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Introduction

Random matrices, integrable systems and Virasoro constraints

In quantum mechanics, the state of a system is described by a wave function 1) which
is solution of the Schrodinger equation

O

zha = Hy,
where H is the Hamiltonian of the system. The energy levels in which the system can
be found are given by the discrete part of the spectrum of the Hamiltonian. For certain
systems, an exact knowledge of the Hamiltonian, and hence of its spectrum, is almost
impossible. In the 1950’s, Wigner [[69] made the observation that the Hamiltonian
of heavy nuclei could be modeled by a large size Hermitian random matrix. Indeed,
the local statistical behavior of the eigenvalues of these random matrices very nicely
model the local statistical behavior of the energy levels of heavy nuclei. The early
mathematical theory of random matrices has been developped by Dyson [32], Gaudin
[38], Mehta, .... We refer to the introduction of Mehta’s book [55]] for a historical

overview of the field.

Central in random matrix theory is the concept of matrix ensemble, a set of matrices
with a probability measure defined on it. A random matrix is a randomly chosen ma-
trix in a given matrix ensemble, for the probability measure defined on it. Of particular
interest is the distribution of the eigenvalues of a random matrix. The most famous
example of a random matrix ensemble is the Gaussian Unitary Ensemble (GUE). It is
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the space H,, of complex n x n Hermitian matrices, with the probability measure

1 )
(1) P(M)dM = - e~ qp,

n

where Z,, is a normalization constant, and

dM =[] dM;; ] dReMy; dimMy,
J k<j
is the Lebesgue measure on the independent variables of the matrix M. This proba-
bility measure is invariant under conjugation by a unitary matrix. Moreover the inde-
pendent entries of a matrix M in this ensemble are statistically independent Gaussian
random variables. The probability measure induces a joint probability density mea-
sure on the eigenvalues

1
Zl,

n

n
2) Py (x1,...,x)dzy ... da, = A, (x)? exp (—Zx?) dzq...dz,,
j=1
where A, (z) = det [3:;_1] 1<ij<n is the Vandermonde determinant, and Z), is a
normalizing constant. The probability that a random GUE matrix has its spectrum in
aset £ C R is then simply the integral of this density over E™. It can also be written
as a Fredholm determinant

P, (spectrum M in E€) = det (1 — K, x£),

with K, an integral kernel that can be written in terms of Hermite polynomials, and
X £ is the indicator function of the set £. This formula is particularly interesting when
studying large n assymptotics. Indeed, using well-known assymptotic formulas for
the Hermite polynomials, we have
nan;@P(Al, A \/%Ma, 2a]) = det (I = Kuin X[—20.2a] )

with
sinm(z — y)

m(x —y)
the well-known Sine kernel.

Ksin(zv y) =

An important development in the theory of random matrices in the 1980°s was the
discovery by Jimbo, Miwa, Mori and Sato [46] that the Fredholm determinant of
the Sine kernel, appearing in the study of the distribution of the eigenvalues of large
random matrices, as we have seen for the GUE ensemble, can be written in terms of a
solution of the Painlevé V equation.



INTRODUCTION 3

Theorem 1. (Jimbo-Miwa-Mori-Sato [46]) We have

det (1 - KSmX[,Qaﬁza]) — exp ( /O ™ @dx),

x
with o the solution of the Painlevé V equation
(to")? + A(to" — o) (to’ — o + (0')?) =0,
so that
ttr
0:—7——2——3—&—0(254), ast — 0.
™ ™ o
This discovery makes the link between random matrix theory and the theory of
integrable systems. The link with integrable systems has proven to be very fruitfull
and has lead since the 1990’s to a large number of new results.

The approach of Adler, Shiota and van Moerbeke [6] to random matrix theory lies
within this perspective. The idea is to consider some deformations of the probabilities
related to certain matrix ensembles by adding extra time variables. With respect to
these new variables, the deformed probabilities are then special solutions of integrable
hierarchies. An integrable hierarchy is a family of evolution equations

®» L oxw, jes

ot
on a manifold, with J a (finite or infinite) subset of N, and the equations can be solved
simultanously. This means that for all j, the vector field X; is a symmetry for the
other vector fields X;, @ # j, i.e. if u(t) is a solution to the evolution equations @
then

u(t) +eX; (u(t))

is still a solution of the evolution equations (3)), up to terms of order £2. Checking that
X is a symmetry for the other vector fields X; is rather simple. It suffices to check
that

[(X;, Xi] =0, Vi,
where [-, -] is the Lie bracket of vector fields. The concept of symmetry can be

generalized to time-dependent vector fields. A time-dependent vector field Y (u, t) is
a time-dependent symmetry of the evolution equations (3)) if

w(t) — u(t) + EY(u(t), t),

maps a solution u(¢) of (3) on another solution of (3), up to terms of order 2. One
easily checks that this is equivalent to

oY .
“ o, Y, X1, vj.
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Following Fuchssteiner [37], we introduce the concept of master symmetries. These
are time-independent vector fields V' such that

©) V.X;]#0, [[V.Xi, X;] =0, Vi,jel

Master symmetries are generators for time-dependent symmetries of which are
first order polynomial expressions in the time variables. Indeed, the vector field
Y =V+) V. X))
JjeJ
satisfies (4). Master symmetries are related to the Virasoro algebra, and are usually
connected with a bi-hamiltonian structure in the sense of Magri [52]]. We leave aside
the master symmetries for a while.

Typical hierarchies appearing in the Adler-Shiota-van Moerbeke approach are the KP
hierarchy, the Toda lattice, .... As an example, let’s have a look to the GUE ensemble.
The probability measure (T)) is deformed in the following way by introducing a family
of time variables ¢, t2, t3, . ..

P(M)dM = L(;TT(M%JrZ?:l 6 Tr(M*) g s
Zn ()
Consequently, we have
IP’”(spectrum M in E) = :nER; t;’
with
Hn(E) En k—1

where H,, (E) is the set of n x n Hermitian matrices with spectrum in E. This function
can be written in the form of a determinant of a finite moment matrix

To(E;t) = det (Mij(E;t))

0<i,j<n—1’

where
pij(Est) i= piyj (Bst) = (2,27) = / e R g,
’ E

are the moments associated to the scalar product (-, - ) .+ on the space of polynomials
on the real line with complex coefficients. The link with integrable hierarchies goes
through time-dependent orthogonal polynomials. Let {p,(z;t)},>0 be the sequence
of time-dependent monic orthogonal polynomials associated with this scalar product.
It can be proven that the polynomials p,, (z; t) are given by the following expressions
W Tn(E5t—[z71])

N pn(2:t) =2 B
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%, ...). It is a well-known fact that orthogonal polynomials on

the real line satisfy three-term recurrence relations (see [20])):

2pn(25t) = Pnt1(25t) + bnp1(D)pn(23t) + an(t)pn—1(251),

where [z] = (z, é,

with initial condition p_;(z;¢) = 0 and po(z;t) = 1. These recurrence relations
define a tri-diagonal semi-infinite matrix
by (t) 1

a1 (t) bg (t) 1

L(t) = as(t) by(t) 1

This matrix satisfies the Toda lattice hierarchy
oL

® oo =1
where (- ) denotes the upper triangular part including the diagonal. Equations
and (BI) imply that each of the functions 7,,(E;t) ,n = 1,2, ..., are tau-functions for

the Toda lattice, in the sense of Sato theory. More details can be found in Chapter 5.
The precise link between Sato’s theory and the theory of orthogonal polynomials was
first established in [41]. As a consequence, the functions 7, (F;t) are solutions of the
KP hierarchy, in particular, they satisfy the KP equation

84 82 82 32 2

L 132 4 N 6( 55 logm) =0.
(at;* T2 T Yoot ) 8T T O\ Ge 8T

The tau-functions 7, (F;t) completely encode the Toda hierarchy. The entries of the

©)

matrix L(t), the moments p and the polynomials p,,(z;¢) can all be expressed in
terms of these tau-functions. Based on Favard’s theorem for orthogonal polynomials
on the real line, we have the following correspondence

(10 (1 () k=0 < (Tn(t))n>0 < L(t).

A second important tool in the Adler-Shiota-van Moerbeke approach, besides the use
of integrable hierarchies, is the application of Virasoro gauge transformations. As
the functions 7,,(E;t) given in (6) are matrix integrals, we may change variables
without changing the value of the integral (gauge invariance). Typically, for a set
E = U]_;[c2i—1, c24], this gauge invariance leads to linear constraints on the integrals

an Bnmn(E;t) =V 1. (E;t), m > —1,

m
with
2r
0
emt

Bm - J 80]' ’

j=1
and V,,, operators in the time variables, related to a representation of the Virasoro
algebra in the space of formal power series in t1,?2,.... The Virasoro algebra is
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an infinite dimensional complex Lie algebra, obtained as a central extension of the
complexification of the Lie algebra of vector fields on the unit circle S'. The latter is
a complex Lie algebra d, with basis

cod d
_ + in6 _ _n+l
dn =i 0g = =2 0

where n € Z, z = ¢, and commutation relations

[dma dn] = (m - n)dm-‘rna

for m,n € Z. The Virasoro algebra is a central extension d @& ¢C of d by a one-
dimensional center ¢ C, together with the commutation relations

[dm,c] =0,
m3 —m

[dma dn] = (m - n)d7rz+7z + 5m,—n T C.
Combining (9) and the Virasoro constraints (TI)) evaluated on the locus {t; = to =
t3 = --- = 0}, Adler-Shiota-van Moerbeke [|6] have obtained a partial differential
equation for 7,,(F;0), and thus for Pn(spectrum M in E) | 1o the variables being
the endpoints of the set E. Defining P,, := P, (spectrum M in E)| this PDE
reads

t=0’

(B, + 8nB2, + 1283 + 248y — 16B_1B1) log P,, + 6(B%, logP,,)” = 0.

In particular, when E =] — oo, z|, then this PDE reduces to a 4th order ODE, which
turns out to be a disguised form of the Painlevé IV equation.

In [42]], Haine and Semengue propose an approach to this kind of problems ’at the
level of the moments’ (see also Faybusovich and Gekhtman [35] where the same idea
appeared independently). This approach is based on the correspondence given
above. At the level of the moments, the Toda lattice equations @]) read

0 :
allzf = Mk+i, 7 > 07 k> 07

and these equations define vector fields on the space of moments T; (1) = fix44. The
Toda vector fields T; commute

[naTj] 207 VZ,] Z 07
as can immediately be checked. Haine and Semengue then define the vector fields

0 . )
V]‘Z#Z(k-f—]"'l),uk-&-ja Jj=>-1L
Sj

These vector fields satisfy the commutation relations

(12) Vi, Tk] = kTyvj, [V, Vil = (k= 5)Vjy-
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So the vector fields V; don’t commute with the Toda vector fields. Comparing (12)
with @), one observes that the vector fields V;, 7 > —1, form a Virasoro subalgebra
of master symmetries for the Toda lattice. We repeat that master symmetries are not
real symmetries of the hierarchy as they do not commute with the vector fields of the
hierarchy. They are generators for time dependent symmetries of the hierarchy, which
are first order polynomials in the time variables.

Translating the vector fields V; to the level of the tau functions 7,, the Virasoro
constraints (TT)) can be recovered. So, in a certain sense, the Virasoro constraints are
the expression of the master symmetries V; at the level of the tau functions.

Random matrices, integrable systems and Virasoro constraints will play a central role
in this thesis. We will be concerned with two different problems.

(1) In the first part, we will construct a Virasoro algebra of master symmetries
for the Ablowitz-Ladik hierarchy. The first equation of the Ablowitz-Ladik
hierarchy is a space discretization of the cubic nonlinear Schrodinger equa-
tion. Integrable deformations of the gap probabilities of the Circular Unitary
random matrix ensemble are tau functions for this hierarchy. We will start
with a study of this matrix ensemble, and construct Virasoro constraints for
the deformed probabilities. These constraints will help us to obtain the mas-
ter symmetries of the Ablowitz-Ladik hierarchy.

(2) In the second part we will study non-intersecting Brownian motion models.
These models are closely related to Hermitian random matrix ensembles.
Again, Virasoro constraints will play a crucial role in this part in the con-
struction of PDE’s satisfied by some probabilities.

The Ablowitz-Ladik hierarchy and the Circular Unitary Ensemble

In the first part of this thesis, we will construct an algebra of master symmetries for the
Ablowitz-Ladik hierarchy. The Ablowitz-Ladik hierarchy is a hierarchy of compatible
equations, and the first one is the Ablowitz-Ladik equation. This is a differential-
difference equation which was introduced in 1975-1976 by Ablowitz and Ladik [1}2]
in the form

—i%’“ = @rt1 — 20k + Q-1 — Gk (Qos1 + Go—1),
*iaaLtk = —Tg41 + 21 — Tp—1 + Tka(Tk+1 + 7”k—1)~
It is a space-discretization of the cubic nonlinear Schrodinger equation. Indeed, taking
T, = £qx, this equation reduces to
. . Oqr

el (S5 20k + Q-1 £ g6 > (@rt1 + qe—1).
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After scaling

te %t qp o eqr,

the continuous limit ¢ — 0 gives the cubic nonlinear Schrodinger equation

—ig = Gor F 2qlq[*.

The Ablowitz-Ladik equation is a discrete integrable Hamiltonian system. An infinite
family of constants of motion can be found, which define the other vector fields
of the hierarchy. The Ablowitz-Ladik equation received a lot of attention, as it is
used in modeling several phenomena, such as wave propagation in optical fiber
arrays. For a recent account of the huge literature on the Ablowitz-Ladik hierarchy,
we refer the reader to Section 3.9 of [39]. The defocusing case (yx = 7Tx) has
been studied in great detail by Nenciu [S8]]. In the same way as the Toda lattice is
related to orthogonal polynomials on the real line, Nenciu establishes that the right
tool to study the defocusing Ablowitz-Ladik hierarchy are the orthogonal Laurent
polynomials on the unit circle in the complex plane. As proven by Cantero, Moral and
Velazquez [19], orthogonal Laurent polynomials on the unit circle satisfy five-term
recurrence relations. These recurrence relations define a penta-diagonal matrix, called
a CMV-matrix. See also [60,/61]] for a discussion on CMV-matrices. Nenciu obtains
Lax pairs for the defocusing Ablowitz-Ladik hierarchy using these CM V-matrices.

The Ablowitz-Ladik hierarchy has also been studied by Adler-van Moerbeke [9,12],
under the name Toeplitz lattice. It appears in the context of random matrices and
combinatorics, when dealing with integrals over the unitary group U (n) for the Haar
measure. Adler and van Moerbeke have obtained the Ablowitz-Ladik hierarchy as a
reduction of the 2-Toda lattice. They consider the following time-dependent bilinear
pairing on C[z] x C|z]
13 (L) = § gl )BTRS ()
Sl

2miz’

The moments f1;—; := ji;; = (2%,27) define a moment matrix mos = (1;;)i,j>0
which is Toeplitz, i.e. all elements on a same diagonal are equal. One sees immedi-
ately that as function of ¢, s, the moment matrix satisfies the following equations

ag;lsc = A" Moo,
(14) n> 1,
o = meo (A7),

where A = (J; j_1)i ;>0 is the usual shift matrix. At the level of the moments, these
equations read
6/Lk a,uk

15 T = — = ; T up=—=up_.;, Vj>1.
(15) ik o1, Hk+js e Ds, ME—j, V] =
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Obviously [T;,7;] = 0,Vi,j € Z, if we define Topur, = pp. Let
{pﬁﬂ)( ity 8), pg)( -;t,8)}n>0 be the associated sequence of time-dependent monic
bi-orthogonal polynomials. We have

<p%1)=p£2)> = hn(;nma hn 7é 0>
and define h = diag(hy, ), >0. We also define
z(t,s) =p 1 (0it,5),  ynlt,s) =p{P(0;t,5),

and p()(t,s;2) = (pg) (t, s; z))n>0, 7 = 1,2. These polynomials satisfy recurrence
relations B

LipM(t,s32) = 2pW(t,532), (W Lah) pP (8, 532) = 2pP(t, 53 2),

with L, and Ly matrices given by

—Z1Y0 1
—Maayy  —a2y1 1 0
Ly = hy ha
! —heT3Yo —piw3yr —T3y2 1
—ToY1 1
(r h)T B —%foyz —hfﬁyz 1 0
2T —2woys —piaays —ways 1

Adler and van Moerbeke [9] prove that L; and Lo are solutions of the 2-Toda lattice
hierarchy described in [[67]]

oL; n oL;

ot = [(Ll)Jr?Li]? aTn =
where for a matrix A, we denote by A (resp. A__) the upper triangular part (resp.
the strictly lower triangular part) of A. The particular form of the matrices L1, Lo is
preserved by these evolution equations. The reduction of the 2-Toda lattice hierarchy
to matrices with this particular form is called by Adler and van Moerbeke the Toeplitz
lattice. The Toeplitz lattice equations on the variables x,,, y,, are exactly the evolu-
tion equations of the Ablowitz-Ladik hierarchy (see [181/62]). As proven by Ueno and
Takasaki [67]], the entries of the Lax operators L, Lo of the 2-Toda lattice can ulti-
mately be described in terms of a sequence of functions (7, (¢, s)),>0 called 2-Toda
tau functions, satisfying some bilinear identities. When dealing with the Toeplitz re-
duction, these tau functions are given by finite determinants of the moment matrix:

(L3)-— L], i=1,2,n=1.2,...

