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Abstract. The author has recently proposed a new way of formulating two
classical classes of structured convex problems, geometric and [;-norm optimiza-
tion, using dedicated convex cones. This approach has some advantages over the
traditional formulation: it simplifies the proofs of the well-known associated duality
properties (i.e. weak and strong duality) and the design of a polynomial algorithm
becomes straightforward.

In this article, we make a step towards the description of a common framework
that includes these two classes of problems. Indeed, we present an extended variant
of the cone for geometric optimization previously introduced by the author and
show it is equally suitable to formulate this class of problems. This new cone
has the additional advantage of being very similar to the cone used for I,-norm
optimization, which opens the way to a common generalization.

1 Introduction

1.1 Geometric optimization

Geometric optimization forms an important class of problems that enables prac-
titioners to model a large variety of real-world applications, mostly in the field of
engineering design [5]. This class of problems is usually known for historical rea-
sons under the names of geometric programming. However, because of the strong
connection of the term ”programming” with computer science, we prefer to use the
more natural word ”optimization”.

These problems can be expressed as follows: we first need to define the following
two sets R = {0,1,2,...,7} and I = {1,2,...,n} and let {Ix},cp be a partition of
I into 7 + 1 classes, i.e. satisfying

Userly =T and [N L =0 forall k #1.
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The primal geometric optimization problem is the following:
inf Go(t) st. t€RY, and G(t) < 1forall k € R\ {0} , (1)

where t is the m-dimensional column vector we want to optimize and the functions
G, defining the objective and the constraints are so-called posynomials, defined by

m
Gy :RT, » R, it Y C[]#57,

i€l 7=1

where exponents a;; are arbitrary real numbers and coefficients C; are required to
be strictly positive (hence the name posynomial). These functions are very well
suited for the formulation of constraints that come from the laws of physics or
economics (either directly or using an empirical fit).

Although not convex itself (choose for example Gy : t 5 t1/2 as the objective,
which is not a convex function), a geometric optimization problem can be easily
transformed into a convex problem, for which a Lagrangean dual can be explicitly
written. This transformation uses the following change of variables:

t;=¢% forallj € {1,2,...,m} , (2)

to become
inf go(y) st. ge(y) <lforallke R\ {0} . (3)
The functions gy are defined to satisfy gi(y) = Gy(t) when (2) holds, which means

m

NG —c: m Qs T s
g R Ry, cym Y G ()% =) et B =) et
i€l j=1 i€l iely
where a; = (a;1, @2, . . ., @in)” is an m-dimensional column vector and the coefficient

vector ¢ € R" is given by ¢; = —log C;. Note that unlike the original variables ¢ and
coefficients C, variables y and coefficients ¢ are not required to be strictly positive
and can take any real value.

It is straightforward to check that functions g are now convex, hence that (3)
is a convex optimization problem. However, we will not establish this property
here but rather derive it from the fact that problem (3) can be cast as a conic
optimization problem (see Subsection 3.1). Moreover, following others [3, 7], we
will not use this formulation but instead work with a slight variation featuring a

linear objective:
sup BTy st. gi(y) <lforallk€ R, (PG)

where b € R™ and 0 has been removed from set R (i.e. this set is now equal to
{1,2,...,7}). Problems in the form (3) (and (1)) can be easily expressed in this
format [1, Section 5.1] and all the results we are going to obtain about problem (PG)
can be easily translated back to these more traditional settings, so that we can
concentrate our attention on formulation (PG) without any loss of generality.
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The dual problem for (PG) can be written as follows

inf cT.’E+ZE:vilog———$—i—— st. Az=bandz >0, (DG)
ke icly Lier, T
o

where z € R’} is the vector of nonnegative dual variables we have to optimize.

Several duality results are known for the primal-dual pair (PG)-(DG), some
being mere consequences of convexity (e.g. weak duality), others being specific
to this particular class of problems (e.g. the absence of a duality gap). These
properties were first studied in the late sixties, and can be found for example in
the book of Duffin, Peterson and Zener [5].

