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Introduction

Random matrices, integrable systems and Virasoro constraints

In quantum mechanics, the state of a system is described by a wave function ψ which
is solution of the Schrödinger equation

i~
∂ψ

∂t
= Hψ,

where H is the Hamiltonian of the system. The energy levels in which the system can
be found are given by the discrete part of the spectrum of the Hamiltonian. For certain
systems, an exact knowledge of the Hamiltonian, and hence of its spectrum, is almost
impossible. In the 1950’s, Wigner [69] made the observation that the Hamiltonian
of heavy nuclei could be modeled by a large size Hermitian random matrix. Indeed,
the local statistical behavior of the eigenvalues of these random matrices very nicely
model the local statistical behavior of the energy levels of heavy nuclei. The early
mathematical theory of random matrices has been developped by Dyson [32], Gaudin
[38], Mehta, . . . . We refer to the introduction of Mehta’s book [55] for a historical
overview of the field.

Central in random matrix theory is the concept of matrix ensemble, a set of matrices
with a probability measure defined on it. A random matrix is a randomly chosen ma-
trix in a given matrix ensemble, for the probability measure defined on it. Of particular
interest is the distribution of the eigenvalues of a random matrix. The most famous
example of a random matrix ensemble is the Gaussian Unitary Ensemble (GUE). It is
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2 INTRODUCTION

the spaceHn of complex n× n Hermitian matrices, with the probability measure

P (M)dM =
1
Zn

e−Tr(M2) dM,(1)

where Zn is a normalization constant, and

dM =
∏
j

dMjj

∏
k<j

dReMkj dImMkj

is the Lebesgue measure on the independent variables of the matrix M . This proba-
bility measure is invariant under conjugation by a unitary matrix. Moreover the inde-
pendent entries of a matrix M in this ensemble are statistically independent Gaussian
random variables. The probability measure induces a joint probability density mea-
sure on the eigenvalues

Pn(x1, . . . , xn)dx1 . . . dxn =
1
Z ′n

∆n(x)2 exp
(
−

n∑
j=1

x2
j

)
dx1 . . . dxn,(2)

where ∆n(x) = det
[
xi−1
j

]
1≤i,j≤n is the Vandermonde determinant, and Z ′n is a

normalizing constant. The probability that a random GUE matrix has its spectrum in
a set E ⊂ R is then simply the integral of this density over En. It can also be written
as a Fredholm determinant

Pn
(
spectrum M in EC

)
= det

(
1−KnχE

)
,

with Kn an integral kernel that can be written in terms of Hermite polynomials, and
χE is the indicator function of the set E. This formula is particularly interesting when
studying large n assymptotics. Indeed, using well-known assymptotic formulas for
the Hermite polynomials, we have

lim
n→∞

P
(
λ1, . . . , λn /∈

π√
2n

[−2a, 2a]
)

= det
(
I −Ksin χ[−2a,2a]

)
,

with

Ksin(x, y) =
sinπ(x− y)
π(x− y)

the well-known Sine kernel.

An important development in the theory of random matrices in the 1980’s was the
discovery by Jimbo, Miwa, Môri and Sato [46] that the Fredholm determinant of
the Sine kernel, appearing in the study of the distribution of the eigenvalues of large
random matrices, as we have seen for the GUE ensemble, can be written in terms of a
solution of the Painlevé V equation.
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Theorem 1. (Jimbo-Miwa-Môri-Sato [46]) We have

det
(

1−Ksinχ[−2a,2a]

)
= exp

(∫ πa

0

σ(x)
x

dx
)
,

with σ the solution of the Painlevé V equation

(tσ′′)2 + 4(tσ′ − σ)
(
tσ′ − σ + (σ′)2

)
= 0,

so that

σ = − t
π
− t2

π2
− t3

π3
+O(t4), as t→ 0.

This discovery makes the link between random matrix theory and the theory of
integrable systems. The link with integrable systems has proven to be very fruitfull
and has lead since the 1990’s to a large number of new results.