Tu(t, s) = det (:“ivj (t, 5))ogi,j§n71'
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The starting point to obtain master symmetries for the Ablowitz-Ladik hierarchy is the
Circular Unitary Ensemble from random matrix theory. The Circular Unitary Ensem-
ble is the group U(n) of unitary n X n matrices, with the normalized Haar measure as
probability measure. The Weyl integral formula gives the induced density distribution
on the eigenvalues of the matrices on the unit circle in the complex plane, and is given
by

EINIEIE | (S
" o 2miz ¥ '

For n,0 €] — m, [, with n < 6, the probability that a random CUE matrix has no
eigenvalues within an arc of circle (,0) = {z € S' |n < arg(z) < 0} is given by

0 L O e |%d6, ... do
e — W _ 0
Tn(n: ) (271_)“”' /0 NN /6 H |€ € | 1--- n-

1<k<i<n

Following Adler-van Moerbeke [9], we introduce the 2-Toda time dependent tau func-
tions

1 n co (4 4. —iy dZg
(16) Tn(t; 357776) = / ‘An(z)|2 (ez.izl(tJZkJrSJzk )7>7
n! Jio,2n4n)n kl;[l 2mizy

with z;, = €. These tau functions deform the probabilities 7,, (1, #) = 7,,(0,0; 7, 6).
The main result of Chapter 1 is that these tau functions satisfy a set of Virasoro
constraints indexed by all integers, decoupling into a boundary-part and a time-part.
We have

Theorem 2. (Haine-Vanderstichelen [43])
(i) The tau functions 7, (t, s;n,0),n > 1, satisfy
Bi(n,0)7a(t, 5:1,0) = L{V 70 (t, 5:1.0), k€2,

with Lén), k € Z, time-dependent differential operators, and

1/ ., 0 en O .
Br(n,0) = 2(6“69% + emna—n); i=+—-1.

(ii) The operators L,(Cn), k € Z, satisfy the commutation relations of the centerless
Virasoro algebra, that is

(L, L] = (k- DL, klez.
The main surprise of this result is that the 2-Toda tau functions deforming the
gap probabilities of the CUE ensemble satisfy a centerless full Virasoro algebra of
constraints. This stands in contrast with the corresponding result for the deformed gap
probabilities of the GUE ensemble and other Hermitian ensembles, which roughly
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satisfy only "half of" a Virasoro type algebra of constraints.

The integrals (T6) can be expressed as Toeplitz determinants

17 Tn(t,8) = det(,uk,l(t7 s>)0§k,l§n—1’

where
dz
2miz’

oo

(18) /J’k(ty S) - /Sl Zk ezjzl(tjzj+sjz_j)w(2)

ez,

and w(z) is some (complex-valued) weight function defined on the unit circle S*.
These moments satisfy the Ablowitz-Ladik hierarchy (]E[) Hence, the determinants
are very special instances of tau functions for the Ablowitz-Ladik hierarchy. This
suggests, using the Virasoro constraints obtained in Chapter 1, following an idea in-
troduced in [42] in the context of the 1-dimensional Toda lattices and explained earlier
in this introduction, to define the following vector fields on the moments

(19) Vite = (k+ j)pir+j,  Vj € Z.

These vector fields trivially satisfy the commutation relations

(20) Vi, Vil = (G = )Vivy, Vi, T3] = jTivy, Vi, j € Z,

from which it follows that

2D [Vi, T3], Th) = j[Tig;, Tkl = 0, Vi, j,k € Z.

Equations (20) and (Z1)) mean that the vector fields Vj, j € Z, form a Virasoro algebra

of master symmetries for the Ablowitz-Ladik hierarchy.

The Ablowitz-Ladik tau functions admit the following expansion

Tn(t,s) = Z Dig,esin—1 S = (n=1)sic ) S5, 1 —(n—1),....jo (5),

0<ig< ++<ip_q JOr+In—1
0<jo<-"<Jn-1

where

(22) pio,...,il,,,_l = det (,u’ik—jl (07 0))0§k,l§n717

Jos--dn—1

are the so-called Pliicker coordinates, and S;, ., (t) denote the Schur polynomials

Sil»uwik (t) = det (Sir+3_7'(t))1§r,s§k’

with S,,(t) the elementary Schur polynomials. In Chapter 4, we shall establish the
next result:
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Theorem 3. (Haine-Vanderstichelen [44]) For all k € Z, we have
L 7(t,5) =

Z Vi (pgo,...,;ﬂ,_l )Sin,lf(nfl),...,io(t)Sjn—1f(n71),..‘,jo (s),

0<in< -+ <in_1 J0s--3In—1
0<jo<-<jn—1

with L,(cn), k € 7Z, defined as in Theorem 2, and Vy, <pi0,4..,in,1) the Lie derivative
.7‘0;“'7]‘77,71

of the Pliicker coordinates 22)) in the direction of the master symmetries Vi, of the
Ablowitz-Ladik hierarchy, as defined in (19).

Thus the operators L,(Cn)7 k € Z, precisely describe the master symmetries of the
Ablowitz-Ladik hierarchy on the tau functions of this hierarchy.

To complete the picture, we give Lax equations for the master symmetries of the
Ablowitz-Ladik hierarchy at the end of Chapter 4. The master symmetries of the
Ablowitz-Ladik hierarchy form a full centerless Virasoro algebra. As we have seen,
the centerless Virasoro algebra corresponds to the complexification of the Lie algebra
of vector fields on the circle S*, with basis
d, = fz"”Lli, z=¢% nel.
dz
Define the matrices M7, Ms by

d d
@p(”(znf, s) = MipW (2, ), @p@)(at’ s) = Mop™@ (25, ).

The operators —z acting on p(M (¢, s; z) (or p(? (¢, s;2)) can be expressed in
terms of the matrices Ly, M1, as long as n + 1 > 0. Indeed, we have forn +1 > 0

n+1l . d
dz

d
_ Ip(l)(z; t,s) = —MlLT’J'_lp(l)(Z; t,s).
z

When n + 1 < 0, the operator —z"“% acting on p(!) (¢, s; z) can not be expressed
any more in terms of the matrices L, M; as L;l is not defined. This, as well as the
work of Nenciu [58], suggests to use bi-orthogonal Laurent polynomials for the study
of the Ablowitz-Ladik hierarchy. Laurent polynomials are polynomials in z and z~*.
Let (-, -) be a time dependent bilinear pairing on the space of Laurent polynomials,
for example the pairing (I3). Applying a Gram-Schmidt bi-orthogonalization process
to the basis {1, 2,271, 2%, 272,.. . }, one obtains two sequences { f,,, gn }n>0 of time-
dependent monic right bi-orthogonal Laurent polynomials (See Chapter 2 for an exact

definition), satisfying
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Define the vectors f = (f,)n>0 and ¢ = (gn)n>0. The multiplication by z in these
bases is then given by two time-dependent matrices Ay, Ao

2f(2) = A1f(z),  29(2) = Azg(2),
and these matrices turn out to be penta-diagonal, generalizing the result obtained by
Cantero, Moral and Velazquez [19], and also discussed by Simon [60,/61]], for orthog-
onal Laurent polynomials on the unit circle. The matrices A, Ao are called (general-
ized) CMV-matrices. They are not independent, as As is related to Afl through

ATl =hATRTY,
where h = diag(h,,)n>0. We have

Theorem 4. The Ablowitz-Ladik hierarchy is given by the Lax equations
0A; 0A,
Oty Otn

where, for convenience, we put s, =t_,, n > 0.

23) = [Ar, (A7), = A2, (47")--],  Vneg,

We define the matrices Dy and (D7) (respectively D and (D3)T) representing the
operator of derivation d/dz in the bases (fn(2)), -, and (h,'gn(271)), -, (respec-

tively (9n(2)),,5 and (b fu(271), 50)

d d, _ _ « _ _
%f(Z)Zle(Z% @(h Lo(z 1)) :(D1)T (h Lg(z 1))7

d d, _ _ X _ -
ag(z):ng(z), E(h LfTY) = (D;)" (1 fzTh).
We obtain Lax equations for the Virasoro master symmetries of the Ablowitz-Ladik
hierarchy in terms of the CMV matrices. We prove in Chapter 4

Theorem 5. (Haine-Vanderstichelen [44]) For k € Z
Vk(Al) = |:A17 (D1A11C+1),, + (Allﬂ_lDT),, + k(Alf)——]a
Vi(Az) = [(D2Ay™") __ + (AY"D3)  —k(A7%)__, 4],

where Dy and (D})7 (respectively Dy and (D3)T') represent the operator of deriva-
tion d/dz in the bases (fn(z))n>0 and (h;lgn(z_l))n>0 (respectively (gn(z))n>0
and (h;lfn(z_l))n>o), with f,(2),gn(2) the bi-orthogonal Laurent polynomials
satisfying {fun, gn) = hmOmn.

The theory of time-dependent bi-orthogonal Laurent polynomials is developped in
Chapters 2 and 3. In Chapter 3 we construct the Lax equations (23] for the Ablowitz-
Ladik hierarchy in terms of these CMV matrices A;, As.
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Non-intersecting Brownian motions

Random matrix theory is related with models of non-intersecting Brownian motions.
Brownian motion was first described by the botanist Robert Brown in 1828. He
was studying pollen particles in water under the microscope. He observed minute
particles, ejected by the pollen grains, executing a jittery motion. He repeated the
experiment with pollen coming from different plant species and also with particles
of inorganic matter. In all these experiments he observed the same phenomenon, but
he was unable to explain the origin of the motion. In 1877, Delsaux advanced the
hypothesis that the changes in direction and speed of the particles were caused by the
collisions of the particles with the water molecules. In 1905, Albert Einstein brought
the solution of the problem to the attention of physicists. He determined the transition
probability of the process using the heat equation. In 1906, Marian Smoluchowski
obtained the Brownian motion as a scaling limit of random walks.

The rigourous mathematical theory to study Brownian motion was developed by Nor-
bert Wiener in 1923. In mathematical terms, a real-valued stochastic process { B; };+>0
is a standard Brownian motion starting at the origin if it is a Gaussian process such that

(1) Bo=0;
(2) for a sequence 0 < t; < ty < --- < t of times, the increments
By, , By, — By,,..., By, — By, | are independent random variables;

(3) forall 0 < s < t, B; — B, has a normal distribution A/(0, ¢ — s) with mean
0, and variance t — s;

(4) the path functions t — B; are almost surely continuous on [0, +o0].

In 1958, Karlin and McGregor [49] established a formula allowing one to compute

the transition probability density py (¢, @, l;) to find IV independent Brownian particles

startingina; < --- < ay attime ¢t = 0 in positions by, ..., by atatime ¢ > 0 without

any two of them ever having been coincident during the time interval [0, ¢]. Tt is given

in terms of the transition probability density of one Brownian particle on the real line
1 —(z—y)?

p(t7$7y) = ﬁe t )
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by the following determinant

p(t,a1,b1) -+ p(t,ar,by)
pn(t, &, 5) = det : :
p(t,an,b1) -+ p(t,an,by)

In the second part of this thesis, we will be concerned with the study of N independent

Brownian motions during a time-interval [0, 1], conditioned to start at positions a; <

-+ < ay attime ¢t = 0 and to end up in positions 3; < --- < Oy, without two of them

ever having been coincident during that time-interval. We will call this process non-

intersecting Brownian motions. The probability density to find all the particles at time
0 <t < 1in positions z1, ...,z is then, using the formula of Karlin-McGregor,

(0),... 71‘]\](0)) = (al, cey aN)
(1),...,zn(1)) = (B1,....Bn)

— (L&Dl - 1.2.5)
where Zx is a normalizing constant. Interesting cases are the so-called confluent
cases, where several particles start and/or end up in the same points. Of special interest

pN<t;9€1,~--,Z‘N’ gii

are the two following cases:

(1) ag =---=any =0and f; = --- = By = 0. After a simple rescaling,
the distribution of the Brownian particles at time ¢ then coincides with the
distribution of the eigenvalues of a random GUE matrix.

(2) a3 = --- = any = 0. After a simple rescaling, the distribution of the
Brownian particles at time ¢ coincides with the distribution of the eigenval-
ues of a random matrix from the Gaussian ensemble with external source
B = diag(f4, ..., Bn), as proven in [15].

The first confluent case, after rescaling, also describes the distribution of N Dyson
Brownian motions on the real line. This process, discovered by Dyson [31]] in 1962,
describes the motion in time of the eigenvalues of a N x N Hermitian matrix whose
real and imaginary parts of the entries perform independent Ornstein-Uhlenbeck-
processes, with an initial distribution given by the invariant measure of the process.
See Adler-Delépine-van Moerbeke [3] and Katori-Tanemura [50, 51]] for a detailed
description of the relationship between Dyson Brownian motions, non-intersecting
Brownian motions and Gaussian Hermitian matrix ensembles. In particular, in [S0]
both stochastic processes are obtained as scaling limits of the vicious walkers model.

In the two particular cases cited (i.e. non-intersecting Brownian motions with one
starting position and one or several ending positions), the relationship between non-
intersecting Brownian motions and Hermitian matrix models has led to a deeper com-
prehension of the diffusion problems. In both cases, partial differential equations
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(PDE) for the finite /N diffusions have been obtained (see [6,8,(14]). For large IV,
upon taking appropriate scaling limits, different processes appear describing the tran-
sition probabilities of critical infinite dimensional diffusions, like the Airy process,
the Sine process and the Dyson process (see [[111|51}/63]]) for one starting and ending
position, and for two or more ending positions the Pearcey process (see [15,64]), the
Airy process with k outliers (see [3]), etc.

Consider now the following confluent case

(a1,...,ay) = (al,al,...7a17a27a27...,a2,...,aq,am...,aq),
—_———
my ma mq
(617"'7ﬁN) = (blvbla"'7b1ab23b27"'7b27"',bp7bp»"'abp)v
ni na np

with >°7 ,m; = 3% n; = N, for general p and ¢, a1 < as < -+ < a4 and
by < by < --- < by. In this case, it is not known if the distribution of the positions of
the non-intersecting Brownian particles at a given time 0 < ¢ < 1, is the same as the
joint distribution of the eigenvalues of a matrix ensemble. For p = ¢ = 2 this problem
has first been studied by Daems-Kuijlaars [22] and Daems-Kuijlaars-Veys [23]. In
these papers, the authors consider N /2 particles going from a to b, and N/2 particles
going from —a to —b. They show that the correlation functions of the positions of
the non-intersecting Brownian motions have a determinantal form, with a kernel that
can be expressed in terms of mixed multiple Hermite polynomials. They analyze
the kernel in the large NV limit, for a small separation of the starting and ending
positions (i.e. when the product ab is sufficiently small), and find the limiting mean
density of particles is supported by one or two intervals. Taking usual scaling limits
of the kernel in the bulk and near the edges they find the Sine and the Airy kernel.
For large separation of the starting and ending positions, those results have been
extended by Delvaux-Kuijlaars [26]. In [4]], Adler-Ferrari-van Moerbeke study
a similar situation, but with an asymmetric number of paths in the left and right
starting and ending positions. Recently, Adler-Ferrari-van Moerbeke [S[] and also
Delvaux-Kuijlaars-Zhang [28] (see also [27]]) analyzed the large N-limit in a critical
regime where the paths fill two tangent ellipses in the time-space plane. Using an
appropriate double scaling limit, they prove the existence of a new process describing
the diffusion of the particles near the point of tangency.

It is a hard problem to obtain concrete results about the processes describing the
critical infinite dimensional diffusions, obtained as limiting situations of the problem
of N non intersecting Brownian motions on the real line starting at ¢ and ending at
p prescribed positions, with p, ¢ > 2. In the second part of this thesis we analyze
the finite IV diffusion for two or more starting and ending positions. We consider N
non-intersecting Brownian motions z1 (¢), ...,z (t) on R, starting at time ¢ = 0 in ¢
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al1,...,0q

different points, and arriving in ¢ = 1 in p different points. If P, """ ¢ (allz;(t) € E)
denotes the probability to find all the particles in a set F at an intermediate time
0 < t < 1, we prove the following theorem.

Theorem 6. (Adler-van Moerbeke-Vanderstichelen [13|]) For each value of the pa-
rameters p > 1 and q > 1, let K* be the smallest positive integer such that

(2% =32 +4)(K*)? + (—2® + 3z + 4)K* — 2x(2* — 22 — 1) > 0,
with x = p + q. Let E be a finite union of intervals. Under the assumptions
a1+ ---+ag =0and by + --- + b, = 0, the function log ]P’bal1 g: (all z;(t) € E)
satisfies a nonlinear PDE of order K* + 3 or less, the variables being the coordinates
of the endpoints of the set E, and the coordinates of a1, ...,aq and by, . .., by,

For example, for 4 < x < 8, the value of K* in this theorem is given in the following
table :

x [45]6|7]|8
K |3|4|5|5]|5

The proof of this Theorem will be given in Chapter 6, and is based on the use of a
particular integrable hierarchy, and Virasoro constraints. The use of these methods
is suggested by the fact that the probability ]P’Zf;: (all z;(t) € E) has different
descriptions:

(1) It can be written, after making a space and time transformation, as a block
moment matrix

@4 By (alla(t) € B)
1 m, .

b

n
Y sDj(y>>>0§7n§mi—l ’
0<n<n;—1 | 1<i<gq
1<j<p

where ; (z) = %%, ©;(y) = €%Y, and the following inner product
<xmw7(x)'y"<p](y)> = [ o e(@itb)z  — 5 g
E

The ~’s indicate that a space-time transformation has been performed.
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(2) It can be written as a sum of multiple integrals

,,,,,

N 2

=70 5 O [ (e @) amtoenmm [ o)

X ... X <Amq ("L‘m1+»--+mq,1+17 . 7$m1+~-+mq) H ¢q($m1+-~+m471+i))
i=1
ny

x [(Am (To(1ys - > To@m) [| <Pl($a(i)))

1=1
XL,

p
(25) X (Anp (mo'(n1+~-+np,1+1)a ceey xo—(n1+-~+np)) H gop(:ca(n1+.4.+np71+i>))} s

=1
where A,, is the Vandermonde determinant, and S is the group of permu-
tations of N elements.