1.2 Conic optimization

Conic optimization' deals with a class of problems that is essentially equivalent to
the class of convex problems, i.e. minimization of a convex function over a convex
set. However, formulating a convex problem in a conic way has the advantage of
providing a very symmetric form for the dual problem and often gives a new insight
about its structure.

The basic ingredient of conic optimization is a convex cone. Recall that a set
C is a cone if and only if it is closed under nonnegative scalar multiplication, i.e.
ifz € C = Mz € Cforall A € R,. Moreover, a set is convex if and only if it
contains the whole segment joining any two of its points. However, when dealing
with cones, this assumption is equivalent to closedness under addition, i.e. cone C
isconvexifreCandyeC=z+yeC.

In order to avoid some technical nuisances, the convex cones we are going to
consider will be required to be closed, pointed and solid, according to the following
additional definitions:

Definition 1.1 A cone C is solid if and only if intC # 0 (where int S denotes the
interior of set S).

Definition 1.2 A cone C is pointed if and only if C N —C = {0}.

These two properties basically mean that C is a full-dimensional cone that does not
contain any straight line passing through the origin.
We are now in position to define a conic optimization problem: let C C R"
a. pointed, solid, closed convex cone. The (primal) conic optimization problem is
defined as
ix;f fz st. Az=bandz€C, (CP)

where z € R is the column vector we are optimizing and the problem data is given
by cone C, a m x n matrix A and two column vectors b and ¢ belonging respectively

1Proofs for the theorems stated in this subsection can be found e.g. in [8, 9].
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to R™ and R". This problem can be viewed as the minimization of a linear function
over the intersection of a convex cone and an affine subspace.

Tt is well-known that this class of problems is equivalent to the class of convex
problems, see e.g. [4]. However, the usual Lagrangean dual of a conic problem can
be also expressed very nicely in a conic form, using the notion of dual cone.

Definition 1.3 The dual of a cone C CR® is defined by
c'={z"eR" | 2"z >0 forallz €C} .

The following theorem stipulates that the dual of a cone is always a closed
convex cone.

Theorem 1.1 If C is a closed convex cone, its dual C* is another closed conves
cone. Moreover, the dual (C*)* of C* is equal to C.

Closedness is essential for (C*)* = C to hold (without the closedness assumption
on C, we only have (C*)* = cIC where cl S denotes the closure of set S). The
additional notions of solidness and pointedness also behave well when taking the
dual of a convex cone (indeed, these two properties are dual to each other).

Theorem 1.2 If C is a solid, pointed, closed conves cone, its dual C* is another
solid, pointed, closed convex cone.

The dual of our primal conic problem (CP) can be stated as

sup by st. ATy+s=candseC’, (CD)

(1:9)
where y € R™ and s € R* are the column vectors we are optimizing, the other
quantities 4, b and c being the same as in (CP). It is immediate to notice that
this dual problem has the same kind of structure as the primal problem, i.e. it
also involves optimizing a linear function over the intersection of a convex cone
and an affine subspace. The only differences are the direction of the optimization
(maximization instead of minimization) and the way the affine subspace is described
(it is a translation of the range space of AT while primal involved a translation of
the null space of A). It is also possible to show that the dual of this dual problem
is equivalent to the primal problem, using the fact that ) =C.

The two conic problems of this primal-dual pair are strongly related to each
other, as demonstrated by several duality theorems. In order to keep this presen-
tation short, we only cite the most basic of these theorems, called the weak duality
property:

Theorem 1.3 (Weak duality) Let z o feasible (i.c. satisfying the constraints)
solution for (CP), and (y,s) a feasible solution for (CD). We have

My<cz,
equality occurring if and only if the following orthogonality condition is satisfied:
T
z7s=0.