The approach of Adler, Shiota and van Moerbeke [6] to random matrix theory lies
within this perspective. The idea is to consider some deformations of the probabilities
related to certain matrix ensembles by adding extra time variables. With respect to
these new variables, the deformed probabilities are then special solutions of integrable
hierarchies. An integrable hierarchy is a family of evolution equations

∂u

∂tj
= Xj(u), j ∈ J,(3)

on a manifold, with J a (finite or infinite) subset of N, and the equations can be solved
simultanously. This means that for all j, the vector field Xj is a symmetry for the
other vector fields Xi, i 6= j, i.e. if u(t) is a solution to the evolution equations (3),
then

u(t) + εXj

(
u(t)

)
is still a solution of the evolution equations (3), up to terms of order ε2. Checking that
Xj is a symmetry for the other vector fields Xi is rather simple. It suffices to check
that

[Xj , Xi] = 0, ∀i,

where [ · , · ] is the Lie bracket of vector fields. The concept of symmetry can be
generalized to time-dependent vector fields. A time-dependent vector field Y (u, t) is
a time-dependent symmetry of the evolution equations (3) if

u(t) 7→ u(t) + εY
(
u(t), t

)
,

maps a solution u(t) of (3) on another solution of (3), up to terms of order ε2. One
easily checks that this is equivalent to

∂Y

∂tj
= [Y,Xj ], ∀j.(4)
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Following Fuchssteiner [37], we introduce the concept of master symmetries. These
are time-independent vector fields V such that

[V,Xj ] 6= 0,
[
[V,Xi], Xj

]
= 0, ∀i, j ∈ J.(5)

Master symmetries are generators for time-dependent symmetries of (3) which are
first order polynomial expressions in the time variables. Indeed, the vector field

Y = V +
∑
j∈J

tj [V,Xj ]

satisfies (4). Master symmetries are related to the Virasoro algebra, and are usually
connected with a bi-hamiltonian structure in the sense of Magri [52]. We leave aside
the master symmetries for a while.

Typical hierarchies appearing in the Adler-Shiota-van Moerbeke approach are the KP
hierarchy, the Toda lattice, . . . . As an example, let’s have a look to the GUE ensemble.
The probability measure (1) is deformed in the following way by introducing a family
of time variables t1, t2, t3, . . .

P (M)dM =
1

Zn(t)
e−Tr(M

2)+
∑∞
k=1 tkTr(M

k)dM.

Consequently, we have

Pn
(
spectrum M in E

)
=
τn(E; t)
τn(R; t)

,

with

τn(E; t) =
∫
Hn(E)

P (M)dM =
∫
En

∆n(z)2
n∏
k=1

e
∑∞
i=1 tiz

i
ke−z

2
kdzk,(6)

whereHn(E) is the set of n×nHermitian matrices with spectrum inE. This function
can be written in the form of a determinant of a finite moment matrix

τn(E; t) = det
(
µij(E; t)

)
0≤i,j≤n−1

,

where

µij(E; t) := µi+j(E; t) =
〈
zi, zj

〉
E,t

=
∫
E

zi+je−z
2+
∑∞
k=1 tkz

k

dz,

are the moments associated to the scalar product 〈 · , · 〉E,t on the space of polynomials
on the real line with complex coefficients. The link with integrable hierarchies goes
through time-dependent orthogonal polynomials. Let {pn(z; t)}n≥0 be the sequence
of time-dependent monic orthogonal polynomials associated with this scalar product.
It can be proven that the polynomials pn(z; t) are given by the following expressions

pn(z; t) = zn
τn(E; t− [z−1])

τn(E; t)
,(7)
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where [z] = (z, z
2

2 ,
z3

3 , . . . ). It is a well-known fact that orthogonal polynomials on
the real line satisfy three-term recurrence relations (see [20]):

zpn(z; t) = pn+1(z; t) + bn+1(t)pn(z; t) + an(t)pn−1(z; t),

with initial condition p−1(z; t) = 0 and p0(z; t) = 1. These recurrence relations
define a tri-diagonal semi-infinite matrix

L(t) =


b1(t) 1
a1(t) b2(t) 1

a2(t) b3(t) 1
. . . . . . . . .

 .

This matrix satisfies the Toda lattice hierarchy
∂L

∂ti
= [Li+, L],(8)

where ( · )+ denotes the upper triangular part including the diagonal. Equations (7)
and (8) imply that each of the functions τn(E; t) , n = 1, 2, . . . , are tau-functions for
the Toda lattice, in the sense of Sato theory. More details can be found in Chapter 5.
The precise link between Sato’s theory and the theory of orthogonal polynomials was
first established in [41]. As a consequence, the functions τn(E; t) are solutions of the
KP hierarchy, in particular, they satisfy the KP equation

(9)
( ∂4

∂t41
+ 3

∂2

∂t22
− 4

∂2

∂t1∂t3

)
log τn + 6

( ∂2

∂t21
log τn

)2

= 0.