As shown in Adler-van Moerbeke-Vanhaecke [14]], the determinants of block moment
matrices deformed in an appropriate way satisfy integrable hierarchies. Concretely,
the determinant (24)) is deformed by adding exponentials containing additional fami-
lies of time variables, one family for each weight function ¢; and 1);, or equivalently,
(23) is deformed by adding exponentials containing additional families of time vari-
ables, one family for each Vandermonde determinant. The determinants of the de-
formed block-moment matrices are then tau functions for the multi-component
KP hierarchy. The multi-component KP hierarchy is a very general hierarchy of in-
tegrable equations, describing the time-evolution of matrix-valued pseudo-differential
operators, depending on several families of time variables. These operators can be
expressed in terms of so-called tau-functions, which encode the whole hierarchy. As a
consequence, the determinants of the deformed block moment matrices satisfy some
nonlinear PDE’s. The multi-component KP hierarchy is explained in Chapter 5.

As we have seen, matrix integrals deformed in an appropriate way satisfy Virasoro
constraints (see [[6]). Although we do not know if @]) for general p and g corresponds
to (the reduction to polar coordinates of) a matrix integral, we show that each term
in ([25) separately satisfies Virasoro constraints. As a surprise, it appears that all the
terms satisfy the same Virasoro constraints, and hence, by linearity, it follows that @])
satisfies Virasoro constraints.

Following the method developped by Adler-Shiota-van Moerbeke, Virasoro con-
straints with time and boundary parts can be used to eliminate all the partial derivatives
with respect to the added time variables in the non-linear PDE’s from the integrable
hierarchy, and hence to obtain a non-linear PDE with respect to the variables of the
unperturbed problem. The complexity of the problem studied does not enable one



INTRODUCTION 19

to perform concretely this elimination process and to obtain an explicit formula for
arbitrary values p,q > 2. It is a priori not even obvious at all that it converges to a
PDE after a finite number of steps! In Theorem 6 we prove, however, using a simple
combinatorial argument, that it indeed does, and this for general p and q. We would
like to emphasize that the existence of a PDE satisfied by P, """ (all z;(t) € E)
is not obvious at all. Our proof rests on two surprising facts, the first being that the
perturbed problem satisfies Virasoro constraints, and the second that the elimination
process converges after a finite number of steps.






Part 1

The Ablowitz-Ladik hierarchy and the
Circular Unitary Ensemble






Chapter

The circular unitary ensemble

In this first chapter we introduce the concept of random matrix and random matrix
ensemble. We will be mainly concerned with the study of one particular matrix en-
semble: the circular unitary ensemble. The aim of this first chapter is to introduce in
a self-contained way some methods and material that will be used later on.

1. Random matrices : Definition and Examples

A matrix ensemble is a set of matrices with a probability measure defined on it. A
random matrix is a randomly chosen matrix in a given matrix ensemble, for the proba-
bility measure defined on it. Of particular interest is the distribution of the eigenvalues
of a random matrix. We refer to Mehta’s book [55] for a detailed discussion. We give
some examples of matrix ensembles.

1.1. The Gaussian Unitary Ensemble (GUE). Let H,, be the space of complex
n x n Hermitian matrices. A matrix M € H,, has n? independent variables

MO O

i ) jk >

MY, 1<i<n 1<j<k<n,

respectively the real part of the diagonal elements (the imaginary part of the diagonal
elements is zero), the real part of the elements above the diagonal, and the imaginary
part of the elements above the diagonal. Consider the probability measure on H,,

1 ,
26)  P(M)dM = - e ) gy,

n

23



24 Chapter 1. The circular unitary ensemble

where Z,, = 2-"(n=1)/277°/2 i5 a normalization constant, and
— (0) (1)
ant = TLany T o
k<j k<j
is the Lebesgue measure on the independent variables of the matrix M. Two observa-
tions can be made concerning this probability measure:

(1) Developping the trace in the exponential, we get

n

P(M)dM = Zi ( H engf)szz‘(iOU

(T e an) (I e )
1<k<j<n 1<k<j<n
and we observe that the independent variables of a matrix M € H,, are also
statistically independent random variables. They are distributed as Gaussian
random variables, with zero mean.
(2) The probability measure (26)) is invariant under the automorphism

h:Hp,— Hy M— U MU,

where U € U(n) is a n X n unitary matrix. Consequently, the measure is
said to be unitary invariant.

These two observations explain the name of the matrix ensemble. Due to the uni-
tary invariance of the probability measure (26)), it induces a joint probability density
measure on the eigenvalues

n

1

27 P,(z1,...,2z,)dzy ... dx, = 77 A (z)? exp ( — Zm?) dzq...dz,,
n ]:1

where

(28) Ap(z) = H (zj — ;) = det [x§_1]1gi,j§n’

1<i<j<n
is the Vandermonde determinant, and Z/ is a normalizing constant. Consequently, the
probability that a randomly chosen matrix in this ensemble has its spectrum in a set

FE C Ris given by the integral
1
- / e—Tr(]WZ)dM
Zn I, (E)

1 n
Z—;l - An(:v)2 exp ( — Zm?) dzi...dz,,

P,, (spectrum M in E)

j=1
where H,,(E) is the set of Hermitian matrices with spectrum in E. We refer to [55.25]
for a detailed discussion.
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1.2. The Gaussian Ensemble with external source. Consider on H,,, the space
of complex n x n Hermitian matrices, the probability measure

(29) P(M)dM:Zi Tr( AM) dM,

n
where dM is, as in the example of the Gaussian Unitary Ensemble, the Lebesgue
measure on the independent variables of M € H,,, and

A = diag(aq, ..., an),

is a fixed diagonal matrix, a,...,a, € R. This measure is not invariant under
conjugation by a unitary matrix any more. The probability that a randomly chosen
matrix in this ensemble has its spectrum in a set £ C R can be transformed in an
integral over the eigenvalues, if all the «; are distinct,

. 1 —Tr(—fg2 —AM)
P, (spectrum M in E) = — / e dM
Han(E)

L,
— i A L 2 H e 12? dz. / eTrAUdiag(xl,...,mn)U’Id‘uH(U)
Z, En U(’I’L)
1 T G P
= — An(2)? e = duy SR
7 Jon 1:[1 Ap(z)Ap(a )
1 =3 -
— — 3 taz;
=z .. A, (z) det [e 4 +a aw] L<iien Hd%"
n =1

where in the third step we have used the Harish-Chandra-Itzykson-Zuber for-
mula to evaluate the integral over the unitary group U(n), py being the nor-
malized Haar measure on U(n). When several «; coincide, the formula re-

mains valid, upon taking appropriate limits. Suppose oi,...,Qmn, — a1,
S Omytedmg_1+15 - -y Qg 4otmy — Qg> Withmy + -+ - +mg = n, then
Pt % (spectrum M in E)
= o lérgl oy P, (spectrum M in E)

Ay +-- +mg_1+1se Qmy 4. fmg g

Z//// / A m1 (Q?(l)) H ealxi) %
=1

mq n 22
. A
(30) X (Amq(gc(‘”) | Iealzm””*mrl“) I | e 2 duxy,
i=1 i=1
1) _ _
where z(1) = (1,2, oy Ty )y +ves 2@ = (gt dmg 1410+ o Loy ey ) -

In [15] a non-intersecting Brownian motion interpretation is given of the Gaussian
ensemble with external source. More details on non-intersecting Brownian motions
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can be found in chapter 6. We refer to [15] and references here-in for a detailed
discussion of the Gaussian ensemble with external source.

1.3. The Circular Unitary Ensemble (CUE). The unitary group U (n) is the set

of n x n complex matrices A € C™*" such that
AAT =1,

where [ is the n X n identity matrix, together with matrix multiplication as group
action. The eigenvalues of a unitary matrix all lie on the unit circle in the complex
plane. The group U(n) is a closed and bounded submanifold of R2"” of dimension
n2, after identification of C™*™ with R2"", and thus it is a compact Lie group. The
group acts on itself by left or right multiplication by an element of the group. As U(n)
is a compact group, it has a unique normalized measure 1z that is both invariant under
left and right multiplication:

pr(hE) = pp(E) = pa(Eh),

for all h € U(n) and every measurable set . This measure is called the normalized
Haar measure. The Haar measure induces a joint eigenvalue measure density on the
torus (S*)", given by Weyl’s formula

1

— 601 05 \|2

The Circular Unitary Ensemble (CUE) is the set U(n) of unitary n X n matrices,
together with the normalized Haar measure iy on U(n) as probability measure. Let
J C S! be a subset of the unit circle. The probability that a randomly chosen matrix
from U (n) has all its spectrum in J is given by

P, (J) = /U L V),

where U(n, J) is the set of unitary matrices with spectrum in J. Using Weyl’s for-
mula, this can be transformed in a multiple integral over the eigenvalue

P.(J) = P,(b1,...,0,)d0; ...do,,
J‘n,
with P, (61,...,6,) given in (BI). Notice that A(e?1,... e?") = 0 as soon as
0, = 0, mod 27 for any pair [ # k. As a consequence, the eigenvalues of a

randomly chosen matrix in U(n) for the normalized measure are almost surely all
distinct.

We will be mainly concerned with the circular unitary ensemble in this chapter.

IFor simplicity, we denote by J a subset of S* and the set {6 € [0, 2]|e®® € J}.
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2. Joint eigenvalue probability density for the CUE : Fredholm determinants
and Toeplitz moment matrices

2.1. Fredholm determinants. As shown in the preceding section, the joint
eigenvalue probability density of the Circular Unitary Ensemble is

1 ) )
Pn(el,...70n):7 H |e”9’“—e19l\2,

|
(271’)”’]1 1<k<i<n

It is a symmetric function of its arguments. As we will see, it can be written as a
determinant. Indeed, using the expression (28) of the Vandermonde determinant, we

have
H |ei«9k B ei91|2 — det (ei(jq)e,c) det (efi(jfl)ek)
1<5,k<n 1<j,k<n
1<k<i<n

n

Zez(J 1)(0r— 9,)
1<k,i<n

=t (3
1— zn (0 —61)
= det < o=
1<k,l<n
<sm 20 —6)) )
sin 5 (0x — 07) \<ki<n
It follows that

O — 0
Pn(aly-..ﬁn):ldet 1w |
n! 27 sin (ek_gl) s

Defining the following integral kernel
1 sin §(n—0)
27 sin 1 (n—10)’

HNJ

(32) Kn(n,0) :=
this probability can be written

1
Pa(fr,..,0n) = — det (K (01,0)))

One checks that the kernel K, (7, #) has the reproducing kernel property, i.e. it satis-
fies

1<k,<n

27 2w

K, (0,0)d0 = n, and K,(n,8)K,(&0)d, = K, (n,0).
0 0

This yields the important property

2m
/ det (K (0r, 61)) | <y 1< 40
; <k,l<

= (n —-m + 1) det (Kn(ek, 91))1§k)l§m_1,
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forall 1 < m < n. The function K, (6,6) corresponds to the mean density of
eigenvalues at 6. Indeed, if Z is any subset of [0, 27], then we have

/ K, (6,60)d0 = E (number of eigenvalues in 7).
T

One easily checks that the mean density of eigenvalues is

n
= K, (0,0) = —.
p (6,0) 5

We denote by Z the union of p disjoint subintervals of [0, 27] :
I=T,U---UT,

and by P, (n1, ..., ny; Z) the probability to find exactly n; eigenvalues in Z3, ..., n,
eigenvalues in Z,,, for a randomly chosen matrix of the Circular Unitary Ensemble,
with m = nq + --- + n, < n. We then have

IPJn(nla s 7np;I)

n 2m 2m ni
= P .
(nlv'“,npvn_m)/o /O n(91, 7971) H XIl(aﬂl)

Ji=1
ni+ns ni+-+np
X H XZ» (9j2) s H Xz, <9jp)
Jj2=ni+1 Jp=ni+-+np_1+1
n
< J] (1=xz(6;))d6y...db,.
j=m+1

It is possible to prove that (see [25L55]))
(=)™ 9™D,(T; \)

Po(n1,...,npZT) =
(e L) = o . oA

Ar=--=Ap=1"

where

Do(Z; \) = det (1 = NEan.O)xz, (9))

> —1)m
X

m=0

p
det (7N K (61, 0)xz, (60 do; ... d6,,
" /[0,%]” ’ (; 3 om0 1z, l))lswgm '

is the Fredholm determinant of the integral kernel K,,. As a consequence, we have the
following formula for the gap probability

PP(no eigenvalues in Z) = det (1 — K, (n, 9)X1(9)>~
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The expression of the above probabilities as Fredholm determinants of the kernel
K,,(n,0) is particularly useful when studying large n limits. As n — oo, the size
of the matrices goes to infinity, and so does the density of eigenvalues. The mean
spacing % between successive eigenvalues tends to 0. Hence, we rescale the variables
0; = % to normalize the mean spacing between successive eigenvalues. With this
rescaling, we have

(27r7x @)d(@) _ sin7(x —y)

n’' n n w(x —y)

This is the famous Sine-kernel, appearing also in the study of the GUE ensemble. We
then have forZ = Z; U --- UZ, C [0, 2n] a union of p disjoint subintervals, and for
any fixed ny + - -- +ny, = m:

lim K,

n—oo

dy =: Kn(z,y)dy.

2 1" mDsin I,>\
lim Pn(n17,_.7nm;£ ) = (-1) O™ Dgin(Z; \)

n—oo n nil.onpl AT ONT I==, =1

where Dg, (Z; M) is the Fredholm determinant of the Sine-kernel. We have the follow-
ing celebrated result of Jimbo, Miwa, Mo6ri and Sato, linking Random Matrix Theory
with integrable systems.

Theorem 1.1 (Jimbo-Miwa-Mori-Sato [46]]). We have
det (1 - Ksin(n7 H)X(—t/Q,t/Q) (9)> =1- F(t)a

with

lF(t)exp(/tU;x)d:r), fort >0,
with o the solution of the Pain(}evé V equation

(to")? + 4(to’ — o) (to’ —0+ (0'/)2) =0,

so that
t 2 4
2.2. Joint eigenvalue probabilities as determinants of Toeplitz moment ma-
trices. The probability that a n x n random CUE matrix has all its eigenvalues with
argument within an arc of circle .J is given by

P, (J) :/ Po(01,...,0,)d0; ...d0,,

where the joint eigenvalue density of the Circular Unitary Ensemble P, (61, ...,6,)is
given in (3T)). This probability can be written as the determinant of a Toeplitz matrix.
A matrix A is a Toeplitz matrix if all the elements on the same diagonal are equal, i.e.

if A can be written
n

A= )" aphh,

k=—n
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with A = (; j—1)1<i j<n, and A~! is interpreted as A”. The probability P,,(.J) can
be written as the determinant of a finite Toeplitz moment matrix

(33) P, (J) = det m,,
where
34) My = (fh—1)o<jk<n—1,

with iy, the trigonometric moments defined by

d
(35) uk:/51z’“p(z) :

2miz

for k € Z, with the weight function p(z) = xs(z). Indeed, we have

Q. 2 (D .
dzj
detm,, = det H
(St)n . 1 1 27T’LZ]
Z?i e 22 1=
_ d t( k71) 0,—1 (n 1) H dzj
= iy et (7 L <ki<n 172 o(z 27”2
Let S,, be the group of permutations of n elements and o € Sn. Relabeling the
integration variables (21, ..., 2n) — (24(1)s - - Zo(n)) in the multiple integral above

gives

detm :/ (—=1)° det, (zF1
n (s1)n ( l )1gk,l§n

de
. 9
2miz;

X zg(l)z;(lz) e z;((n")_l) p(z;)
j=1
where (—1)7 is the signature of the permutation o. The value of the integral is inde-
pendent of the choice of ¢ € S,,. Hence, summing over all ¢ € S,, and dividing by
n!, the number of elements in .S,,, we get

detm,, = Z /31 7 det (2" )1§k,zgn

nl €Sy
1 5~ (n=1) dzj
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By definition of the Vandermonde determinant, this gives

det m,,
1 k—1 —(k—1) s dz;
= E (s1yn det (Zl )lgk,lgn det (Zl >1§k,lgn H /)(Zj) 27TiZj
Jj=1
1 n dz.
== [An(2) P [ p(z) 5=
n! (sHn ]1;‘[1 J 27T’LZ]'

But this is P,, (.J), establishing the identity (33).

Remark 1.2. We observe that the above argument is independent of the nature of the
weight function p(z). Consequently, for an arbitrary weight function p(z) we have

, dz 1 . dz;
det [ % ik 7} - — A, (2)2 A
¢ g1 i p() 2mizlo<jk<n nl Jig1yn [An(2)] ]-_-[ p(zj) 2miz;
(sY) 7j=1 J

Identity (33) is deeply connected with the theory of bi-orthogonal polynomials on the
unit circle, as we will see. Good references for this material are [9,(12}/36], though
this authors don’t use the formalism of bi-moment functionals, which we will use in
Chapter 2.

3. A differential equation due to Tracy and Widom

For 1,0 €] — m, 7|, with n < 6, the probability that a n x n random CUE matrix has
no eigenvalues within an arc of circle (1, 6) = {z € St|n < arg(z) < 6} is given by

1 27+n 27+4n ) ]
(36) Tn(n,0) = W/& /0 H e’k — e 2dipy ... dipy,.

27)
1<k<I<n
Obviously, this probability depends only on the length 6 — 7. Consequently, without
loss of generality, we can chose a symmetric arc of circle (—6, §). We shall denote by

1d
525 o Ta(—0.0),
the logarithmic derivative of the probability that an arc of circle of length 26 contains
no eigenvalues of a randomly chosen unitary matrix.

(37)  R(f)=

Using functional analytic techniques in the study of the kernel K, (7, 0) in (32)), Tracy
and Widom prove in [66] that the function R(0) satisfies the differential equation
R(#)? + 2sinf cosf R(O)R' () + sin? 0 R'(9)?
1/1 R"(0)?

— Z( Zqin?
(8) =5 (75?0 10

+sin 6 cos@ R"(0) + (cos® 0 + n? sin® 0) R’(Q)).
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At the end of this chapter, we will give a new proof of this differential equation, and
show it is a disguised form of the Painlevé VI equation. Our proof will be based on
an integrable deformation of the multiple integral 7,,(n, 8) defined in (36), and the
construction of so-called Virasoro constraints for the deformed integral. This will be
developped in the following section.