This theorem shows that any primal (resp. dual) feasible solution provides an upper
(resp. lower) bound for the dual (resp. primal) problem.
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1.3 Aim of the article

In [1], the author starts by defining an appropriate convex cone that allows him
to express geometric optimization problems as conic programs, his aim being to
apply the general duality theory for conic optimization [8, 9] to these problems
and prove in a seamless way the various well-known duality theorems of geometric
optimization. The goal of this article is to introduce a variation of this convex
cone that keeps its ability to model geometric optimization problems but bears
more resemblance with the cone that was introduced for [,-norm optimization in
(2], hinting for a common generalization of these two families of cones.

This article is organized as follows: following this brief introduction to geomet-
ric and conic optimization, Section 2 introduces the convex cones needed to model
geometric optimization and studies some of their properties. Section 3 constitutes
the main part of this article and demonstrates how the above-mentioned cones en-
able us to model primal and dual geometric optimization problems in a seamless
fashion. Modelling the primal problem with our first cone is rather straightfor-
ward and writing down its dual is immediate, but some work is needed to prove
the equivalence with the traditional formulation of a dual geometric optimization
problem. Finally, concluding remarks in Section 4 provide some insight about the
relevance of our approach and hint at some possible ways to make use of it.

2 The geometric cone

Let us introduce the geometric cone G", which will allow us to give a conic formu-
lation of geometric optimization problems.

Definition 2.1 Let n € N. The geometric cone G" is defined by

g" ={(z,6,5) € R} xR, xR, |02":e-%‘ <x}

i=1
using in the case of a zero denominator the following convention:

o
— L
e =0.

We observe that this convention results in (z,0,x) € G" forallz € R} and x € R,.
As a special case, we mention that G is the 2-dimensional nonnegative orthant R%.

In order to use the conic formulation described in the previous section, we first
prove that G" is a convex cone.

Theorem 2.1 G" is ¢ convez cone.

Proof. Let us first introduce the following function

fo i REXR, R (5,0) ) 077 .
i=1
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With the convention mentioned above, its effective domain is R%*'. It is straight-
~ forward to check that f, is positively homogeneous, i.e. f,(Az, M) = Afy(z,0) for
A > 0. Moreover, f, is subadditive, i.e. fo(z +1',0 + 8') < fa(z,0) + fu(a',6').
In order to show this property, we can work on each term of the sum separately,
which means that we only need to prove the following inequality for all z,z' € R
and 0,6 e R, :
Be % +0e=F > (0+0)e T

First observe that this inequality holds when § = 0or & = 0. For example,
when 8 = 0, we have to check that #'e”o > e -5 , which is a consequence of
the fact that  — e™® is a decreasing function. When 6+ 6 > 0, let us recall

the well-known fact that £ — e~ is a convex function on R,, implying that
de™® + Ne=@ > e~(Aatdd) for any nonnega,tive a,a', ) and X satisfying A+ N = 1.

!

[ —
Choosing a = §, ¢’ = 5, A = 0+0, and ) = 0+a': we find that
9 -z Py Y _ 0 z_ & g
Tt T+ gt 7> e T 0

which, after multiplying by (6 + '), lead to the desired inequality

b F + Qe 5 > e+ 9')6_%5%' .

Positive homogeneity and subadditivity imply that f, is a convex function. Since
fol(z,0) > 0for all z € R" and 6 € R, we notice that G" is the epigraph of f,, i.e.

epi fo = {(z,0,6) € R} xR, xR | fu(2,6) < Kp=g".

G™ is thus the epigraph of a convex positively homogeneous function, hence a convex
cone [6]. a

We now proceed to prove some properties of the geometric cone Gg".

Theorem 2.2 G is closed.

Proof. Let {(z*, 6%, k)} a sequence of points in R%*2 such that (z¥,6%, k%) € G"
for all k and hmk_.w(x g%, k¥) = (z,0°,>). In order to prove tha.t G" is closed,
it suffices to show that ( ®© g% k>) € G" Let us distinguish two cases:

o #® > 0. Using the easily proven fact that functions (z;,6) — Pe=7 are
continuous on R, x R, , we have that

9°°Ze ag th ket = hmZﬂke Ek< lim k¥ = k®

k—o0 k—oo0
i=1

which implies (%, 6) € G".
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¢ 6 = 0. Since (z*, 0%, x*) € G", we have zF > 0 and x* > 0, which implies
that °° > 0 and £ > 0. This shows that (z*,0, k) € G™.