The tau-functions τn(E; t) completely encode the Toda hierarchy. The entries of the
matrix L(t), the moments µk and the polynomials pn(z; t) can all be expressed in
terms of these tau-functions. Based on Favard’s theorem for orthogonal polynomials
on the real line, we have the following correspondence

(µk(t))k≥0 ↔ (τn(t))n≥0 ↔ L(t).(10)

A second important tool in the Adler-Shiota-van Moerbeke approach, besides the use
of integrable hierarchies, is the application of Virasoro gauge transformations. As
the functions τn(E; t) given in (6) are matrix integrals, we may change variables
without changing the value of the integral (gauge invariance). Typically, for a set
E = ∪ri=1[c2i−1, c2i], this gauge invariance leads to linear constraints on the integrals

Bmτn(E; t) = Vnmτn(E; t), m ≥ −1,(11)

with

Bm =
2r∑
j=1

cm+1
j

∂

∂cj
,

and Vm operators in the time variables, related to a representation of the Virasoro
algebra in the space of formal power series in t1, t2, . . . . The Virasoro algebra is
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an infinite dimensional complex Lie algebra, obtained as a central extension of the
complexification of the Lie algebra of vector fields on the unit circle S1. The latter is
a complex Lie algebra d, with basis

dn = ieinθ
d

dθ
= −zn+1 d

dz
,

where n ∈ Z, z = eiθ, and commutation relations

[dm, dn] = (m− n)dm+n,

for m,n ∈ Z. The Virasoro algebra is a central extension d ⊕ cC of d by a one-
dimensional center cC, together with the commutation relations

[dm, c] = 0,

[dm, dn] = (m− n)dm+n + δm,−n
m3 −m

12
c.

Combining (9) and the Virasoro constraints (11) evaluated on the locus {t1 = t2 =
t3 = · · · = 0}, Adler-Shiota-van Moerbeke [6] have obtained a partial differential
equation for τn(E; 0), and thus for Pn

(
spectrum M in E

)∣∣
t=0

, the variables being
the endpoints of the set E. Defining Pn := Pn

(
spectrum M in E

)∣∣
t=0

, this PDE
reads (

B4
−1 + 8nB2

−1 + 12B2
0 + 24B0 − 16B−1B1

)
log Pn + 6

(
B2
−1 log Pn

)2
= 0.

In particular, when E =] −∞, x], then this PDE reduces to a 4th order ODE, which
turns out to be a disguised form of the Painlevé IV equation.

In [42], Haine and Semengue propose an approach to this kind of problems ’at the
level of the moments’ (see also Faybusovich and Gekhtman [35] where the same idea
appeared independently). This approach is based on the correspondence (10) given
above. At the level of the moments, the Toda lattice equations (8) read

∂µk
∂ti

= µk+i, i ≥ 0, k ≥ 0,

and these equations define vector fields on the space of moments Ti(µk) = µk+i. The
Toda vector fields Ti commute

[Ti, Tj ] = 0, ∀i, j ≥ 0,

as can immediately be checked. Haine and Semengue then define the vector fields

Vj :
∂µk
∂sj

= (k + j + 1)µk+j , j ≥ −1.

These vector fields satisfy the commutation relations

[Vj , Tk] = kTk+j , [Vj , Vk] = (k − j)Vj+k.(12)
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So the vector fields Vj don’t commute with the Toda vector fields. Comparing (12)
with (5), one observes that the vector fields Vj , j ≥ −1, form a Virasoro subalgebra
of master symmetries for the Toda lattice. We repeat that master symmetries are not
real symmetries of the hierarchy as they do not commute with the vector fields of the
hierarchy. They are generators for time dependent symmetries of the hierarchy, which
are first order polynomials in the time variables.

Translating the vector fields Vj to the level of the tau functions τn, the Virasoro
constraints (11) can be recovered. So, in a certain sense, the Virasoro constraints are
the expression of the master symmetries Vj at the level of the tau functions.

Random matrices, integrable systems and Virasoro constraints will play a central role
in this thesis. We will be concerned with two different problems.

(1) In the first part, we will construct a Virasoro algebra of master symmetries
for the Ablowitz-Ladik hierarchy. The first equation of the Ablowitz-Ladik
hierarchy is a space discretization of the cubic nonlinear Schrödinger equa-
tion. Integrable deformations of the gap probabilities of the Circular Unitary
random matrix ensemble are tau functions for this hierarchy. We will start
with a study of this matrix ensemble, and construct Virasoro constraints for
the deformed probabilities. These constraints will help us to obtain the mas-
ter symmetries of the Ablowitz-Ladik hierarchy.