4. An integrable deformation of the joint probability distribution

The unitary matrix model was first discussed in [54] from the point of view of inte-
grable deformations. Following [9}/12], let us consider the following deformation of
the weight function p(z) = x s(z) defined on S, .J being the arc of circle [, 6],

p(2) o plz)eT i t# T 005

in the trigonometric moments i, defined in (33), and the corresponding deformation
of the moments

it s) = / o p(2)eS i I+ 4y
Sl

This deformation of the moments induces, through formula @]) a deformation of the
probability 7, (7, 0)

(39) Tn(t, 83m,0) = det(pr—1(t, 5))o<jk<n—1,

or equivalently, working out the determinant

dz

2miz

n

1 iy dzp
40 t, 51,0 ( Y2 (2 sz ) )
( ) ( 50 ) n' /(‘Sl)n 1_‘[1 Zk 27Tizk
with z; = €™k, such that 7,,(0,0;7,60) = 7,(n,0). The deformed trigonometric
moments satisfy the following simple equations
O (t, s) O (t, s) )
atj :U/k+j( ,S), 35j Mk J( ,S), J =

These equations define the Ablowitz-Ladik hierarchy on the space of the trigonometric
moments, as we will see in Chapter 3. The Ablowitz-Ladik hierarchy can be obtained
as a reduction of the 2-Toda lattice described in [67]. The functions 7, (¢, s;7,6)
in (@0) are special instances of T-functions in the sense of Sato theory for the 2-
Toda lattice hierarchy, as we will see. Consequently, the sequence of 7-functions
(Tn(t, 5;m,8))n>0 satisfy the KP equation both in the ¢ and the s variables :

84 82 82 32 2
@D (8t4 + 3@ - 8t18t3> og 7 + 6<8t2 log T”) =0,
and
84 32 82 32 2
(a 1353 651333)10*%7”*6(87510%) =0
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In the first part of this section we give a proof of this statement based on orthogonality
conditions of time-dependent polynomials and their Cauchy transforms. The proofis a
particularization of a general proof given in [[14]. In the second part of this section, we
prove that the sequence of 7-functions (7, (¢, s;7,8))n>0 also satisfies linear PDE’s
with a boundary part (differentials with respect to 77 and #) and a time part (differentials
with respect to ¢ and s), called Virasoro constraints.

From now on, we shall use the notation

prs(2) = P(Z)ezjo‘iﬂtjzhrsjz—i)

for the deformed weight function.

4.1. The 2-Toda lattice and the KP equation. Let C|z] be the space of poly-
nomials in the variable z with complex coefficients. We define on C[z] x C[z] the
bilinear pairing

Fahs = § £ a2

Associated to this pairing, we define the trigonometric moments gy ;(t,s) =
<zk, zl> . With k&, > 0. The bilinear pairing is completely determined by the se-

dz
2miz’

quence of its trigonometric moments. Obviously, the moments i, ;(¢, s) only depend
on the difference k£ — [. For simplicity, we shall omit the explicit dependence on the
time variables (¢, s) and we shall write py, ;(¢,s) = pu;. We define the semi-infinite
moment matrix me = (fk,1)k,1>0. We have proven in section that the multiple
integral 7, (t, s) can be represented as a Toeplitz determinant

Tn(ta S) = det (Mk,l)()gk,lgn—l'

Let[2] = (2,5, %,...). Using the expansion In(1 — z) = — Py %.j, one has the

following identities

pea(t —[271],8) = pwg — %Mk,th
pra(t+ [2718) = 25720 S5 g

and

“2) { it (t, s — [2]) = pheg — 2hk,i41,
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It then follows that

oo

1
¢ — det ( g ) ,
Tt [ ¢ Juk’l 1) o<k i<n
e s )
Tn( [z~ €L | Ukl ,Ukl 1 o<k i<n
n t; = ( ) 5
Ta(t, s + [2]) = det » 2 g 14 0<hicn
7=0
43 Lt s—[2])=d t( _ ) .
(43) Ta(t, s — [2]) = det ( ki — zpk, 141 o<hicn
It is well-known that
D) n :
t = det
( 7S7Z) Tn(tvs) e E b
Hno .- Hnn—1 2"
@ 1 1 mz z
44 t,s;2) = ——— det
Hon - .- Hn—1,n 2"

define two sequences of monic bi-orthogonal polynomials with respect to the pairing
(1) i p%) (t,s;2),1=1,2,is a polynomial of exact degree n, the coefficient of
the highest order term being 1, and
(P05, 2D (E5,2)) = hudum,
t

sS

with h,, = T:“ We refer to Chapter 2 for a more detailed discussion on bi-orthogonal
polynomials. As proven in [9], the polynomials can be written in terms of the functions
Tn(t, 8):

1) _ amat—[z7"s) (2 _ aTalt,s=[z7Y)
45) py(t,8,2) =2 s , 0y (t,8,2) = 2 —Tn(t, 9 .

As shown in [[14], the Cauchy transforms of the polynomials p%l)(t,s,z) and
pg) (t, s, z) admit also expressions in terms of 7-function. We have

<i P, s u)> _ Z—n—17n+1(t+ 271, 5)

t,s Tn(t,S) ’
(46) <p(1)(t s u)‘ > _ ,-n-1 Tnt1(t, s + [z*l])'
t,s

z—u Tal(t, s)
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Using expressions @3)), @6), and the following simple, formal residue identities with

f(z) = Z;io a;2’
§ e <h(“>|g<u>> E_ Fh@lg(w), .

zZ—u 271
¢

h(u) > dz

| -1 _ 2
z U/ 2miz

e <g<u> — (o) f (w)h(w)), ..

we obtain easily the following theorem.

z=0

Theorem 1.3. The functions 7,,(t, s) satisfy the following bilinear identity

% Tn(t - [271]7 S)Tnl+1(t/ + [271]7 SI)BZ?ZI(tj_t;)Zj Znimildz

47 = j{ Tus1(t, s+ [2])Tm(t, 8 — [2])e” Zima(ss=55)2 77 ynmm—1g,
z=0

foralln,m > 0andall t,t',s, s

The bilinear identities (7)) are the bilinear identities of the 2-Toda lattice hierarchy, as
described in [[67]]. These identities completely describe the 2-Toda lattice hierarchy.
They admit an equivalent formulation in terms of the so-called Hirota symbol, defined
by

PO fog=p( )t + vt —v)|

6y y=0

for any polynomial p. Shifting the time variables t — t —a,t’ — t' +a,s — s — b,
s’ — s + b in (@7) and evaluating the residue in the left-hand side and the right-
hand side, we have that the functions 7, (¢, s) satisfy the following bilinear identities
in Hirota form

i) 3
a; 3¢; i 755 )
Tm+1©° Tn

S Sk nim(—20)S(@)e (

k=0

— A 20 | @i o 10 5%
(48) = Z Sk+n,m<2b)5k(—65)62771 ( * ot ! o ) Tm © Tn+1,

k=0

for all m,n > 0, where S} are the elementary Schur polynomials, and 5t =
(0%17 %8%2, %6%’3, . ) As a consequence of these bilinear identities, we can prove
that the functions 7,, are solutions of the KP hierarchy, and in particular of the KP

equation.

Corollary 1.4. The functions 7,(t, s) satisfy the KP hierarchy in the t and in the s
variables, i.e. we have forallk = 0,1,2,... andalln =1,2,...
1 62

49 (Skaald) - 5000

)TnOTnzo,
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of which the first equation is the KP equation
2 2

(50) (((;{:1)4+3<£2)2—46f&3> 1117n+6<§t%1n7n)2:0,

and analoguous equations in the s variables.

PROOF. We shall only prove the statement for the ¢-variables. If we take n =
m + 1 and b = 0 the right-hand of @8) is equal to 0 as Sj(0) = 0 for & > 0. Thus

@g) gives

P -
0= e=im1 %7 Z Sk(—2a)Sk41(0¢)Tn 0 Tn
k=0

= (1 +§;aj£ + O(a2))
« (i + i ( — 2ay, + O(a2))Sk+1((§t))Tn oT,

= i+§: (372—25 (8)) |7 0 1 + 0(a?)
= oty k:1ak D10ty k+1\0t Tn © Tn a-).

We have %Tn o, = 0 for all n. This equation must be valid for all a;,. Consequently
we have

2 ~
0:( 9 —25k+1(8t))7'no7'n, fork=1,2,....

8t18tk
For k = 1 and k = 2 this equation is trivial. Consequently, we obtain ([@9) after
relabeling. For k = 0 an easy computation gives the KP equation (50). |

4.2. A centerless algebra of Virasoro constraints. In this subsection we prove
that the sequence of 7-functions (7,(t,s;n,6)),>0 satisfies linear PDE’s with a
boundary part (differentials with respect to  and #) and a time part (differentials with
respect to t and s), called Virasoro constraints. In their study of Painlevé equations
satisfied (as functions of x) by integrals of Gessel’s type Eg(,) [e”” Tr(M +ﬁ)} , where
the expectation E;(,,) refers to integration with respect to the Haar measure over the
whole unitary group U(n), Adler and van Moerbeke [12] consider the tau-functions

(Tn(t, s;—m,m)), ., With 7, defined in (@0). Notice that

wTr(M-i—ﬂ)] — Tn(t,s;

mE ﬂ—) ’t:s:(:c,0,0,... )"

Eun)le

They prove that the tau-functions (7,(t,s; —m,))
straints

>0 satisfy the following con-

L7, (t,s; —m,m) =0, k=-1,0,1,
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with
0 > 0 > 0
L = —n—-o ti—— t
1 nas 2::1 s; 8sj+1 —&-ZQJ jatj_l + ntq,
S BN,
Lg =) Jtig- =2 i%ip
ot; 4 d
Jj=1 Jj=1

> s
— JSj 5 —— — ns1.
= aSj 1

For each n > 0, the operators L} provide a representation of the s/(2) algebra in the
space of formal power series in ¢, s. In this subsection, we prove that the tau-functions
(Tn(t, 55m,0))n>0, with arbitrary 7, 6, satisfy a full Virasoro algebra of constraints,
with a boundary part. The results in this section are based on [43]]. Our proof is a non-
trivial adaptation of the self-similarity argument exploited in the case of the Gaussian
ensembles, based on the invariance of the integrals with respect to translations, see
[10] and references therein. Here, we replace translations by appropriate rotations.

More precisely, setting
n - ) . dz
_ 2 I | Yo (i t+sizy7) a
(51) dIn(t,S,Z) - |An(z)| (6 ! 27”-204)7

a=1

2 we have the fundamental

with 2o = %0 and [An(2)? = TTicacpen e — 25
next proposition.

Proposition 1.5 (Haine-Vanderstichelen [43]]). The following variational formulas
hold

d zk_z—k: n n
(52) 5 (20 = ™) = (LM — L") i,
53 L AL, (20 o 2 CETEE) | = i(L0 + L) dI,

de
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forall k > 0, with
k-1
0? 0 0
L= >t
b ; o0t ot ;‘7 IOtk

k—1
(54) - Z S —

j=k+1

R z.uas

— 0? 0 = 0
- ; 8sj83k,j B néTsk B jz::]sj 68j+k

(56) + Z itim— +th +nktk,

j=k+1

0
stji —nksg, k>1,
= Oti—;j

The proof of this proposition is based on the following elementary lemma, which we

prove first.

Lemma 1.6. Upon setting

n
E =[] S,

a=1

the following four relations hold, for k > 0,

0
(8 e ($3)s
(57) (% + nék,o)E - (Z z;k)E,
a=1
1 0 n i
(2 L B0ty 25’“’°>E: ( > wtht
i+ k 1§a<ﬁ<n
1,7>0 z;’kjj;éc
(58) (1 > g~ 5 0>E=< 2, 'z
2 £~ 0s;0s; 2 > °p
itj=k 1<a<B<n
i,5>0 i+j=k

i,5>0

PROOF. The two relations (57) are trivial. We shall only give the proof of the
first relation in (38). For k > 0, applying twice successively the first formula (57)), we
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have
1 0? n 1 , ,
O LIS D R (D RL
(5. X ot - 30) 5= £ (X 4)( X
i+j=k i+j=k 1<a<n 1<a<n
i, >0 i,5>0
1 Y]
5T au)e
i+j=k 1<a,f<n
3,7>0
1 o
— . i+
LY 2 X A Y a)r
i+j=k 1<a<pB<n 1<a<n
i,5>0
. k=1
:< Z z&zé—k 5 Z Z(];)E
1<a<pB<n 1<a<n
i,j>0
i+j=k
This equation is also trivially satisfied for & = 0. This proves the first equation in (58).
The proof of the second equation in (38)) is similar. ]

We now turn to the proof of proposition [I.3]

PROOF. We shall first give the proof of (52). We split the computation into four
contributions, corresponding to various factors in (31)).

Contribution 1: For k > 0, we have

a e(zF—2"F
a2 A (e Ol

e=0

) )
1<a<pB<n

2 (egreelh=t) zgle—s(z;;—zﬁk))]

—1 —1
Za __ZB

Za + 2 z(’;—zk—z;k—z_k
I T
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we obtain

9| A (e =) 2

Oe e=0
k—1 k-1
= AL (2)]? Z (za+z5)(2zfxz§_1_z+Zz;“1z’ﬁ_k).
1<a<p<n i=0 i=0

Developing the product we get

2t

e=0

A Y [2

Z (z;zé +z;iz§j) —&—zi —|—z[’§ —1—2;1C —|—z§k
1<a<pB<n

i+j=k
i,5>0

:|An(z)|2 [2 Z (zézé+z;izﬁ_j)+ Z (n—a)(zk +2,%)

< < 1<a<n
i+j=k

and hence

gl (e =)

e=0

X [2 Z (z&zljg + z;izgj) +(n—-1) Z ( k _k)
1<a<pB<n 1<a<n
i+j=k

which is also trivially satisfied for k = 0.
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Contribution 2: For k > 0, using the relations (37) in the last step, we have

Oe Hd(za (s k)>

a=1

e=0

d( za (14 e(zF — 278 + ﬁ(ez)))

I
Sl
=

Q
Il
_

e=0

3
3

I
Pl
—

(dza +e(k+1)z8dz, +e(k — 1)z dzg + ﬁ(eQ)))

a=1

e=0

gjl
NE

(k+1)zf+ (k—1)z5") E H dza

=1

)
(62) :E‘l[(k—kl)a—tk (k — &SJ Hdza

a=1

Contribution 3: For k > 0, using the relations (37), we have

32 ﬁe =, <tj(zn L) P e S )
9

0
(63) _Z;jsjat o Z ]SJa nksk—FstJaSk J]E.
Contribution 4: For k > 0, using the relations (37), we have

O e B SR S L |

k_.—k
12mzae€(za za) a=1

64 :E_l[_ai 35J ﬁ

a=1

2124,

2Mize
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Adding up (61), (62), (63) and (64) gives (52).

We now sketch briefly without comments the proof of (33). We split the computation
in four contributions, corresponding to various factors in (5T).

Contribution 1: For k > 0, we have

2o o)

=ilaa(x)]F Y

1<a<pB<n Fa — 28
=i|An(z | E7' |2 Z (zhzh—25"257)
1<a<pB<n
i+j=k
,7>0
+(n—1) Z (zF—229)| B
1<a<n
= 2i[An(2 Z; 8t at; 2 Z 88185]
z]J>O 1j>0
n—k 0 n—k 0
© T e 2 a] t

which is also trivially satisfied for & = 0.

Contribution 2: For k > 0, using the relations (37) in the last step, we have

de Hd<z i)

a=1 e=0
—iE ,12 Dz — (k= 1)z5*) E J[ dza
B= a=1
(66) :ZEl[kJrlff(kfl)iJrQn(sko} ﬁdz.
Oty 0sy, o

a=1
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Contribution 3: For k > 0, using the relations (37), we have

Q ﬁ ezﬂil (ti (za ei€<Z§+z&k))j+SJ’ (Z“ eie(ngrZ;k))_j)

Oe

a=1

e=0

o0 n n o0 n
[Z LA D A Y
=1 a=1 a=1 j=k a=1
- n
IS

oo n o0
k—j : k—j ~ —k—j
zaj—gjsjgzaj—gjsjgza J
1 ,

o] k—1 oo k—1
: . 0
=i\ Qg D g+ D g~ D i
; Otjyr 4 Osk—j ot : Oty—j
Jj=1 J=1 j=k+1 j=1
67) — i 's-i—i‘s- 9 + nkty —nksy | E
) I8 0sj_ “ I8 0Sj+k k L
Jj=k+1 j=1
Contribution 4: For k > 0, using the relations (57), we have
8 n
e 1;[ AQMiZe e“(z +25") o
n n n 1
— E |: k _ —k‘:|E
i PIEEDIE N | -y
a=1 a=1 1
0 ) E |
68 =BT = = o~ 2nd| E
(68) ! Ot  0Osp "%k, (};[1 22,
Adding up (63), (66), and (68) gives (33). This concludes the proof of Proposition
1.3l g

Remark 1.7. After [43]] was completed, we noticed that Bowick et al. [17]] have ob-
tained the same result with a method closely related to ours, though full details are
not given in their work.

We are now able to state the main result of this section.

Theorem 1.8 (Haine-Vanderstichelen [43]). (i) The tau functions 7,,(t, s;n,0),n > 1,
defined in @Q), satisfy
©9)  Bi(m,0)alt,sim,60) = L7t 5im.0), k€ Z,

with L;Cn), k € Z, defined as in 34), (33), (56), and

_ Ym0 i 9N, o
(70) Bk<n,9)—i(e 5 +e an)’ i = /L.
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(i) The operators L,(cn), k € Z, satisfy the commutation relations of the centerless
Virasoro algebra, that is

an [, = ® - oL

pin kL EZ

PROOF. (i) Denoting z, = e'a | the change of variable z, — zaee(zfv*z;k)
in the integral (@0) gives the following transformation on the angle ¢, — @ +
2e sin(ky, ), inducing a change in the limits of integration given by the inverse map
(72) Do F pa — 2esin(kpy) + O(e?),

for & small enough. Making the change of variable in the integral (40), with the corre-
sponding change in the limits of integration, leaves it invariant. Thus, by differentiat-
ing the result with respect to € and evaluating it at € = 0, using the chain rule together

with (52) and (72)), we obtain

(73) 0= ( -2 sin(kﬂ)% - 2sin(l<:n)aa77 + L,(Cn) - L(f,z)m(t, s;m, 0).