In both cases, (£*°, 0%, ) is shown to belong to G", which proves the claim. [

It is also interesting to identify the interior of this cone.
Theorem 2.3 The interior of G* is given by
intG" = {(2,0,5) € Ry, xRy, xRyy |83 e <}
i=1
Proof. According to Lemma 7.3 in [6] we have
int G" = intepi f, = {(z,0,x) | (z,6) € intdom f, and f,(z,0) < K} .

The result then simply follows from the fact that int dom f, = Rt O
Corollary 2.1 The cone G is solid.

Proof. It suffices to prove that there exists at least one point that belongs to
int G (Definition 1.1). Taking for example the point (e, £,1), where e stands for
the n-dimensional all-one vector, we have

n
Zﬂe"#=e'"<1=m,
i=1

and therefore (e, =,1) € int G™. O
We also have the following fact:

Theorem 2.4 G" is pointed.

Proof. The fact that 0 € G® C R%*? implies that g"N—G" = {0}, i.e. G" is pointed
(Definition 1.2). a

To summarize, G" is a solid pointed closed convex cone, hence suitable for conic
optimization.
2.1 The dual geometric cone (G)*

In order to express the dual of a conic problem involving the geometric cone G",
we need to find an explicit description of its dual.

Theorem 2.5 The dual of G" is given by

(G")* = {(z*,ﬂ*,m*) ER} xRxR, |6*> Z (z;‘log%—z}‘) - Z*,c*} .

T} <K TI2K
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Proof. Using Definition 1.3 for the dual cone, we have
(G = {(z*,6",x*) € R" x B | (2,0, k)" (¢*,0",£*) > O for all (z,0,x) € gt}

(the * superscript on variables z* and 6* is a reminder of their dual nature). We
first note that in the case § = 0, we may choose any z € R? and x € R, and have
(z,0,k) € G", which means that the product

(z,0,K)7 (z*, 0%, k) = 573" + 00" + kK* = 2"z + kK"

has to be nonnegative for all (z, k) € R’jfl and is easily seen to imply that z* and
Kk* are nonnegative. We may now suppose 8 > 0, (z*,x*) > 0 and write

Toy* +06* + ke* >0 forall (z,0,k)€G"

& Tzt + 06" + HZe e* >0 forall (z,0) € R xR,

s 0> ~7 forall (z,0) €ERY xR,

i\
& 0> T — g Ze“t" for all te R}
1=1
n

& 0> (o} +re) forall tERL,
=1
where we have defined ¢; = % for convenience. We now proceed to seek the greatest
possible lower bound on 9* examining each term of the sum separately: we have
thus to seek the minimum of
izt +Kk'eh

The derivative of this quantity w1th respect to #; being equal to z} — K*e —ti we
have a minimum when #; = — log —'— but we have to take into account the fact that
t; has to be nonnegative, which leads us to distinguish the following three cases

o K* = 0: in this case, the minimum is always equal to 0,

o k*>0and z; < K" in this case, the minimum is attained for a nonnegative
t; and is equal to —z; log 4oy z}, this quantity being taken as equal to zero
in the case of z} =0,

o k* > 0 and z¥ > £*: in this case, the minimum value for a nonnegative t is
attained for ¢ = 0 and is equal to £*.

These three cases can be summarized with

inf (tizf + k') =

{-—:v log o4 zf  when z} < K*
>

K* when z} > K*
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Since all of these lower bounds can be simultaneously attained with a suitable
choice of £, we can state the final defining inequalities of our dual cone as

z" >0, k" >0and 6" > E (= log-————x Zn
0<z} <K* zI>K*
g
As a special case, since G° = R%, we check that (G°)* = (R%)* = R%, as
expected.