(2) In the second part we will study non-intersecting Brownian motion models.
These models are closely related to Hermitian random matrix ensembles.
Again, Virasoro constraints will play a crucial role in this part in the con-
struction of PDE’s satisfied by some probabilities.

The Ablowitz-Ladik hierarchy and the Circular Unitary Ensemble

In the first part of this thesis, we will construct an algebra of master symmetries for the
Ablowitz-Ladik hierarchy. The Ablowitz-Ladik hierarchy is a hierarchy of compatible
equations, and the first one is the Ablowitz-Ladik equation. This is a differential-
difference equation which was introduced in 1975-1976 by Ablowitz and Ladik [1, 2]
in the form

−i∂qk∂t = qk+1 − 2qk + qk−1 − qkrk
(
qk+1 + qk−1

)
,

−i∂rk∂t = −rk+1 + 2rk − rk−1 + rkqk
(
rk+1 + rk−1

)
.

It is a space-discretization of the cubic nonlinear Schrödinger equation. Indeed, taking
rk = ±qk, this equation reduces to

−i∂qk
∂t

= qk+1 − 2qk + qk−1 ± |qk|2(qk+1 + qk−1).
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After scaling

t 7→ ε−2t, qk 7→ εqk,

the continuous limit ε→ 0 gives the cubic nonlinear Schrödinger equation

−iqt = qxx ∓ 2q|q|2.

The Ablowitz-Ladik equation is a discrete integrable Hamiltonian system. An infinite
family of constants of motion can be found, which define the other vector fields
of the hierarchy. The Ablowitz-Ladik equation received a lot of attention, as it is
used in modeling several phenomena, such as wave propagation in optical fiber
arrays. For a recent account of the huge literature on the Ablowitz-Ladik hierarchy,
we refer the reader to Section 3.9 of [39]. The defocusing case (yk = xk) has
been studied in great detail by Nenciu [58]. In the same way as the Toda lattice is
related to orthogonal polynomials on the real line, Nenciu establishes that the right
tool to study the defocusing Ablowitz-Ladik hierarchy are the orthogonal Laurent
polynomials on the unit circle in the complex plane. As proven by Cantero, Moral and
Velazquez [19], orthogonal Laurent polynomials on the unit circle satisfy five-term
recurrence relations. These recurrence relations define a penta-diagonal matrix, called
a CMV-matrix. See also [60, 61] for a discussion on CMV-matrices. Nenciu obtains
Lax pairs for the defocusing Ablowitz-Ladik hierarchy using these CMV-matrices.

The Ablowitz-Ladik hierarchy has also been studied by Adler-van Moerbeke [9, 12],
under the name Toeplitz lattice. It appears in the context of random matrices and
combinatorics, when dealing with integrals over the unitary group U(n) for the Haar
measure. Adler and van Moerbeke have obtained the Ablowitz-Ladik hierarchy as a
reduction of the 2-Toda lattice. They consider the following time-dependent bilinear
pairing on C[z]× C[z]

〈f, g〉 =
∮
S1
f(z)g(z−1) e

∑∞
j=1 tjz

j+
∑∞
j=1 sjz

−j
ρ(z)

dz
2πiz

.(13)

The moments µi−j := µi,j =
〈
zi, zj

〉
define a moment matrix m∞ = (µi,j)i,j≥0

which is Toeplitz, i.e. all elements on a same diagonal are equal. One sees immedi-
ately that as function of t, s, the moment matrix satisfies the following equations

∂m∞
∂tn

= Λnm∞,

∂m∞
∂sn

= m∞
(
ΛT
)n
,

n ≥ 1,(14)

where Λ = (δi,j−1)i,j≥0 is the usual shift matrix. At the level of the moments, these
equations read

(15) Tjµk ≡
∂µk
∂tj

= µk+j , T−jµk ≡
∂µk
∂sj

= µk−j , ∀j ≥ 1.
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Obviously [Ti, Tj ] = 0,∀i, j ∈ Z, if we define T0µk = µk. Let
{p(1)
n ( · ; t, s), p(2)

n ( · ; t, s)}n≥0 be the associated sequence of time-dependent monic
bi-orthogonal polynomials. We have〈

p(1)
n , p(2)

m

〉
= hnδnm, hn 6= 0,

and define h = diag(hn)n≥0. We also define

xn(t, s) = p(1)
n (0; t, s), yn(t, s) = p(2)

n (0; t, s),

and p(i)(t, s; z) =
(
p

(i)
n (t, s; z)

)
n≥0

, i = 1, 2. These polynomials satisfy recurrence
relations

L1p
(1)(t, s; z) = z p(1)(t, s; z),

(
h−1L2h

)T
p(2)(t, s; z) = z p(2)(t, s; z),

with L1 and L2 matrices given by

L1 =


−x1y0 1
−h1
h0
x2y0 −x2y1 1 O

−h2
h0
x3y0 −h2

h1
x3y1 −x3y2 1

...
...