Similarly, the change of variable zo — zqe?*(*a*2a") corresponds to the transforma-
tion @, — Yo + 2 cos(kg,, ), with inverse
Vo = Yo — 2ecos(kpy) + O(e2),

which, using (33), leads to

2 J 2 0 n n
(74) 0= ( -3 cos(kjﬁ)% -3 cos(kn)a—77 + LEC )4 Lglg)rn(t,s;n,ﬁ).
Adding and subtracting and gives the constraints (69), with By (n, §) defined

as in ([70).

(i1) Consider the complex Lie algebra A given by the direct sum of two commuting
copies of the Heisenberg algebreﬁ with bases {74, a;|j € Z} and {fy,b;|j € Z} and
defining commutation relations

Pa,a;] =0 , [aj,ar] = j6;—kha,
(75) [, 051 =0 , [b),bg] = 3o, —xlw,

[ha:ho] =0, aj,be] =0 [ha,b5] =0, [’ a5] =0,
with j, k € Z. Let B be the space of formal power series in the variables ¢y, t2, . ..
and s, $9, .. ., and consider the following representation of A in B :

“j:aatj , a—j =jt; bjzaasj , b_j =jsj,

(76) ap=bo=p , ho=hy =1,

2See Appendixfor a short introduction to the Heisenberg and the Virasoro algebra, and their oscil-
lator representation.
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for j > 0, and p € C. Define the operators
n 1 n
an  AM = ED DL B{™ Z b bk 5,
JEZ ]EZ

where k € Z, a;,b; as in (76) with ;o = n, and where the colons indicate normal
ordering, defined by

{ ajar ifj <k,

CaaE = o -

aga; ifj >k,

and a similar definition for : b;by, :, obtained by changing the a’s in b’s in the former.
Expanding the expressions in (77) we obtain for & > 0

2
m_N~q 0 0
Ao _Z]tjathrz’

7>0
1 52 0 B
a8 AV =23 > (- k)tkg 0
2,52, 00 ot; oty
1 0
A" = 3 > ik = tite- J+Zﬁya + nkty,
0<j<k >k

and similar expressions for B,(c"), by changing the ¢-variables in s-variables. Using

these notations, we can rewrite (54), (]3_3]) and (56)) as follows
A L e Z Nar—; —bj_x), k>1

@9 Ly = A - B,

k—1
(a—j —bj)(aj—x —by—y), k=1
j=1

1
10— 4t _ g _ L
-k = k: 2

As shown in [48]] (see Lecture 2) the operators A(n), k € Z, provide a representation
of the Virasoro algebra in B with central charge c =1, thatis

80  [A, A = (k- DAY, + o, —IT’

for k,l € Z. Similarly, the operators Bl(c”) satisfy the commutation relations
n n k3 — k

@D (BB = (k= DB + 6

for k,l € 7Z. Furthermore we have for k,[ € Z
[ak, Al(n)] = karyi ,  [bk, Bl(n)] = kb4,
®2)  Jax,B™M =0 , [by,A"] =
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Let us now establish the commutation relations (7I). We give the proof for k,1 > 0,
the other cases being similar. As [Az(»"), B](.n)] =0, 1,j € Z, we have using (73)), (80),
8T) and €2
L4, L) =(k = D) (AL~ BUL)
1-1

D dajer = bojow) (@ — bj)

J=1

1
2

1 .
) Z(l =) a; —b_j)(ak+i—j — bj—k—1)
i=1
1 k—1
+3 > i@ —bj ) (ak—; — by )
i=1

k—1
1 .
+3 > (k= 5)(a; = boj)(aryij —bj-x—1).
=1

Relabeling the indices in the sums, we have

(L), L) =(k — 1)(A%), = B® )

| R
-5 (7 = k) (a; = b—j)(@rti—j — bj—k—1)
=kt
=
—3 > =) a; = b ) ansi—j —bjk1)
j=1
1 k+1—1
t3 > G =D(a; —b_)(arri—; — bj—k—1)
j=1+1
1 k—1
+5 2 (k= )(aj = b—j)(ar+i—j = bj-r-1)
j=1
=(k - )L,
This concludes the proof. g

5. The circular unitary ensemble and the Painlevé VI equation

In this section, using the method of [6], we establish the following result.

Theorem 1.9 (Tracy-Widom [66], Haine-Vanderstichelen [43])). The function R(0)
defined in (37) satisfies (38).
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(n

PROOF. Remembering the definition of L ) in (53], the Virasoro constraint in
(69) for k = 0, evaluated along the locus t = s = 0, gives
Olog Ty (t,s;m,0) 0log 1y (¢, s;m,6)
(83) —_— = )
08 on
t=s=0 t=s=0
which is a reformulation of the fact that the gap probability 7, (0, 0; , 8) only depends
on the length 6 — 7.

Define the operator D = % — a% and put for a fixed n
[t s3m,0) =logn(t, 531, 0),

1
@4 gn0) = —§Dlong(t,S;nﬁ)|t:S:0-

Notice that for k > 0
dk
DF log 7, (t, 531, 6) |t77=:s*=g = log 7, (t, s; —0,0) |t:S:0.
Clearly, from the definition of R(6) in (37), we have

1d
R(Q) = g(_gve) = _5@ IOng(taS; _9’0)|t=s=0'

Remembering the definition of L;C") in (34), the constraints in (69) for £ = 1,2,
evaluated at s = (s1, $2,3,...) = (0,0,0,...), can be written

., Of of
(85) Bi(n,0)f| =) jt; no—
‘s:O ; J atj+1 s=0 8t1 50
. of 0% f af \2 of
S B0Of| =D g, a| )| e
= jz1 it2 5=0 Lls=o 1 5=0 2 5=0

Using (83) and the definition of g(n, ) (84), the constraint (83) evaluated along the
locus t = s = 0 gives

af 1 . 0
87 — =— (" —¢' 0).
COR o, (e =eT)g(n.9)
t=s5=0
Consequently, along the locus n = —6, we have
of 2
— = —— sin(0)R(0).
7 sin(60) k()
n=—=0

We then proceed by induction. We call
oy
ot 0t5, ...0t;, "
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a t derivative of weighted degree |j| = j1 + j2 + -+ + jn. Then, for & > 1, we
compute the system formed by
(88) all t-derivatives of weighted degree k of (83),

all t-derivatives of weighted degree k& — 1 of (86),

evaluated at ¢ = s = 0. For instance, for k& = 1, (88) reduces to

af ) af 0% f
_< - 7 n —=
8t1 t=s=0 8t2 815%

31(7779)(

)

t=s5=0

of
(2
t=s=0

After substitution of (§7), this system of equations can be solved for

9f
Oto

t=s=0
_
t=s=0 o 815%

af

R

Bo(n.0)|

) 2
t=5=0

2f
ot?

t=s5=0

and

t=s=0
in terms of 1,6, g(n,0) and Dg(n, §), whenever n # 1. Consequently, on

t=5=0

_ : °f
the locus 7 = —6, the partials

o can be expressed in terms of
0, R(0) and R'(0).

of
:g and 5ty

t=s

t=s5=0
n=-— n=—=0

For general k > 1, suppose all the ¢-derivatives of f of weighted degree k, evaluated
att = s = 0, have been expressed in terms of 7,6 and g(n,6), ...,D*"1g(n,0),
whenever n # 1,...,k — 1. Then (88) is a system of linear equations where the
unknowns are all the ¢-derivatives of f of weighted degree k + 1, evaluated att = s =
0, and the coefficients can be expressed in terms of 7, 6 and g(n,6), ...,D*"1g(n, 6).
This is a system of p(k) + p(k — 1) linear equations in p(k + 1) unknowns, where p(k)
is the number of partitions of the natural number k. As p(k+1) < p(k)+p(k—1), this
system can be solved and all the ¢-derivatives of f of weighted degree k + 1, evaluated
att = s = 0 can be expressed in terms of 7,6, and g(n,6), ..., D*g(n, §), whenever
n # k. Consequently, on the locus = —#, the ¢-derivatives of f of weighted degree
k + 1, evaluated at t = s = 0 and on the locus = —6, can be expressed in terms of

0, R(0), R'(0), ..., R ().

Since the KP equation (41} contains ¢-derivatives of f of weighted degree less or equal
to 4, by performing the above scheme up to £ = 3, we can express all these derivatives,
evaluated at t = s = 0 and = —#6, in terms of 6, R(#) and its first three derivatives,
whenever n > 4. This gives us a third order differential equation for R(6):

0 =4R(0)* — 2(n* + (1 — n®) cos 20) R'(9) + 8sin 20 R(A) R’ (6)
— 2sin 20 R”(0) + sin® §(12R'(6)*> — R"'(9)).

We refer to Appendix [B] for a detailed discussion of the above method. Multiplying
the left-hand and the right-hand side of this equation with 1 sin§ (2 cos R'(0) +
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sin 6 R”(@)) , we obtain

_ d : 2 /
89) 0= (sm R (0)W(0)>,
with
W(6) = R(6)* + 2sin@ cos R(A)R'(A) + sin® § R'(H)?
1/1 ., R'H)?
—5(18111 9 R'(Q)
Equation (89) implies that W (#) = 0, which is the equation (38), obtained by Tracy
and Widom in [[66]. This concludes the proof of Theorem 3.1. O

+sin cos 0 R”(0)+ (cos® 0+n”sin” 0) R’(@)).

Remark 1.10. In the above proof, we had to assume that n > 4, where n is the size of
the random unitary matrices. For n = 1,2, 3, the function R(6) also satisfies (38), as
can be shown by direct computation, using the representation (39) of the probability
Tn(n, 0) as a Toeplitz determinant. It would be interesting to relate the proof with the
original derivation in [66]. For the Gaussian ensembles, the relation between the two
methods has been studied in [59]].

Finally, similarly to the case of the Jacobi polynomial ensemble (see [42]), we observe
that R(0) in (37) is linked to the Painlevé VI equation. Precisely, we show that it is
the restriction to the unit circle of a solution of (a special case of) the Painlevé VI
equation, defined for z € C.

Corollary 1.11 (Haine-Vanderstichelen [43]). Put R(0) = r(e=%"). Then, the func-
tion
n2
o(z) = —i(z = 1)r(z) — T

satisfies the Okamoto-Jimbo-Miwa form of the Painlevé VI equation
(90) [2(z — 1)0"]? + 42(2 — 1)(0")® + 40'0% + 4(1 — 22)0(0")?

—c1(0")? +[2(1 — 22)cq — 2)0” 4+ 4eqo — 3 = 0,
with

3n? nb n*

O a=n' o=, &= a=-1c

PROOF. From (38), by a straightforward computation, putting R(0) = r(e=2),
we obtain that r(z) satisfies

92) [2(z — )72 + 422 (2 — D)r'r" — diz(z — 1)2(r')® — 4i(2* — D)r(r')?
+ [42% —n?(z — 1)?](r")? — dir®r’ = 0.
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Substituting in (92)

~o(2) taz
e =i

for some constant x, and multiplying the equation by (z — 1)%, we obtain
0 =n?2?(—1+ 2)?

+ {2n2x(71 +2)2 = 2m2a(—1+ 2)% + da(—1 + z)%} o'
+ [nQ(—l +2)% =22 (=1 + 2)%2 + 8zx(—1 + 2)%2
+n?(—1+ 2)%2% —da(—1+ z)2z2] (0')?
—4(=142)32(c")® + <n2(—1 + 2)% —da(—1+ 2) >02
—4(=1+2)%0"0* + <2n2x(—1 +2)% - —1+z 2)0
+ [2n2(71 +2)? = 8x(—1 4 2)* — 202 (—1 + 2)%2
+8x(—1+ 2)24 oo
+(— A1 2)? 4 81+ 2)%2 ) (o)
— (=14 2)? (22 — 223 4 z4> (0”2,

Annihilating the coefficient of o2, one finds that 2 = n? /4. With this choice of z, the
new function o(z) satisfies

0=[2(z —1)0"]? +42(2 — 1)(¢')® + 40'0? + 4(1 — 22)0(0")?

4 4 6

2/, N2 n n n
_ -9 g - —
n (o) + —(z Yo' o 6

This is the Painlevé VI equation (90) if we pick c1, ¢, c3 and ¢4 as in (@I)), which
establishes Corollary 3.3. |



Chapter

Bi-orthogonal polynomials and
bi-orthogonal Laurent
polynomials on the unit circle

We introduce in this chapter the important concepts of bi-orthogonal polynomials and
bi-orthogonal Laurent polynomials on the unit circle. We have already briefly seen in
the first chapter the usefulness of bi-orthogonal polynomials in the theory of random
matrices and integrable deformations. Bi-orthogonal polynomials and bi-orthogonal
Laurent polynomials on the unit circle will play a crucial role in the following chap-
ters.

1. Orthogonal polynomials on the real line

In this section we recall some well-known facts about orthogonal polynomials on the
real line. We refer to [20] for more details and proofs.

Let Clz] be the complex vector space of polynomials in the variable 2 € R with

complex coefficients. For n > 0, we define P,, := (1,z,...,z™) the vector subspace
of polynomials with degree less than or equal to n, and P_; := {0} is the trivial
subspace.

Definition 2.1. A moment functional is a linear functional L

Z : Clz] — C.

51
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The moments are defined by
= ZL[z"].

Due to the linearity of .Z, it is completely determined by the sequence of moments
{,Ufn}nZO-

Definition 2.2. The moment functional £ is quasi-definite if and only if A, # 0,
forn > 1, where A,, = det(pi1;)o<i,j<n—1. A sequence of moments {in }n>0 is
quasi-definite if the moment functional defined by this sequence is quasi-definite.

Given a moment functional ., we define the concept of orthogonal polynomials with
respect to .Z.

Definition 2.3. A sequence of polynomials { P, ()}, >0 is orthogonal with respect to
the moment functional £ if

(1) Pn(l‘) S Pn \Pn—lr'
(2) ZL[Pn(z)P,(x)] = 0 when m # n;
(3) Z[Pu(x)?] # 0.

A necessary and sufficient condition for the existence of a sequence of orthogonal
polynomials with respect to . is that the moment functional . is quasi-definite.

A polynomial of degree n is said to be monic if the coefficient of the term of degree
n is 1. We denote by {p,(z)},>0 the sequence of monic orthogonal polynomials
associated to a quasi-definite moment functional .Z. They are given by the following
Heine-formula

Ho .- Hn-—1 1

1 1o ... I x

93) pu(z) = A, det ) )
HBn  ooe pap-1 X"

It is a well-known fact that orthogonal polynomials on the real line satisfy three-term
recurrence relations.

Theorem 2.4. Let .2 be a quasi-definite moment functional, and {p,(z)}n>0 a se-
quence of monic orthogonal polynomials with respect to £. Then there exist coeffi-
cients ¢, and A, # 0 such that

94) pn(x) = (LU - Cn)pnfl(m) - )\npnf2(x)7

withn = 1,2, ... and initial conditions p_1(x) = 0 and po(z) = 1.
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Defining the semi-infinite vector p(z) = (pn(x))n>0 and the semi-infinite matrix

C1 1
)\2 C2 1
L= )\3 C3 1 ’

the recurrence relation takes the simple form
zp(x) = Lp(z).

The knowledge of the three-term recurrence relations is sufficient to reconstruct the
quasi-definite moment functional. This result is known as Favard’s Theorem.

Theorem 2.5 (Favard). Let ¢, Ay, € C forn > 0, with A, # 0. Let {p,(x) }n>0 be
a sequence of monic polynomials satisfying the three-term recurrence relations (94)
with initial conditions p_1(z) = 0 and po(x) = 1. Then there is a unique quasi-
definite moment functional £ such that Z[1] = A1 and {p,(z)}n>0 is a sequence of
orthogonal polynomials for L.

To summarize this section, we have a correspondence between quasi-definite se-
quences of moments and three-band matrices :

C1 1
)\2 Co 1
{kn}tnzo = L= Az ez 1

2. Bi-orhogonal polynomials

We give in this section a short introduction to bi-orthogonal polynomials. We refer
to [16,34,56] for more details.

2.1. Definitions and existence theorem. Let C[z] be the complex vector space
of polynomials in the variable z with complex coefficients. For n > 0, we define
P, := {(1,2,...,2") the vector subspace of polynomials with degree less than or
equal to n, and P_; := {0} is the trivial subspace.

Definition 2.6. A bi-moment functional is a bilinear functional L
L : Clz] x Clz] — C.
The bi-moments are defined by

pij = L[z", 7).
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A bi-moment functional is uniquely determined by its bi-moments {;;}; j>0. We
define the semi-infinite bi-moment matrix

©5) Moo = (Hmn) 1y nsor

Definition 2.7. The bi-moment functional L is quasi-definite if and only if A,, # 0,
forn > 1, where A,, := det(pij)o<i,j<n—1. The sequence of bi-moments {f1;;}i j>0
(resp. the bi-moment matrix me) is quasi-definite if the bi-moment functional defined
by this sequence (resp. this bi-moment matrix) is quasi-definite.

Given a bi-moment functional, we define the concept of bi-orthogonal polynomials.

Definition 2.8. A sequence of polynomials {P,(ll)(z), P,(LQ)(Z)}nZO is bi-orthogonal
with respect to the bi-moment functional L if

(1) PM(2), PP (2) € By \ Ppy;
(2) E[P,Sll)(z), Py(f)(z)] = 0 when m # n;
3) LIPM(2), PP (2)) # 0.