Note 2.1 It can be easily checked that the lower bound on 6* appearing in the
definition is always nonpositive, which means that (z*,0*,k*) € (G")* as soon
as =¥ and 0* are nonnegative. This fact could have been guessed prior to any
computation: noticing that G* C R%*? and (R?)* = RY, we immediately have
that (G™)* D R, because taking the dual of a set inclusion reverses its direction.

Finding the dual of G was a little involved, but establishing its properties is
straightforward.

Theorem 2.6 (G)* is a solid, pointed, closed convex cone. Moreover, ((G)*)* =G

The proof of this fact is immediate by Theorem 1.2 since (G)* is the dual of a solid,
pointed, closed convex cone. ]

The interior of (G)* is also rather easy to obtain:
Theorem 2.7 The interior of (G)* is given by

int(G")* = {(w*,Q*,m‘) € R, xRxR,, [6* > Z (z log i—i——mf)—— Z n*} .

0<my <x* T} >K*

Proof. We first note that (G™)*, a convex set, is the epigraph of the following
function

fo R xR, = R: (2, k%) — Z (= log—-—:z: Z,‘i,

0<z} <K™ T >K*

which implies that f, is convex (by definition of a convex function). Hence we can
apply Lemma 7.3 in [6] to get

int(G")* = intepi fo = {(z*,x*,0%) € intdom f, xR | 6" > fu(z", &Y},

which is exactly our claim since int R} x R, =R}, xR, ,. O

3 A conic formulation

This is the main section of this article, where we show how a primal-dual pair of
geometric optimization problems can be modelled using the G" and (G")* cones.
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3.1 Modelling geometric optimization

Let us restate here for convenience the definition of the standard primal geometric
optimization problem:

sup by st. g(y) <lforallke R, (PG)

where functions gy are defined by
g R" =R, :y»—-)Ze“?y"c" .
i€l

In the rest of this article, we will use the following useful convention: vg (resp.
M) denotes the restriction of column vector v (resp. matrix M) to the components
(resp. rows) whose indices belong to set S. We introduce a vector of auxiliary
variables s € R" to represent the exponents used in functions gi, more precisely
we let

s; = ¢; — aly for all i € I or, in matrix form, s = ¢ — ATy,

where A is a m X 1 matrix whose columns are a;. Our problem becomes then

sup b7y st. s=c—ATyand Ze‘”" <lforallk€eR,

i€l
which is readily seen to be equivalent to the following, using the definition of G,
sup b7y st. ATy+s=cand (s5,1,1) € g*lk forallk € R,

and finally to

AT s c
sup by s.t. 0 |y+|v]=1e] and (s1,,vr,wx) EG"* forallk € R,
0 w e

(CPG)
where e is the all-one vector in R", 7, = #I; and two additional vectors of fictitious
variables v, w € R" have been introduced, whose components are fixed to 1 by part
of the linear constraints. This is exactly a conic optimization problem, in the dual
form (CD), using variables (7, §), data (4,b,¢) and a cone K* such that

S C
j=y, 5=|v],A=(4 0 0),b=bc=|e ,K*=GMxg™x--xg",
w e

where K* has been defined as the Cartesian product of several disjoint geometric
cones, in order to deal with multiple conic constraints involving disjoint sets of
variables. We also note that the fact that we have been able to model geometric
optimization with a convex cone is a proof that these problems are convex.
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3.2 Deriving the dual

Using properties of G and (G)* proved in the previous section, it is straightforward
to show that K™ is a solid, pointed, closed convex cone whose dual is

(Kt)* K= (gnl)-« % (gnz)* N (gn,.)* ,

another solid, pointed, closed convex cone, according to Theorem 1.2. This allows
us to derive a dual problem to (CPG) in a completely mechanical way and find the
following conic optimization problem, expressed in the primal form (CP):