...
...

. . .



(
h−1L2h

)T =


−x0y1 1
−h1
h0
x0y2 −x1y2 1 O

−h2
h0
x0y3 −h2

h1
x1y3 −x2y3 1

...
...

...
...

. . .

 .

Adler and van Moerbeke [9] prove that L1 and L2 are solutions of the 2-Toda lattice
hierarchy described in [67]

∂Li
∂tn

= [(Ln1 )+, Li],
∂Li
∂sn

= [(Ln2 )−−, Li], i = 1, 2, n = 1, 2, . . .

where for a matrix A, we denote by A+ (resp. A−−) the upper triangular part (resp.
the strictly lower triangular part) of A. The particular form of the matrices L1, L2 is
preserved by these evolution equations. The reduction of the 2-Toda lattice hierarchy
to matrices with this particular form is called by Adler and van Moerbeke the Toeplitz
lattice. The Toeplitz lattice equations on the variables xn, yn are exactly the evolu-
tion equations of the Ablowitz-Ladik hierarchy (see [18,62]). As proven by Ueno and
Takasaki [67], the entries of the Lax operators L1, L2 of the 2-Toda lattice can ulti-
mately be described in terms of a sequence of functions (τn(t, s))n≥0 called 2-Toda
tau functions, satisfying some bilinear identities. When dealing with the Toeplitz re-
duction, these tau functions are given by finite determinants of the moment matrix:

τn(t, s) = det
(
µi,j(t, s)

)
0≤i,j≤n−1

.
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The starting point to obtain master symmetries for the Ablowitz-Ladik hierarchy is the
Circular Unitary Ensemble from random matrix theory. The Circular Unitary Ensem-
ble is the group U(n) of unitary n×n matrices, with the normalized Haar measure as
probability measure. The Weyl integral formula gives the induced density distribution
on the eigenvalues of the matrices on the unit circle in the complex plane, and is given
by

1
n!
|∆n(z)|2

n∏
k=1

dzk
2πizk

, zk = eiθk .

For η, θ ∈] − π, π[, with η ≤ θ, the probability that a random CUE matrix has no
eigenvalues within an arc of circle (η, θ) = {z ∈ S1 | η < arg(z) < θ} is given by

τn(η, θ) =
1

(2π)nn!

∫ 2π+η

θ

. . .

∫ 2π+η

θ

∏
1≤k<l≤n

∣∣eiθk − eiθl ∣∣2dθ1 . . . dθn.

Following Adler-van Moerbeke [9], we introduce the 2-Toda time dependent tau func-
tions

τn(t, s; η, θ) =
1
n!

∫
[θ,2π+η]n

|∆n(z)|2
n∏
k=1

(
e
∑∞
j=1(tjz

j
k+sjz

−j
k ) dzk

2πizk

)
,(16)

with zk = eiθk . These tau functions deform the probabilities τn(η, θ) = τn(0, 0; η, θ).
The main result of Chapter 1 is that these tau functions satisfy a set of Virasoro
constraints indexed by all integers, decoupling into a boundary-part and a time-part.
We have

Theorem 2. (Haine-Vanderstichelen [43])

(i) The tau functions τn(t, s; η, θ), n ≥ 1, satisfy

Bk(η, θ)τn(t, s; η, θ) = L
(n)
k τn(t, s; η, θ), k ∈ Z,

with L(n)
k , k ∈ Z, time-dependent differential operators, and

Bk(η, θ) =
1
i

(
eikθ

∂

∂θ
+ eikη

∂

∂η

)
; i =

√
−1.

(ii) The operators L(n)
k , k ∈ Z, satisfy the commutation relations of the centerless

Virasoro algebra, that is[
L

(n)
k , L

(n)
l

]
= (k − l)L(n)

k+l, k, l ∈ Z.

The main surprise of this result is that the 2-Toda tau functions deforming the
gap probabilities of the CUE ensemble satisfy a centerless full Virasoro algebra of
constraints. This stands in contrast with the corresponding result for the deformed gap
probabilities of the GUE ensemble and other Hermitian ensembles, which roughly
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satisfy only "half of" a Virasoro type algebra of constraints.