For a given bi-moment functional, bi-orthogonal polynomials are uniquely deter-
mined, if they exist, if one fixes the leading coefficient of each polynomial. From now
on, we will impose the leading coefficients to be equal to 1. The corresponding se-
quence of monic bi-orthogonal polynomials will be denoted by{pg) (2), p? (2) }n>o0,
and we have

©6)  LPY(2),pD(2)] = hubmn,  hy #0, ¥n €N,

The following theorem is the analogue of a classical result for orthogonal polynomials.
It guarantees the existence of a sequence of bi-orthogonal polynomials given a bi-
moment functional £, if and only if £ is quasi-definite.

Theorem 2.9 (Bertola [16])). Consider a bi-moment functional L. There exist a se-
quence of bi-orthogonal polynomials with respect to L if and only if L is quasi-definite.
Each polynomial in this sequence is uniquely determined up to an arbitrary non-zero

factor. The monic sequence {pg) (2), pg) (2) }n>o0 is given by the formulae

o0 -+ Hom—1 1
1 H10 .- Hin-1 2
97) pgll)(z) = —det . n ,
A,
Hn,o --- Hn,n—1 2Z"
Ho,0 Ho,1 e Ho,n
1 . . .
(98) PP (z) = A det
n Hn—1,0 HMn-1,1 --- Hn—1mn

1 z 2"
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We define the vectors p(!) (z) = (pg)(z))n>0 and p®(z) = (pf)(z))nm. Defining
the vector a a
x(z)=(1,2,2%,..)7,

these two vectors can be written

pV(z) = Six(z), PP (2) = h(S3)'x(2),
where S is a lower triangular matrix with all its diagonal elements equal to 1, Sy is
an upper triangular matrix such that the diagonal entries of h~1S5 are equal to 1, and
h = diag(hn)o<n<oco With hy, given in (96). It is easy to prove that the existence of a
sequence of bi-orthogonal polynomials with respect to the bi-moment functional L, is
equivalent to the factorization of the bi-moment matrix 1,

-1
Moo = Sl SQ,
with S7, .55 as above.

Both sequences {p%l)(z)} and {pg)(z)} form a basis of C[z]. We have the following
theorem.

Theorem 210 Let L be a quasi-definite bi-moment functional and
{p ( ),p ( )In>0 a sequence of monic bi-orthogonal polynomials with re-
spect to L. Thenfor every polynomial Q(z) of degree n,

Z Ck pk )s Z Céz)p/(f )

where
(- L@ e L) Q)]
P E@e) T )P )
for0 <k <n.

2.2, A Favard-like theorem for bi-orthogonal polynomials. Let
{p(l)( ),p (Z)}nzo be a sequence of monic bi-orthogonal polynomials for a
quasi- deﬁnite bi-moment functional £. In general these polynomials do not satisty
three-term recurrence relations, as for classical orthogonal polynomials. They
however satisfy recurrence relations which are not given by finite band matrices :

n+1 n+1

an Zalnpn+1 7 an sznpn+1 7

where a;;,b;; € C and Gno,bno # 0 for all n > 0. Those relatlons can be written in
the following simpler form

99  pW(z) =LipW(z),  pP(z) =LIp?(2),
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where p(!)(z) and p® (z) are the vectors (py, Dz ), and (pg)(z))nm,and
aio 4o,
= G2,1 G11 Qo1 O
(100) Ly = diag(am)nenA' ™ = | 00 0h are dos :
1=0
bio boo
= b1 bi1 boa )
(101) Ly = diag(bm)nenA' " = bso bro bia bos ,
1=0

with A = (8; j_1)i,;>0 and agn,bo, = 1 for all n > 0. Favard’s theorem for or-
thogonal polynomials on the real line can be extended to the case of bi-orthogonal
polynomials. The proof can be found in [16].

Theorem 2.11 (Bertola [16]). Let Ly and L% be semi-infinite matrices as in (T00)
and (101)), where agy,, bo, = 1 for alln > 0, and let {pg)(z)}nzo and {pg)(z)}nzo

be sequences of monic polynomials defined by the recurrence relations (Q9), with
initial conditions pél)(z) = 1 and péQ)(z) = 1. Let {hy,}n>0 be a sequence of
complex numbers such that h, # 0 for all n > 0. Then there exists a unique

quasi-deﬁmte bi-moment functional L for which the sequence of monic polynomials
{pgll)(z) ( ) }n>0 is bi-orthogonal, and E[pn D ] = hp,.

2.3. A Toeplitz bi-moment functional. Let £ be a bi-moment functional.

Definition 2.12. The bi-moment functional L is a Toeplitz bi-moment functional if it
satisfies the Toeplitz condition

Ll 2] = L7, 27,

forallm,n > 0. The sequence of bi-moments {(1;;}; j>o is a sequence of Toeplitz bi-
moments if the bi-moment functional defined by this sequence is a Toeplitz bi-moment
functional.

A typical example of a Toeplitz bi-moment functional to have in mind is

for some weight functlon p( ).

We suppose from now on that £ is a quasi-definite Toeplitz bi-moment functional.
Let {pg,,l) (2), pg)(z)}nzo be the sequence of monic bi-orthogonal polynomials with
respect to L. The bi-orthogonality conditions give

‘c[ (1)( ) p’gz ( )] = hném’m hn, 7é 0, Vn € N.
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We define
Tn = ngl)(O)v Yn = pg) (0)

In this section we prove that the sequence of monic bi-orthogonal polynomials
{p(l)( ),p (Z)}nzo satisfy two type of recurrence relations. First we prove that
they satlsfy Szegd-type recurrence relations, similar to the recursion relations ob-
tained by Szego for orthogonal polynomials on the unit circle. Secondly, they satisfy
classical infinite band recurrence relations, as in the previous section. However, the
semi-infinite matrices describing these recurrence relations have a particular form.
A Favard-type Theorem exists for monic-bi-orthogonal polynomials associated with
Toeplitz bi-moment functionals.

We start with the Szeg6-type recurrence relations. We first need a small lemma.
Lemma 2.13. Ler P(z) and Q(z) be polynomials of degree n. If

L[P, 2] = L[Q, 2] =0, vi<j<nmn,
then Q(z) = cP(z), with ¢ € C.

PROOF. Let P(z) be a polynomial of degree n such that L[P, 2/] = 0,V1 < j <

n. Then P(z) is a linear combination of the polynomials p( )( )y ,pﬁf)( )

Z%P(l) )

and the coefﬁments a; satlsfy

01— LI
LMW1’

1y — ag 07 21L 0 27 = £l LY, 2]

o clp, 2P, 2]

etc.

All the coefficients a;, 1 < j < n, are multiples of ay and are uniquely determined by
ao. It follows that if Q(2) is another polynomial of degree n such that £[Q, 27] = 0,
V1 < j <, then Q(z) = ¢P(z), with ¢ € C. O
We then have a Szego-type lemma for the monic bi-orthogonal polynomials.
Lemma 2.14 (Hisakado [45]). We have forn > 0

Pita(2) = 20 (2) = 2P P (7,

Pt (z) = 2pP(2) = yna 2"l (7,
where x,, = pSP(o) and y, = %2) (0).
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PROOF. The statement is trivial for n = 0. Suppose n > 0. For 1 < j < n we
have on the one hand

1 j 1 ; -
Ll (=) = 20 (), 2] = L[ (), 2] — £[p) (), 2771
—0-0=0,
and on the other hand
E[z"pg)(z_l),zj] = E[z"_j,pg)(z)] =0.
As z"pt?) (2~ 1) and pf}ll (z) — zp%l) (z) are both polynomials of degree n, the above
equations imply by lemma [2.13| that

P (2) = 2pP(2) = e2"pP (27,

for some ¢ € C. We have ¢ = x, 41 as

1 —
pfw)rl(z) - ZPS)(Z)LiO = Tp+1, and z"pgf)(z 1) o =1.
This proves the first equation of the statement. The second equation is proven in a
similar way. 0

We have the following consequence of Hisakado’s lemma.

Lemma 2.15. We have for alln > 0

hn+1
hy

(102)  @pt1yn+1 =1-—

where h,, = L[p%l),pg)].

PROOEF. On the one hand we have
1 2
L (2) = 20 (2), 901 (2) = 22 (2)]
= hog1 = L[5 (2), 22 (2)] = L0 (2), 081 (2)] + D
= B — L[p01(2), 2] = L[ 8L + B
= hn+1 - hn+1 - hn+1 + hn
- hn - hn+1-
On the other hand we have using Hisakado’s lemma
1 2
L (2) = 2D (2), )y — 2P (2)]
= £[$n+1znp;2)(2_l), yn+1znpél)(z_1)]
= ﬂcn+1yn+1£[Pg)(z),]?g)(z)}
= hnmn+1yn+1-

Comparing both identities gives the statement. U
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We now turn to the classical infinite-band recurrence relations. It is proven
in [9,/12] that the recurrence relations for the monic bi-orthogonal polynomials
{pﬁ,” (2), P (2) }n>o take the particular form

(103)  zpM(2) = 11pM(2),
(104)  zpP(2) =1Ip?(2),

with

—Z1Yo 1

—%mzyo —Z2Y1 1 o
(105) Iy = —%333210 —Z—fxgyl —x3y2 1 ’
and

_xo’yl 1

hy

— - ToY2 —T1Y2 1 o

T _ ho

(106) 13 = —Paoys —fraiys —ways 1

We have the following Favard-like theorem. The proof can be found in the appendix

Theorem 2.16. Let {hy; Xy, Yn}n>0 be sequences of complex numbers such that
0 = yo = 1 and hhjl =1—x,y, # 0 foralln > 1, and let {p%l)(z)}nzo

and {pg) (2)}n>0 be sequences of monic polynomials defined by the recurrence re-
lations and (M) with initial conditions pél)(z) = 1 and pé2)(z) = 1L
Then there exists a unique quasi-definite Toeplitz bi-moment functional L such that
{pg)(z), pg)(z)}nzo is a sequence of bi-orthogonal polynomials with respect to L
and

LM (2), p2(2)] = hnbpm-

To summarize this section, we have a correspondence between sequences of quasi-
definite Toeplitz moments, couples of semi-infinite matrices (I1,l2) as in (I03) and
(T06) together with a non-zero constant kg, and sequences {h,; Zp, Yn } >0 such that

o =yo = 1and h’;jl =1—xz,y, #0foralln > 1:

{Ni,j}i,jzo — {(lla l2)7 hO} — {hn; Ly yn}nzo-
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3. Bi-orhogonal Laurent polynomials

A Laurent polynomial, or simply a L-polynomial, in one variable z over a field I is a
linear combination of positive and negative powers of z with coefficients in [F :

n
chzk, cy €F, m,n e€Z.
k=m

Laurent polynomials in the variable z form a ring denoted F[z, z71].

In [[19], Cantero-Moral-Veldzquez consider the ring C[z, z~!] of Laurent polynomials
over C, with z on the unit circle

St ={zeC||z| =1}
For a sesquilinear Hermitialﬂ functional

(-1-) : Clz,z27 '] x Clz,27}] = C,
satisfying the Toeplitz condition

(z"[2") = (""",

they define the concept of sequences of orthogonal Laurent polynomials on S' with re-
spect to the functional (- | - ) (in fact they distinguish between two types of sequences
of orthogonal Laurent polynomials : right and left ones). They prove that there is
a close relation between sequences of left orthogonal L-polynomials, sequences of
right orthogonal L-polynomials and sequences of orthogonal polynomials on S*. The
main result in [[19] is the existence of five-term recurrence relations for the sequences
of left and right orthogonal L-polynomials on S!. The main ingredient in the proof
of these recurrence relations is the Toeplitz condition satisfied by the functional (- |- ).

In this section, we translate the results obtained by Cantero-Moral-Velazquez to the
case of bi-orthogonal L-polynomials on S! with respect to a quasi-definite bilinear
Toeplitz bi-moment functional, as defined in the previous section. All their proofs are
easily adapted to this case.

A sesquilinear Hermitian functional satisfies

() Yf,g,h € Clz,271],Vo, B € C : (flag + Bh) =& (f|g) + B{f|h);
) Vf,g€Clz,z71 : (f,9) = (g, f)-
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3.1. Definitions - First properties. Let S = {z € C||z| = 1} be the unit
circle in the complex plane, and C|z, 2] the ring of L-polynomials over C. A bi-

moment functional on C|z, z~!] is a bilinear form on C[z, 271] x C[z, 27!]

L: Clz, 2] xCle, 2 '] = C, (f,9) = LIf, g].
If a bi-moment functional £ satisfies the Toeplitz condition
(107) L™, 2™ = L[z, 1], VYn,m € Z,

we shall simply call it a Toeplitz bi-moment functional. The bi-moments associated to
L are

tmn = L[2™, 2", VYm,n € Z.
Associated to £ we also define the semi-infinite bi-moment matrix
10,0 Ho,1 Ho,—1

H1,0 M1 H1,—1

(108) Moo = H_10 H-11 f—1,—1

A bi-moment functional is completely determined by the sequence of bi-moments
{mij}ijez. We shall say that a sequence of bi-moments {s;;}i jez is a Toeplitz
sequence of bi-moments if the bi-moment functional defined by this sequence is a
Toeplitz bi-moment functional.

We define the vector subspaces

Ly i= <zm,zm+1, .. .,z”_l,z"> , VYm,n€Z, m<n,
and forn > 0
L;n = ]L‘*nff“ L;n-‘rl = L*n7”+17

Lgn = L*”J“ Lgn-&-l = L*”*L"’

with the convention ]L'_"l =L—, ={0}.

Given a Toeplitz bi-moment functional £, a Gram-Schmidt bi-orthogonalization pro-
cess applied to the sequence {1,z,271 22 272 ...} gives a sequence of right bi-

orthogonal Laurent polynomials in the sense of the following definition.

Definition 2.17 (Right bi-orthogonal L-polynomials). A sequence {f,, gn}n>0 is a
sequence of right bi-othogonal L-polynomials with respect to L if

(1) foeLP\LS

n—1r

(2) gn €LF\L}

n—17
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One can replace condition (3) in the definition by

L{fon,2¥] =0, if—n+1<k<n,
‘C[f2n+1a ]:07 lf_nﬁkgn,
E[ana } ?é O

(3" ﬁ[f2n+17 z +1} #0,
L[Z%, gon] =0, if—n+1<k<n,
L[Z* gont1] =0, if —n <k <mn,
L[z7", gan] # 0,
L[z"T gant1] # 0.

We will say that the right bi-orthogonal L-polynomials { f,,, g }»>0 are monic if

fon(2) — 27" and gon(2) — 27" € (27 TR L2,

fon—1(2) — 2" and go,,—1(2) — 2" € <z*"+1, 272 z"*1> .
Similarly, one can apply a Gram-Schmidt bi-orthogonalization process to the sequence
{1,271 2,272, 2% ... }. One gets a sequence of left bi-orthogonal Laurent polyno-
mials in the sense of the following definition.

Definition 2.18 (Left bi-orthogonal L-polynomials). A sequence {f., gn}n>0 is a
sequence of left bi-othogonal L-polynomials with respect to L if

(1) fn GL’;\LV_L—l’-
2 gn e Ly \ L, _y;

One can replace condition (3) in the definition by

Llfon, 2] =0, if-n<k<n-—1,
L[fon+1,2 ] =0, if—n<k<n,
‘C[f2na }
(3 £[f2n+1, ] #0,
L[z 79271]*0 if —n <k<n-1,
‘C[ 7g2n+1] 0, if —n <k <n,
E[ 792“] 7é 0
L[z, gany1] # 0.
We will say that the left bi-orthogonal L-polynomials { f,,, g, }n>0 are monic if
fQTL(Z) — 2" and an(Z) —2" € <an7 anJrl’ ey Zn71> ,
fon—1(2) — 27" and gap—1(2) — 27" € <z_"+17 Z7" 2 z"_1> )

For a Toeplitz bi-moment functional £, the existence of a sequence of right or left
bi-orthogonal L-polynomials is guaranteed only under certain necessary and suffi-
cient conditions on £, as we will see. But we first need to establish the link that
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exists between bi-orthogonal Laurent polynomials and bi-orthogonal polynomials for
a Toeplitz bi-moment functional. We start by proving that sequences of right and left
bi-orthonal L-polynomials for a given Toeplitz bi-moment functional £ are closely
related to each other.

Theorem 2.19. Let f(z) = fu(271) and g7 (2) = gn(z71). Then {fn, gn}tn>0
is a sequence of right bi-orthogonal L-polynomials with respect to L if and only if
{93, [ n>o is a sequence of left bi-orthogonal L-polynomials with respect to L.

PROOF. We have f;, g% € L \ L. _, if and only if f,,g, € L7 \ L . The
result then follows from
L[gr(2): ()] = LLgm(z71), fu(z7H)] = L[ fa(2), gm(2)].
O

Sequences of right or left bi-orthogonal L-polynomials with respect to £ are also very
closely related to sequences of bi-orthogonal polynomials for £, in the sense of section
] This is proven in the next two theorems.

Theorem 2.20. Let { f,,, gn }n>0 be a sequence of L-polynomials and

péif( ) = 2 gan(271),
(109) pan(z) = 2" fans1(2),
D (2) = 2" fan(271),

pgn)-u( ) = 2"gan+1(2),

The sequence { fy,, gn }n>0 is a sequence of right bi-orthogonal L-polynomials with

respect to L if and only if {pn , pn }n>0 is a sequence of bi-orthogonal polynomials
with respect to L. Furthermore we have

E[fny gn] = ﬁ[pgl)vpg)]-

PrROOF. For {pn ,pn }n>0 defined as in (T09) we have

p(QQ € ]PQn \ ]P)Qn—l = 9on € ]LQn \]LQn 1

Pgn)ﬂ €EPyp1\P2y & fony1 € ]L2n+1 \L3,,
P €Po \Pon 1 & fan €LL, \L, 4,
p§n)+1 €Pyi1 \Poy & gony1 € L2n+l \LG-

Furthermore we have using the Toeplitz condition (T07)

L[p8)1(2) 2] = L[ fansa (), 2] = L[ fansa (), 247,
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and similarly
L) (2),2%] = L[, gau(2)],
L[z vpgz)Jrl( )] = L[Z"", gant1(2)],
£[5p5) ()] = £[fan(2), 2" 7).
Consequently we have
L1 (2), 24 =0, 0<k<2n
& Lfan1(2),2"] =0, —n<k<n,

LpS)(z),2"] =0, 0<k<2n-1
& ,C[zk,ggn(z)]zo, —-n+1<k<n,

L[z ’péi)ﬂ( )] =0, 0<k<2n
& L[F gon(2)] =0, —n<k<n,

= E[on(z),zk]:O, —n+1<k<n,

and
L[psla (2,22 £0 & Llfani(2), 2" £0,
LpW(2),22"] £0 & L[z gan(2)] #0,
Ll @] #0 & LE gann(2)] £0,
L2 @] £0 & Llfan(),27] £0
This concludes the proof. g

We have an analoguous result for left bi-orthogonal L-polynomials.

