tatsuya, Shibasaki Masayuki, Antagonism of peroxisome proliferator-activated receptor γ prevents high-fat diet-induced obesity in vivo, 10.1016/j.bcp.2006.03.023
  48. R Stienstra, PPAR Res, 2007, 95974 (2006)
  49. D Lairon, Am J Clin Nutr, 42, 629 (1985)
  50. Neyrinck Audrey M., Bindels Laure B., De Backer Fabienne, Pachikian Barbara D., Cani Patrice D., Delzenne Nathalie M., Dietary supplementation with chitosan derived from mushrooms changes adipocytokine profile in diet-induced obese mice, a phenomenon linked to its lipid-lowering action, 10.1016/j.intimp.2009.02.015
  51. Wydro Paweł, Krajewska Barbara, Ha̧c-Wydro Katarzyna, Chitosan as a Lipid Binder: A Langmuir Monolayer Study of Chitosan−Lipid Interactions, 10.1021/bm700453x
  52. Martinez I., Wallace G., Zhang C., Legge R., Benson A. K., Carr T. P., Moriyama E. N., Walter J., Diet-Induced Metabolic Improvements in a Hamster Model of Hypercholesterolemia Are Strongly Linked to Alterations of the Gut Microbiota, 10.1128/aem.00380-09
  53. Ridlon Jason M., Kang Dae-Joong, Hylemon Phillip B., Bile salt biotransformations by human intestinal bacteria, 10.1194/jlr.r500013-jlr200
  54. Delzenne N. M., Daubioul C., Neyrinck A., Lasa M., Taper H. S., Inulin and oligofructose modulate lipid metabolism in animals: review of biochemical events and future prospects, 10.1079/bjn/2002545
  55. Backhed F., Ding H., Wang T., Hooper L. V., Koh G. Y., Nagy A., Semenkovich C. F., Gordon J. I., The gut microbiota as an environmental factor that regulates fat storage, 10.1073/pnas.0407076101
  56. Aronsson Linda, Huang Ying, Parini Paolo, Korach-André Marion, Håkansson Janet, Gustafsson Jan-Åke, Pettersson Sven, Arulampalam Velmurugesan, Rafter Joseph, Decreased Fat Storage by Lactobacillus Paracasei Is Associated with Increased Levels of Angiopoietin-Like 4 Protein (ANGPTL4), 10.1371/journal.pone.0013087
  57. Mandard Stéphane, Zandbergen Fokko, van Straten Esther, Wahli Walter, Kuipers Folkert, Müller Michael, Kersten Sander, The Fasting-induced Adipose Factor/Angiopoietin-like Protein 4 Is Physically Associated with Lipoproteins and Governs Plasma Lipid Levels and Adiposity, 10.1074/jbc.m506519200