The integrals (16) can be expressed as Toeplitz determinants

(17) τn(t, s) = det
(
µk−l(t, s)

)
0≤k,l≤n−1

,

where

(18) µk(t, s) =
∫
S1
zk e

∑∞
j=1(tjz

j+sjz
−j)w(z)

dz
2πiz

, k ∈ Z,

and w(z) is some (complex-valued) weight function defined on the unit circle S1.
These moments satisfy the Ablowitz-Ladik hierarchy (15). Hence, the determinants
(17) are very special instances of tau functions for the Ablowitz-Ladik hierarchy. This
suggests, using the Virasoro constraints obtained in Chapter 1, following an idea in-
troduced in [42] in the context of the 1-dimensional Toda lattices and explained earlier
in this introduction, to define the following vector fields on the moments

(19) Vjµk = (k + j)µk+j , ∀j ∈ Z.

These vector fields trivially satisfy the commutation relations

[Vi, Vj ] = (j − i)Vi+j , [Vi, Tj ] = jTi+j , ∀i, j ∈ Z,(20)

from which it follows that

(21) [[Vi, Tj ], Tk] = j[Ti+j , Tk] = 0, ∀i, j, k ∈ Z.

Equations (20) and (21) mean that the vector fields Vj , j ∈ Z, form a Virasoro algebra
of master symmetries for the Ablowitz-Ladik hierarchy.

The Ablowitz-Ladik tau functions admit the following expansion

τn(t, s) =
∑

0≤i0<···<in−1
0≤j0<···<jn−1

pi0,...,in−1
j0,...,jn−1

Sin−1−(n−1),...,i0(t)Sjn−1−(n−1),...,j0(s),

where

(22) pi0,...,in−1
j0,...,jn−1

= det
(
µik−jl(0, 0)

)
0≤k,l≤n−1

,

are the so-called Plücker coordinates, and Si1,...,ik(t) denote the Schur polynomials

Si1,...,ik(t) = det
(
Sir+s−r(t)

)
1≤r,s≤k,

with Sn(t) the elementary Schur polynomials. In Chapter 4, we shall establish the
next result:
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Theorem 3. (Haine-Vanderstichelen [44]) For all k ∈ Z, we have

L
(n)
k τn(t, s) =∑
0≤i0<···<in−1
0≤j0<···<jn−1

Vk

(
pi0,...,in−1
j0,...,jn−1

)
Sin−1−(n−1),...,i0(t)Sjn−1−(n−1),...,j0(s),

with L(n)
k , k ∈ Z, defined as in Theorem 2, and Vk

(
pi0,...,in−1
j0,...,jn−1

)
the Lie derivative

of the Plücker coordinates (22) in the direction of the master symmetries Vk of the
Ablowitz-Ladik hierarchy, as defined in (19).

Thus the operators L(n)
k , k ∈ Z, precisely describe the master symmetries of the

Ablowitz-Ladik hierarchy on the tau functions of this hierarchy.

To complete the picture, we give Lax equations for the master symmetries of the
Ablowitz-Ladik hierarchy at the end of Chapter 4. The master symmetries of the
Ablowitz-Ladik hierarchy form a full centerless Virasoro algebra. As we have seen,
the centerless Virasoro algebra corresponds to the complexification of the Lie algebra
of vector fields on the circle S1, with basis

dn = −zn+1 d

dz
, z = eiθ, n ∈ Z.

Define the matrices M1,M2 by
d

dz
p(1)(z; t, s) = M1p

(1)(z; t, s),
d

dz
p(2)(z; t, s) = M2p

(2)(z; t, s).

The operators −zn+1 d
dz acting on p(1)(t, s; z) (or p(2)(t, s; z)) can be expressed in

terms of the matrices L1,M1, as long as n+ 1 ≥ 0. Indeed, we have for n+ 1 ≥ 0

−zn+1 d

dz
p(1)(z; t, s) = −M1L

n+1
1 p(1)(z; t, s).