Theorem 2.21. Let {f,, gn }n>0 be a sequence of L-polynomials and

P (2) = 2" fan(2),

~(1 —
pé;Ll(z) = 2"gonia(z7),
o) (2) = 2"gan(2),

(2 -

Poya(2) = 2" fonsr (=7,
The sequence {fn, gn}n>0 is a sequence of left bi-orthogonal L-polynomials with
respect to L if and only tf{pg),pn )}n>0 is a sequence of bi-orthogonal polynomials

with respect to L.
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PROOF. This theorem is a consequence of Theorems [2.19and 2.20] O

We are now able to prove the existence and the unicity of bi-orthogonal L-polynomials
with respect to £. We first introduce the following definition.

Definition 2.22. The Toeplitz bi-moment functional L is quasi-definite if and only if
A, # 0, forn > 1, where A,, = det(ij)o<i,j<n—1. The sequence of Toeplitz bi-
moments {1 }i jez is quasi-definite if the Toeplitz bi-moment functional defined by
this sequence is quasi-definite.

We have the following theorem.

Theorem 2.23. Consider a Toeplitz bi-moment functional L. There exists a sequence
of right bi-orthogonal L-polynomials with respect to L and a sequence of left bi-
orthogonal L-polynomials with respect to L if and only if L is quasi-definite. Each
L-polynomial in these sequences is uniquely determined up to an arbitrary non-zero
factor.

PROOF. By virtue of Theorems[2.20/and[2.21] the existence of a sequence of right
or left bi-orthogonal L-polynomials with respect to £ is equivalent to the existence of
a sequence of bi-orthogonal polynomials with respect to £. The proof then follows
from Theorem O

From now on we will always assume that £ is a quasi-definite Toeplitz bi-moment
functional on C[z, 271}, and { f,., gn }n>0 is a sequence of monic right bi-orthogonal
L-polynomials with respect to £. As in Theorem [2.19| we define f(2) = fn(271)

and g7 (z) = gn(z71). The sequence {g;, f}.>0 is a sequence of monic left bi-

orthogonal L-polynomials for £. We denote by {pg)7 pg)}nzo the associated se-

quence of monic bi-orthogonal polynomials with respect to £. We define the vectors
1) = (a(2) 1m0 92) = (00(2),000 F7() = SN = (£3(2), and
g (2) =g(z71) = (g:;(z))nzo. These vectors can be written
110)  f(z) =5z,  g(z)=h(57) " (),
and
Ay e =85, o) =h(S5) G,
where the vector X(z) is defined by
X(z) = (1, 2,274, 22,272 . .),

and h = diag(hn)o<n<oo With by, = L[fn, gn)s Sy is a lower triangular matrix with
all the diagonal elements equal to 1, and S5 is an upper triangular matrix such that
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h~1 S, has all diagonal elements equal to 1. The bi-moment matrix M., defined in
(108) can be written in terms of the vector x(z)

o = (L](X(2)),, (1(2)),])

The existence of a sequence of right bi-orthogonal L-polynomials for £ is equivalent
to the existence of a factorization of the bi-moment matrix m, in a product of a lower
triangular matrix and an upper triangular matrix with non-zero diagonal elements.

0<m,n<oo

Proposition 2.24. The bi-moment matrix M factorizes in a product of a lower tri-
angular matrix and an upper triangular matrix

Moo = Sy S,

PROOF. By bi-orthogonality of the sequence { fy,, gn }n>0, We have

This can be written in matrix form

h = (’C[fm’ gn])ogm,n<oo'
Using the expressions (133 we obtain

n=(£[(515(),,. (S 5(2), ])
= S 1t S5 L h.

0<m,n<oo

Consequently we have
Moo = S7 1 Ss.
O

Corollary 2.25. The bi-moment matrix M, factorizes in a product of a lower trian-
gular matrix with 1’s on the diagonal, a diagonal matrix, and an upper triangular
matrix with 1’s on the diagonal

Moo = ST (h7L8y).

3.2. Operators A and A. In the previous section we defined the semi-infinite
vector
x(z) = (1, 2,271, 2% 272 . )
We define the semi-infinite matrix A by

(112)  Ax(z) = 2X(2).
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We have

=

Il
O O = O O
S O O O
= O O O O
o O O = O
S O O O O
o = O O O

and A= = AT,

Similarly, we define the semi-infinite matrix A by
< d
113 Ax(z) = —x(2).
(113) X(z) = - x(2)
We have
A = DAT,
with D = diag(0,1,—1,2,—2,...).

The operators A and A satisfy the following commutation relation

[A,A] =1.

3.3. Five term recurrence relations. We have proven that bi-orthogonal L-
polynomials and bi-orthogonal polynomials with respect to £ are closely related. In
section [2] we have seen that bi-orthogonal polynomials satisfy recurrence relations,
but those recurrence relations in general do not have a fixed finite number of terms.
In this section we prove that bi-orthogonal L-polynomials with respect to a quasi-
definite Toeplitz bi-moment functional always satisfy five term recurrence relations.
This result has first been obtained by Cantero-Moral-Velazquez [19] for orthogonal
Laurent polynomials on the unit circle with respect to a sesquilinear Hermitian func-
tional (- |- ) satisfying the Toeplitz condition. The essential ingredient in their proof
is the Toeplitz condition. Consequently, it can immediately be translated to the case
of bi-orthogonal L-polynomials with respect to a bilinear functional.
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Theorem 2.26. Let {f,, gn}n>0 be a sequence of monic right bi-orthogononal L-
polynomials with respect to L. Then for n > 0 there exist five term recurrence rela-

tions
n+2 n+2
an(z): Z a’ﬂ,ifi(z)7 Zgn Z 5nzgz
i=n—2 i=n—2
n+2 n+2
Zfrt(z): Z a:.,i i*(z)? Zgn Z ﬁ:; zgz
i=n—2 i=n—2
where
h
* n * n
1] .:76»7 ﬁ ;= 0y,
n,i h; 7,1 n,i h; 7m0

with hy,, = L[fn, gn]. Moreover, we have
Qon—1,2n—3 = 0, Q2n 2n42 = 0,

Bon—1,2n—3 =0, Ban,2n+2 = 0.

PROOF. As f, € L} \ L}_,, we have zf,(z) € L} ,. This implies that 2 f,
admits an expansion in terms of fy, ..., fr1o
n+2

an Za’n'lfl

with o, ; € C, 0 < 4 § n + 2. Consequently, by bi-orthogonality of the sequence
{fnsgn}n>0 we have

n42
L[z fn, gm] = Zh O, i0im-
But we also have
Llzfn,29k] = Llfn,95) =0, 0<k<n-1,
and (go,.-.,9n—3) C (290, .-, 2gn—1). It follows that
Llzfn,gx) =0, 0<k<n-3.

Consequently we have v, ; = 0if i < n — 2, and thus

n+2
1=n—2
We prove that aop on+2 = Qon—1,2n—3 = 0. We first prove that asy 2n42 = 0.
Indeed, we have zfa,(z) € (2'7™,...,2'™™). Consequently, using condition (3°)
in the definition of right biorthogonal L-polynomials, we have L[z fa,,, g2nt2] = 0
and thus agy, 2,42 = 0. We also have ag,—12,—3 = 0. Indeed, we have

L[z fon—1,92n—3] = Lfon—1,2" gon—3), and 27 ga,_3(2) € (177, ... 2"72).
From condition (3’) in the definition of right biorthogonal L-polynomials it follows
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that £[fon—1,2"'g2n—3] = 0 and thus L[z f2,,_1,g2n—3] = 0. A similar argument
gives fop ont+2 = Ban—1,2n—3 = 0. The proof of the other recurrence relations is

similar.

The coefficients in the recurrence relations satisfy

_Llefegl o Llfizg]
Gni = L(fi,qi] Pni Llfi g
G T Ll T & Lot f]

It follows from the definition of {g7, f},,>¢ that
* E[g;‘,zf;] _ ‘C[fnazgz] ‘C[fnvzgz] E[fn;gn] h

- — Bin ™

Qi = Llgs, 11 Llfisg)l — Llfnrgn) Llfisgil

Similarly we have

_ E[zg;kwfi*] o ‘C[Zfivgn] E[zfiagn] ‘C[fmgn} ) hn,

bni = Tl 1~ LUngd — LUmon Llo] "R

This concludes the proof.

Corollary 2.27. With the same notations as in Theorem[2.26|we have

n+2 n+2
()= D anifiz), 2T han(2) = Y Bragi(2),

i=n—2 i=n—2

n+2 n+2
) = D anifi(2), 2 lgn(z) = Y Buigi(2),

1=n—2 1=n—2

h;

PROOF. The corollary follows from Theorem [2.26] and the definition of the the

L-polynomials {g, f}.,>0.

O

The five term recurrence relations obtained in Theorem [2.26] and Corollary 2.27) can

be written in vector form

2f(2) = A (2), 2F(2) = A7 f(2),

29(2) = As g(2), 20°(2) = A3 g°(2),
DN 715 ) = 41 £(2), U (2) = Ay [ (2),

2 1g(2) = A3 9(2), 2 g*(2) = As g7 (2),
with

Al = (ai>j)z‘,j20’ A2 = (6i’j)i,j207
where o; j = 3; ; = 0if [i — j| > 2, and
115y  A;=nALn7Y, A5 =hAT R,

where h = diag(hy, ), >0. We call the matrices A;, A> the CMV-matrices.
the following proposition.

We have
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Proposition 2.28.
Ay = AT, Ay = AL

PROOF. We have
f(z) =2z A1 f(z) = A7 A1 f(2),

and

f(z) =21 A1 f(2) = AL AS f(2).
Consequently we have A} Ay = A; A} = 1. The same argument applied to g(z)
gives B By = B B} = 1. |

The CMV-matrices admit the following factorizations.
Theorem 2.29. We have

Ar=5AS7,  Av=h(ST)AST K,
with Sy and S defined in (TT0).

PROOF. We have
A1 f(2) = 2f(2) = 281 X(2) = S1 AX(2) = ST A ST f(2).
It follows that
A =5 A5
The proof of the second identity is similar. g

Corollary 2.30. We have
AT = SATSY At = R(STHTATST R

PROOF. This follows from (IT3), Proposition[2.28] and Theorem [2.29] O

Explicit expressions for the entries of the CMV-matrices can be found in terms of the
variables x,,, ¥, defined by

Ly = p’l(’Ll)(O)7 and Yn = pg) (O)

Theorem 2.31. The non-zero entries of the CMV-matrices Ay and Az are

(Al)2n71,2n+l = 17 (A1)2n71,2n71 = —T2nY2n—1,
(Al)anl,Qn = —%2n+1, (A1)2n71,2n72 = _w2n(1 - x2n71y2n71),
(Al)Qn,2n+l = Y2n, (Al)Qn,Qn—l = y2n—1(1 - xQnan)y

(A1)2n,2n = —Zont+1Y2n, (A1)2n2n—2 = (1 — Zan—1Y2n—1)(1 — Zany2n),
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and
(A2)2n71,2n+1 = 17 (A2)2n71,2n71 = —T2n—-1Y2n,
(A2)2n—1,2n = —Y2n+1, (A2)2n—1,2n—2 - 7y2n(1 - m277.—12;/21’1,—1)7
(A2)2n,2n+1 = T2n, (A2)2n,2n71 = x2n71(1 - $2ny2n)7
(A2)2n,2n = —T2nYon+1, (A2)2n,2n—2 = (1 — Tan—1Y2n—-1)(1 — T2nY2n).

PROOF. (1) We have
1
- L[z fan-1(2), g2nt1(2)].

By virtue of Theorem 2.20] we obtain

1 (1 Cn (2
h E[zz pgn)q(z), Z p;n)Jrl(Z)]
2n+1

(Al)Zn—1,2n+1 =

(A1)2n—1,2n+1 =

As z2péi)71 (z) is a monic polynomial of degree 2n + 1, using the bi-orthogonality of

the polynomials, we have
1

h2n+1

(A1)2n—1,2n41 = £[z2"+17p$3+1(2)] =1

(2) We have

(A1)2n—1,2n = hiﬁ[zf%—l(z),gzn(z)]
2n

By virtue of Theorem [2.20] we obtain

1 g D
(A1)2n—1,2n = gﬁ[f Pégq(z)vz P&)(Z Y]

1 1 n (1 -
= gﬁ[zzpén)—l(z)’zz Pén)(z 1)]-
By using twice Lemma[2.14] we have

1 1 n (2), — n (2 _
2 1(2) = P (2) = on 127 DS (27Y) — wan 2Pl (27,

and hence

1 _
(A1)2n—1,20 = gﬁ[péi)ﬂ(z),z?"pé?(z Y]

Tan+1 2), — 1), — Tan 2 _ 1), —
= Sl 7w ] = LA (), ().
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As z2"p$2(z_1) is a polynomial of degree 2n, the first term is equal to 0 by bi-
orthogonality. The remaining terms give

Ton Ton
(A)an—1.90 = = —2FLL[p) (2), 052 (2)] — 22 L[S (2), P51 (2)]

hQn h2n
Ton,
= L) (2,85 (2)]
2n
= —T2n+1-
(3) We have
(A1)2n-12n-1 = h L[z fan-1(2), g2n-1(2)].
2n—1

By virtue of Theorem [2.20] we obtain

1 . n
(A)2n—1,2n-1 = ho 1£[’Z2 péi)_l(Z),zl pgl)q(z)]
1 2
= hiﬁ [Zpé,g_l(z)>pé73—1(z)} .
2n—1
By using Lemma[2.T4] we have
1 _ _
(A1)2n-1,2n-1= ha 1[”‘[17&)(2) — 29, 27" 1P;3L)—1(Z 1)’p§3—1(z)]
Ton n— 2 - 2
= L[ () ()]
2n—1
T2n n—
=-7 2 L[yan—17" 1,1’%)71(2)}
2n—1
= —T2nY2n—1-

(4) We have

(A1)2n—1,2n-2 = W L]z fon-1(2), g2n—2(2)].
2n—2

By virtue of Theorem [2.20] we obtain

1 n (1 ne1 (1 _
L[ o) 1 (2), " ) ()]
2n—2

1 n— 1 -
= L[aph) 1(2). 27" ()
2n—2

(A1)2n—1,2n—2 =
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Using Lemma [2.T4] we obtain

(A1)2n—1,2n—2

1
= E[péil)(z) — w222 1)
2n—2
1 1 n— -
= ——L[ph) (), 22"l (=)
2n—2
T2on 2 - 1 -
= L [zp) 1 (2P s (7]
2n—2

The first term is equal to 0 as 22"~ 2p{")

Consequently we have

(Al)Qn—1,2n—2 _h2n72

= xiﬁ [Z%il)péi)—ﬂz)}

han—2
h2n—1

- Ton
han—2
= —(1 — Zon—1Y2n—1)T2n-

(5) The other relations are proven in a similar way.

We have an immediate corollary.

Z2 1 2
7’”‘6 [Zp573—2(z)7pén)—l

(Z_l), Z2n—2 (1)

pzn—z(z_l)]

D5, _o(271) is a polynomial of degree 2n — 2.

(2)]

Corollary 2.32. The non-zero entries of the modified CMV-matrices Ay = h™*Ah

and As = h=Ash are

(A1)2n—1,2n+1 = (1 — 22ny2n) (1 — T2n4+1Y2n+1),
(A1)2n—1,2n = —22n+1(1 — T2nY2n),
(A1)2n,2n41 = y2n (1 — T2ng1¥2n11),

(A1)2n,2n = —T2n41Y2n,

and

(A:2)2n71,2n+1 = (1 — z2ny2n)(1 — T2n4+1Y2n+1),
(A2)2n—1,2n = —Y2n+1(1 — 22nY2n),
(A2)2n,2n4+1 = T2n (1 — Tan41Y2n+1),

(A2)2n,2n = —Tonyon+1,

(A)an—12n-1= —TonYon_1,
(Al)Qn—l,Qn—Q = —X2n,
(A1)2n,2n—1 = Y2n—1,
(A1)2n,2n—2 =1,
(%2)27171,27171 = —T2n_1Y2n;
(A2)2n—1,2n—2 = —Y2n,
(A2)2n.2n—1 = Tan_1,

(A2)an an—2 = 1.

The next proposition is easily obtained from the preceding theorem and corollary.