T
¢ T T

inf {e z| st. (A 0 0)|z]| ="0band (z1,, 2k ux) € (G%)*VEER,
e U u

(CDG)
where z € R*, 2 € R" and 4 € R" are the vectors we optimize. This problem can
be simplified: making the conic constraints explicit, we find

A$=b, II)I,‘ZO, ’U;kZO,
22 Y der, (zilog2l—z;) =3 ier, un Yk € R,

0<z;<ug T2 Up

inf Tz +e'z+e us.t.

which can be further reduced to

inf Tz+elu+ ( z;lo -aii——xi - u ) st. Az=b, u>0andz>0.
g{ § ( g ur ) g]; k ’
0<z;<uy, Ti>Up

Indeed, since each variable z; is free except for the inequality coming from the
associated conic constraint, these inequalities must be satisfied with equality at each
optimum solution and variables z can therefore be removed from the formulation.
At this point, the formulation we have is simpler than the pure conic dual but is
still different from the usual geometric optimization dual problem (DG) one can
find in the literature. A little bit of calculus will help us to bridge the gap: let us
fix k and consider the corresponding terms in the objective

:E'
o1, 1, + Uk + Z (zilog — — z;) — Z U -
‘ Uk :
i€l i€l
0<z; <uy Ti2Uk

We would like to eliminate variable uy, i.e. find for which value of uy, the previous
quantity is minimum. It is first straightforward to check that such a value of u
must satisfy z; < ug for all 7 € I, i.e. will only involve the first summation sign
(since the value —uy in the second sum is attained as a limit case in the first sum
when z; tends to uy from below). Taking the derivative with respect to u; and
equating it to zero we find

0= 14 a2y = - D

(= ” , which implies uy = 2 T .
ier, iUk k

i€y,
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Our objective terms become equal to

cIka;Ik +Zz,+z x,log mi) ::cﬂa:zk—l—Zx,-log——fi—— ,
i€l i€l ze]k L i€l Eielk i
and leads to the following simplified dual problem
mfc:n—}—zz:w,log st. Azr=bandz >0, (DG)
kER "Ei’“o 1EIk Ti

which is, as we expected, the traditional form of a dual geometric optimization
problem that was presented in Section 1.1. This confirms the perfect relevance of
our pair of primal-dual geometric cones as a tool to model the class of geometric
optimization problems.

4 Concluding remarks

In this article, we have formulated geometric optimization problems in a conic way
using some suitably defined convex cones G" and (G")*. This approach has the
following advantages:

o Classical results from the standard conic duality theory can be applied to
derive the duality properties of a pair of geometric optimization problems,
including weak and strong duality. This was done in (1, 2] and can be done
here in a very similar fashion. This leads in our opinion to clearer proofs, the
specificity of the class of problems under study being confined to the convex
cone used in the formulation.

o Another advantage of our conic formulation is that it allows us to benefit
with minimal work from the theory of polynomial interior-point methods
for convex optimization developed in [4]. Indeed, finding a computable self-
concordant barrier for our geometric cone G is all that is needed to build
an algorithm able to solve a geometric optimization problem up to a given
accuracy within a polynomial number of arithmetic operations.

o Unlike the cones described in [1], the pair of cones we have introduced in this
chapter bears some strong similarities with the cones £7 and L¢ used in (2]
for [,-norm optimization. We can indeed write the following definition of the

cone L?
Z;|Pi
— < lC}
7 =

n
1
r={(z,6,5) €R* xR, xR, |03~
(00,5) € R xR, xR, (03
and compare it to

g" = {(m,ﬁ,n) eR} xR, xR, |Oie‘%‘ gn} .

i=1
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The only difference between those two definitions is the function that is ap-
plied to the quantities % for each term of the sum: the geometric cone G"
uses = + e~® while the ,-norm cone £” is based on z — L |z|. This ob-
servation is the first step towards the design of a common Framework that
would encompass geometric optimization, l,-norm optimization and several
other kinds of structured convex problems and that would allow the easy
derivation of the associated duality properties.
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