When n + 1 < 0, the operator −zn+1 d
dz acting on p(1)(t, s; z) can not be expressed

any more in terms of the matrices L1,M1 as L−1
1 is not defined. This, as well as the

work of Nenciu [58], suggests to use bi-orthogonal Laurent polynomials for the study
of the Ablowitz-Ladik hierarchy. Laurent polynomials are polynomials in z and z−1.
Let 〈· , ·〉 be a time dependent bilinear pairing on the space of Laurent polynomials,
for example the pairing (13). Applying a Gram-Schmidt bi-orthogonalization process
to the basis {1, z, z−1, z2, z−2, . . . }, one obtains two sequences {fn, gn}n≥0 of time-
dependent monic right bi-orthogonal Laurent polynomials (See Chapter 2 for an exact
definition), satisfying

〈fm, gn〉 = hmδmn.
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Define the vectors f = (fn)n≥0 and g = (gn)n≥0. The multiplication by z in these
bases is then given by two time-dependent matrices A1, A2

zf(z) = A1f(z), zg(z) = A2g(z),

and these matrices turn out to be penta-diagonal, generalizing the result obtained by
Cantero, Moral and Velazquez [19], and also discussed by Simon [60,61], for orthog-
onal Laurent polynomials on the unit circle. The matrices A1, A2 are called (general-
ized) CMV-matrices. They are not independent, as A2 is related to A−1

1 through

A−1
1 = hAT2 h

−1,

where h = diag(hn)n≥0. We have

Theorem 4. The Ablowitz-Ladik hierarchy is given by the Lax equations
∂A1

∂tn
= [A1, (An1 )−−],

∂A2

∂tn
= [A2, (A−n2 )−−], ∀n ∈ Z,(23)

where, for convenience, we put sn = t−n, n ≥ 0.

We define the matrices D1 and (D∗1)T (respectively D2 and (D∗2)T ) representing the
operator of derivation d/dz in the bases

(
fn(z)

)
n≥0

and
(
h−1
n gn(z−1)

)
n≥0

(respec-
tively

(
gn(z)

)
n≥0

and
(
h−1
n fn(z−1)

)
n≥0

):

d

dz
f(z) = D1 f(z),

d

dz

(
h−1 g(z−1)

)
= (D∗1)T

(
h−1 g(z−1)

)
,

d

dz
g(z) = D2 g(z),

d

dz

(
h−1 f(z−1)

)
= (D∗2)T

(
h−1 f(z−1)

)
.

We obtain Lax equations for the Virasoro master symmetries of the Ablowitz-Ladik
hierarchy in terms of the CMV matrices. We prove in Chapter 4

Theorem 5. (Haine-Vanderstichelen [44]) For k ∈ Z

Vk(A1) =
[
A1,

(
D1A

k+1
1

)
−− +

(
Ak+1

1 D∗1
)
−− + k(Ak1)−−

]
,

Vk(A2) =
[(
D2A

1−k
2

)
−− +

(
A1−k

2 D∗2
)
−− − k(A−k2 )−−, A2

]
,

where D1 and (D∗1)T (respectively D2 and (D∗2)T ) represent the operator of deriva-
tion d/dz in the bases

(
fn(z)

)
n≥0

and
(
h−1
n gn(z−1)

)
n≥0

(respectively
(
gn(z)

)
n≥0

and
(
h−1
n fn(z−1)

)
n≥0

), with fn(z), gn(z) the bi-orthogonal Laurent polynomials
satisfying 〈fm, gn〉 = hmδmn.

The theory of time-dependent bi-orthogonal Laurent polynomials is developped in
Chapters 2 and 3. In Chapter 3 we construct the Lax equations (23) for the Ablowitz-
Ladik hierarchy in terms of these CMV matrices A1, A2.
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Non-intersecting Brownian motions

Random matrix theory is related with models of non-intersecting Brownian motions.
Brownian motion was first described by the botanist Robert Brown in 1828. He
was studying pollen particles in water under the microscope. He observed minute
particles, ejected by the pollen grains, executing a jittery motion. He repeated the
experiment with pollen coming from different plant species and also with particles
of inorganic matter. In all these experiments he observed the same phenomenon, but
he was unable to explain the origin of the motion. In 1877, Delsaux advanced the
hypothesis that the changes in direction and speed of the particles were caused by the
collisions of the particles with the water molecules. In 1905, Albert Einstein brought
the solution of the problem to the attention of physicists. He determined the transition
probability of the process using the heat equation. In 1906, Marian Smoluchowski
obtained the Brownian motion as a scaling limit of random walks.

The rigourous mathematical theory to study Brownian motion was developed by Nor-
bert Wiener in 1923. In mathematical terms, a real-valued stochastic process {Bt}t≥0

is a standard Brownian motion starting at the origin if it is a Gaussian process such that

(1) B0 = 0;

(2) for a sequence 0 ≤ t1 < t2 < · · · < tk of times, the increments
Bt1 , Bt2 −Bt1 , . . . , Btk −Btk−1 are independent random variables;

(3) for all 0 ≤ s < t, Bt −Bs has a normal distributionN (0, t− s) with mean
0, and variance t− s;

(4) the path functions t 7→ Bt are almost surely continuous on [0,+∞[.