Proposition 2.33. The non-zero entries of % are
n

( 0A1 ) 0A,
8:[/2" 2n,2n+1 8y2n
0A1

= (A1)2n—1,2n+1, (

0A1 )
Oyan / 2n,2n—1

aeo = (AD2n-120-1, (

aygn ) 2n,2n—2

=(A _
>2n’2n (A1)2n—1,2n,

= (A1)2n—1,2n—2-
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The non-zero entries of 852‘4;11 are
<8:cazil+1 )2n—1,2n = —(A1)2n-1.2n+1, (85211 )271,2” = —(A1)2n,2n+1,
<8Ziil )2n+1,2n = —(A)2n+1,2n41, <3521?111 >2n+2’2n = —(A1)2n42,2n41-
The non-zero entries of 852“111 are
<3yazjiir1>2n—1,2n+1 = (AD)zn12m, (aj:;)%gn“ = (A1)2n,2n,
i <8j21:11 >2n+1,2n+1 = (A)ant12m, (8521211 >2n+2,2n+1 = (AD2nt2.20-

The non-zero entries of g :21 are

8A1 - 8141 B
= _(A B (A -
(Basgn)zn—l,zn—z (A1)2n,2n -2, (895%)2”_1,2"_1 (A1)2n,2n-1,
8141 ~ 6A1 _
= —(41)2n2n, = —(A1)2n,2n+1-
<8x2n>2n—1,2n (A1)2n,2 (8x2n)2n—1,2n+1 (A1)2n,2n+1

The non-zero entries of 852’411 are

0A2 HAs
= —(A2)om_ — (A
<8y2n+1 >2"—112n ( 2)2n 12n+1, (8y2n+1 )Qn,2n ( Q)Qn’2n+1’
0Ag

0A
< : = —(A2)2n+2,2n+1-

0Y2n+1 >2n+1 on ~(A2)2n 41,2041, (
n )

OYan+t1 >2n+2,2n

The non-zero entries of g 1‘22 are

<88;:i>2n,2n_2 = (A2)2n-1,2n—2, (5;4;)2%2”_1 = (A2)2n-1,2n-1,
((’?qii >2n,2n = (AZ)Qn_LQ”’ (%>2n,2n+1 = (A2)2n—1,2n+1.

The non-zero entries of 88 yA;i are
<g£i)2n71,2n72 = —(A2)2n2n-2, (S;Qi)?nflzn—l = —(A2)2n,2n—1,
(g:ii)Qn—l,Qn = —(A2)2n,2n, <§£i)2n—1,2n+1 = —(A2)2n.2n+1-

The non-zero entries of 052611 are
(aj;iil )27171’2”“ = (A2)2n—1,2n, <8f2i2+1 )2717271+1 = (A2)2n.2n,
<8fjjl )2n+1,2n+1 = (A2)an12m, (6:(321:11 )2n+2,2n+1 = (A2)2ns2.2n-

In other words

(1) the 2n™ line is the only non-zero line in gy‘zl , and coincides with the (2n —

1) line of Ay;
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OA;

(2) the 2n™ column is the only non-zero column in Doan

the opposite of the (2n + 1)™ column of A;;
(3) the (2n + 1)™ column is the only non-zero column in

9A,
OYan+1’°

with the 2n™ column offll; i
(4) the (2n — 1)™ line is the only non-zero line in 68;;1 ,

opposite of the 2n™ line of Ai;
(5) the 2n™ column is the only non-zero column in
the opposite of the (2n + 1)™ column of As;

9As
Oy2n+1’

, and coincides with

and coincides

and coincides with the

and coincides with

(6) the 2n™ line is the only non-zero line in g 1‘22 , and coincides with the (2n —

1) line of As;

(7) the (2n — 1)™ line is the only non-zero line in gy‘? , and coincides with the

opposite of the 2n'" line of Ay

(8) the (2n + 1)™" column is the only non-zero column in 04, , and coincides

O0T2n+1
with the 2n™ column of As.

3.4. The operators D, D} and D, D3. Remember from (T10) that
18)  f(2)=Six(x),  9(z)=h(SF) " x(2),
and, according to (TT4) and (TT3), these vectors satisfy
(19 A f(2) =2f(z),  AT(h7'g"(2)) = 2(h"" g"(2),
(1200 Azg(z) = 2g(2), A7 (W' f(2)) = 2(h7" f7(2)).

We define the semi-infinite matrices D1, D} and Do, D5 by the relations

12) SR =DifE), (@) = (0T (e (e),

(12 L9 =Dagla), () = (DY) (7 £ (2)).

From (T19), (I21) and from (120), (122), we deduce that

(123) [Ath] = ]., and [D;,AQ] = 1.

The matrices D1, D} and D2, D3 admit the following factorizations.
Lemma 2.34. We have

(124) Dy =S51DATS;',  Dy=(STh=H"*DAT(

(125) Di=-SATDS;', Dj=—(SThH)y"PAT D (ST h™1),
with D = diag(0,1,—1,2,-2,...).

PROOF. Using (T10) and (I21)), we have
d 5 -
D7) = L5 =5 2500



76 Chapter 2. Bi-orthogonal polynomials and bi-orthogonal Laurent polynomials

By definition of the operator A in (TT3), we get
le(Z) = SlAgl_lf(Z) = glbﬂTgl_lf(Z)
This proves the first formula in (T24).

We have using (TT1))
d R 1
() = h(SF) X = —h(ST) 17
which gives, by definition of A,

g (z) = ~h(S)) A=)

2 ()

b
u=z"1

= —h(S3) 7' DATA*X (=)

— (ST DA(WGET) )

Consequently, using the definition (I21)) of Dj

g*(2).

* —1 d —1 % AT\—1 1\ & —1 _*
(DN"h™g"(2) = —(h7'9"(2) = =(S2) ' DASy (719" (2))
This proves the first formula in (T23).

The proof of the two other formulas is identical, using the definitions of Dy and D3

in (T22). O

3.5. A Favard-like Theorem. In section [2] we mentioned the existence of a
Favard-like Theorem for bi-orthogonal polynomials associated to a quasi-definite
Toeplitz bi-moment functional (see Theorem 2.16). As bi-orthogonal L-polynomials
with respect to a quasi-definite Toeplitz bi-moment functional are closely related to
bi-orthogonal polynomials with respect to the same bi-moment functional, this Favard
Theorem can readily be extended to the case of bi-orthogonal L-polynomials.

Theorem 2.35. Let {hy; %y, Yn }n>0 be such that xy = yo = 1 and hiil =1-
Tpyn #£ 0 foralln > 1. Let Ay, As be five-band matrices with entries as in Theorem
Let { fn}n>0 and {gn }n>0 be sequences of monic right L-polynomials defined by
the recurrence relations (114) with initial conditions fo(z) = go(z) = 1. Then there
exist a unique quasi-definite Toeplitz bi-moment functional L such that the sequences

of L-polynomials are right bi-orthogonal with respect to L and
E[fnvgm] = hndnm.

This theorem generalizes a similar result for orthogonal Laurent polynomials on the
unit circle obtained by Cruz-Barroso and Gonzalez-Vera [21]. But our proof rests
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completely on Theorems [2.16|and [2.20]and is independent of that given in [21].

To summarize this section on bi-orthogonal L-polynomials, we have a one-to-one cor-
respondence between sequences of quasi-definite Toeplitz bi-moment functionals de-
fined up to a multiplicative non-zero constant, couples of CMV-matrices (A1, 4s),
and sequences {Zy, Yn }n>0 With g =yo = land 1 — z,y,, # Oforalln > 1:

(126)  {pijtijez < (A1, A2) «— {Tn,Yn}tn>o0-






Chapter

The Ablowitz-Ladik hierarchy

In [9,(12]] Adler and van Moerbeke study time-dependent bi-orthogonal polynomials,

in connexion with integrals over the unitary group U (n). They consider the following

time-dependent bilinear quasi-definite Toeplitz bi-moment functional on C[z] x C[z]
dz

2miz

L[f, g = 2 f(z)g(zfl)62;‘;&7214.2;‘;13%*1 p(2)

Let {p$} (-5t ), p'} )(-;t,s)}nzo be the associated sequence of time-dependent
monic bi-orthogonal polynomials, and define

oty s) = p)(0st,5),  yalt.s) = p2 (05t s).

These polynomials satisfy recurrence relations defined by the time-dependent matrices
l; and 5 of the form and (T06). Adler and van Moerbeke [9] prove that L; = [,
and Ly = hiyh~! are solutions of the 2-Toda lattice hierarchy described in [67]

S =UEDa Ll 5=
where for a matrix A, we denote by A, (resp. A__) the upper triangular part (resp.
the strictly lower triangular part) of A. The particular form of the matrices Ly, Lo is
preserved by these evolution equations. The reduction of the 2-Toda lattice hierarchy
to matrices with this particular form is called by Adler and van Moerbeke the Toeplitz
lattice. It is equivalent to the Ablowitz-Ladik hierarchy, see [9] and also [62,18]. In
this chapter, we describe the Toeplitz lattice or the Ablowitz-Ladik hierarchy from
the point of view of the bi-orthogonal L-polynomials on the unit circle. Using the
correspondence we will give three different descriptions of the Ablowitz-Ladik
hierarchy.

[(L3)-—, Lil, i=1,2,n=1,2,...

79
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1. The Ablowitz-Ladik vector fields on the space of bi-moments

Let £ : C[z, 27 1] xCl[z, 271] — C be a quasi-definite Toeplitz bi-moment functional.
It is completely determined by its bi-moments f,, , = £[2"™, 2"]. As with all Toeplitz
bi-moment functionals, these bi-moments only depend on the difference m — n. We
have

Hm,n = Hbm—n,

and we shall freely use both notations. The Ablowitz-Ladik hierarchy is defined on
the space of quasi-definite Toeplitz bi-moments by the vector fields
a,uk 8,Uk

127 Ty = —2 = . T i = =2 = up_s Vi > 1.
(127) T o1, Hk+js JIE D5, fk—js j =

Obviously, they satisfy the following commutation relations
[T;,T;] =0, Vi, j € Z,
if we define Tour = k.

To the basis {1, z,22,...} of the vector space C[z] we associate the semi-infinite
Toeplitz bi-moment matrix
mOO = (Mk‘—l)k,lzo'

It follows immediately from (127) that

OMeo _ AN
= = A" Mo,

(128) n>1,
i =moo (AT)",

where A = (0; j—1)i,j>0 is the usual shift matrix.

To the basis {1,2,27%, 22,272 ...} of the vector space C[z, 27 !] we associate the
semi-infinite bi-moment matrix M, defined by

10,0 Ho,1 Ho,—1

H1,0 M1 H1,—1
H—-1,0 HMH-1,1 H-1,-1

Moo —

Unlike m o, the bi-moment matrix M is not a Toeplitz matrix. It follows from the
definition of A in (TT2) that the time evolution of the bi-moment matrix 1., is given
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by the equations

Ot, Moo,
(129) n>1.
ag;;c =A"" moo7

Notice that, because of the Toeplitz property satisfied by the bi-moments, we have the
commutation relation

(130)  [A, o).

Equations (127), (128) and (129) are three equivalent formulations of the Ablowitz-
Ladik vector fields at the level of the bi-moments.

The expression of the Ablowitz-Ladik vector fields at the level of the bi-moment ma-
trices Mmoo in (128) is particularly interesting in looking for explicit expressions for
the flows on the bi-moments. These flows will be expressed in terms of elementary
Schur polynomials S,,(t), defined by the generating function

(131) exp(Zthk) :an(tl,tz,...)x”.
k=1

nez
The first elementary Schur polynomials are easily found to be

S_n(t) =0, Vn > 1,

12 3
So(t) = 1, Sl(t) =1y, Sg(t) = §1+t2, Sg(t) = El+t1t2+t3,
1
Sy(t) = 5 (t1 + 1265t + 125 + 248115 + 24ty) ,  ete.

The formal solution to the Cauchy problem (128) with given initial conditions
Moo (0,0) = M, where M is a semi-infinite quasi-definite Toeplitz matrix, is given
by

(132)  mo(t, 5) = eX it A X2 s (A7)

b

where
1L Si(t) Sa2(t) Ss(t) Sa(t)
o 0 1 S5i(t) Sat) Ss(t)
el 2y i Z S;)Ai=1] 0 0 1 Si(t) Sa(b)
=0 0 0 0 1 S5i(t)

= (Sj*i(t))lgi,j<oo'



82 Chapter 3. The Ablowitz-Ladik hierarchy

We then have

pii(t,s) = (eZ;?il AT X5 Sj(AT)j)kl

= ((Sj*i(t)) 1<i,j<oo M (Sj*i(s))rfgi,j<oo> kil

> My S (t)Sni(s).

m,n>0

Relabeling the indices m — m + k and [ — n + [, we obtain
,ukl(t S Z Mm+k n—HS ( )S (8)
m,n>0
We thus have

(133) gty s) = pr—i(t,s) Z Sm ) tk—i4m—n(0,0).

m,n=0
This is the formal solution to the equations (127) with given initial conditions
tk—1(0,0). Consequently, we observe that the Ablowitz-Ladik flows preserve the
Toeplitz property of the bi-moments.

Example 3.1. Let L : Clz,27 Y] x Clz,27 Y] — C be a time-dependent Toeplitz
bi-moment functional defined by

_ o ypdyyNoe o= dz
= Tl R )

2miz’
We define for k.l € Z the time-dependent bi-moments

(]34) ,U/k:,l(t73) _ E[Zk72§l] _ %1 Zk—l ez;’;l t]-zj+Z;?C:1 5277 p(Z)
S

The bi-moments clearly satisfy the equations (127). Expanding the exponential in
terms of Schur polynomials, we get

m—Il—n dz
pri(t,s) = Z Sim ]ileJr : p(z)27riz'

m,n=0

dz

2miz

This is an expansion of the form (133).

Let {fn, gn}n>0 be the sequence of monic right bi-orthogonal L-polynomials with
respect to L, {g*, [ }n>0 the associated sequence of monic left bi-orthogonal L-
polynomials, and {pn ,pn }n>0 the associated sequence of monic bi-orthogonal
polynomials with repsect to £. All these polynomials depend on ¢ and s. We will
usually not indicate explicitly the dependence of all these polynomials on ¢ and s. As
in the preceding chapter, we define the semi-infinite vectors f(2) = (f, (z))n> , and

9(2) = (9n(2)), -, and the matrices S; and S, such that
(135)  f(z)=Si1x(2),  g(z)=h(S))

1),
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where S, is a lower triangular matrix with all the diagonal elements equal to 1, and

h~1S, is an upper triangular matrix with all the diagonal elements equal to 1. We

also define the vectors p(!)(2) = (pgll)(z))">0 and p?(z) = (pg)(z))nm. These

two vectors can be written
PP (z) = Six(2),  pP(2) =h(S3)'x(2),
where 57 is a lower triangular matrix with all its diagonal elements equal to 1, S5 is an

upper triangular matrix such that the diagonal entries of h~!95 are equal to 1. These
matrices depend on ¢ and s. We also define the functions

(136)  zu(t,s) =pV(05t,5),  yalt,s) = pP (05t 9).
2. The Ablowitz-Ladik hierarchy as a reduction of the 2-Toda lattice

In [9,[12] Adler and van Moerbeke have obtained the Ablowitz-Ladik hierarchy as a
reduction of the 2-Toda lattice. We briefly explain this here.

Let M be a semi-infinite quasi-definite Toeplitz matrix. As we have seen in Chapter
2, the quasi-definiteness of M implies that it factorizes

M = 51(070)7152(070)7

with S (0, 0) a lower triangular matrix with 1’s on the principal diagonal, and S2(0, 0)
an invertible upper triangular matrix. For generic values of (¢,s), the solution
Moo (t, s)given by (I32) to the Cauchy problem (128)) with initial condition M, also
factorizes as follows

Moo(t, 8) = Si(t,5) "1 Sa(t, s),

with Si (¢, s) and Sa(t, s) having the same properties as S1 (0, 0) and S5(0, 0). We also
define a diagonal matrix h = diag(h,,)n>0, such that h=1Ss (¢, s) is upper triangular
with 1’s on the principal diagonal. We then have

Theorem 3.2. The vectors
Uy (2) == Six(z)edim b,
W3(2) 1= (S5 ) x(z e 2,

and the matrices L := SlASfl and Ly := SQA_lsgl satisfy the equations

L1V =2V,
LyWs = 27103,
8‘111 :( ’I’L) \Ij
1/)+*1
(137) 25

ot _(L?)iqua
% = (Lg)**\ljlv

%
gj; = —(L)T_ws.
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The compatibility conditions for (I37) are given by the Lax equations
=|(LY)+, Li|, —=— = [(L3)-, Li|,

with 7 = 1, 2. These are the Lax equations for the 2-Toda lattice. The vectors ¥, W}

are wave vectors for the 2-Toda lattice.

(138)

It is obvious that

Wy (t, 512) = p (¢, 55 2)e 2571 107

Uit s;:2) = h ™ 'p@(t, 5527 e 2=t sz_j,
where {p%l)(t, 85 2), p& (t,s;2) }n>0 are bi-orthogonal polynomials in the sense of
Chapter 2, for the bi-moment functional £ associated to the bi-moment matrix
Moo (t, s). We have

LW (¢, 5:2), 0P (t, 8 2)] = hnbmn-

The Lax matrices L, Lo define reccurence relations on the bi-orthogonal polynomi-
als:

LipW(t,5:2) = 2pD(t,8:2), (W Lah) pP (L, 532) = 2p@ (1, 5: 2).

As we have seen in section 1, if m(0,0) is a Toeplitz matrix, then mo(,s) is a
Toeplitz matrix for all (¢, s). By virtue of Theorem [2.16]the Lax matrices L1, L are
then completely determined by the sequences {hy,; Tp, Yn fn>0, With hh—jl =1-
Tpyn # 0forallm > 1, and

zat,s) = p0(t550),  yalt,s) = pP(t,5;0).
We have

Ly =1, Ly=hlyh™ !,

with Iy, {5 given in (T03) and (I06). Consequently, we see that the Ablowitz-Ladik
hierarchy is a reduction of the 2-Toda lattice hierarchy.

In Section 4 of Chapter 1, we obtained in (@3] the following expressions for the bi-

orthogonal polynomials

Tt —[27']9)
To(t,s)

To(t,s — [271])

(Z)t — n
pn (,S,Z) z Tn(t,s) )

PO (t,s,2) = 2"
with

Tn(t,s) = det (Mk,l(t» 5)>ogk,lgn—1’
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with g1 (t,s) = (meo(t,s)), ;- It follows that 7,(t, s) is a tau-function for the 2-
Toda lattice hierarchy in the sense of Sato. These tau-functions are completely deter-
mined by the sequence of bi-moments.

3. The Ablowitz-Ladik vector fields on the manifold of CMV-matrices

In this section we "dress up" the equations defining the Ablowitz-Ladik hierarchy
on the bi-moments. This leads to Lax pair representations for the hierarchy
on the CMV matrices. In this 