In 1958, Karlin and McGregor [49] established a formula allowing one to compute
the transition probability density pN (t,~a,~b) to findN independent Brownian particles
starting in a1 < · · · < aN at time t = 0 in positions b1, . . . , bN at a time t > 0 without
any two of them ever having been coincident during the time interval [0, t]. It is given
in terms of the transition probability density of one Brownian particle on the real line

p(t, x, y) =
1√
πt
e
−(x−y)2

t ,
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by the following determinant

pN (t, ~α, ~β) := det

 p(t, a1, b1) · · · p(t, a1, bN )
...

...
p(t, aN , b1) · · · p(t, aN , bN )

 .

In the second part of this thesis, we will be concerned with the study ofN independent
Brownian motions during a time-interval [0, 1], conditioned to start at positions α1 <

· · · < αN at time t = 0 and to end up in positions β1 < · · · < βN , without two of them
ever having been coincident during that time-interval. We will call this process non-
intersecting Brownian motions. The probability density to find all the particles at time
0 < t < 1 in positions x1, . . . , xN is then, using the formula of Karlin-McGregor,

pN

(
t;x1, . . . , xN

∣∣∣ (x1(0), . . . , xN (0)
)

=
(
α1, . . . , αN

)(
x1(1), . . . , xN (1)

)
=
(
β1, . . . , βN

) )

=
1
ZN

pN (t, ~α, ~x)pN (1 − t, ~x, ~β),

where ZN is a normalizing constant. Interesting cases are the so-called confluent
cases, where several particles start and/or end up in the same points. Of special interest
are the two following cases:

(1) α1 = · · · = αN = 0 and β1 = · · · = βN = 0. After a simple rescaling,
the distribution of the Brownian particles at time t then coincides with the
distribution of the eigenvalues of a random GUE matrix.

(2) α1 = · · · = αN = 0. After a simple rescaling, the distribution of the
Brownian particles at time t coincides with the distribution of the eigenval-
ues of a random matrix from the Gaussian ensemble with external source
B = diag(β1, . . . , βN ), as proven in [15].

The first confluent case, after rescaling, also describes the distribution of N Dyson
Brownian motions on the real line. This process, discovered by Dyson [31] in 1962,
describes the motion in time of the eigenvalues of a N ×N Hermitian matrix whose
real and imaginary parts of the entries perform independent Ornstein-Uhlenbeck-
processes, with an initial distribution given by the invariant measure of the process.
See Adler-Delépine-van Moerbeke [3] and Katori-Tanemura [50, 51] for a detailed
description of the relationship between Dyson Brownian motions, non-intersecting
Brownian motions and Gaussian Hermitian matrix ensembles. In particular, in [50]
both stochastic processes are obtained as scaling limits of the vicious walkers model.

In the two particular cases cited (i.e. non-intersecting Brownian motions with one
starting position and one or several ending positions), the relationship between non-
intersecting Brownian motions and Hermitian matrix models has led to a deeper com-
prehension of the diffusion problems. In both cases, partial differential equations
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(PDE) for the finite N diffusions have been obtained (see [6, 8, 14]). For large N ,
upon taking appropriate scaling limits, different processes appear describing the tran-
sition probabilities of critical infinite dimensional diffusions, like the Airy process,
the Sine process and the Dyson process (see [11, 51, 63]) for one starting and ending
position, and for two or more ending positions the Pearcey process (see [15, 64]), the
Airy process with k outliers (see [3]), etc.

Consider now the following confluent case

(α1, . . . , αN ) =
(
a1, a1, . . . , a1︸ ︷︷ ︸

m1

, a2, a2, . . . , a2︸ ︷︷ ︸
m2

, . . . , aq, aq, . . . , aq︸ ︷︷ ︸
mq

)
,

(β1, . . . , βN ) =
(
b1, b1, . . . , b1︸ ︷︷ ︸

n1

, b2, b2, . . . , b2︸ ︷︷ ︸
n2

, . . . , bp, bp, . . . , bp︸ ︷︷ ︸
np

)
,

with
∑q
i=1mi =

∑p
i=1 ni = N , for general p and q, a1 < a2 < · · · < aq and

b1 < b2 < · · · < bp. In this case, it is not known if the distribution of the positions of
the non-intersecting Brownian particles at a given time 0 < t < 1, is the same as the
joint distribution of the eigenvalues of a matrix ensemble. For p = q = 2 this problem
has first been studied by Daems-Kuijlaars [22] and Daems-Kuijlaars-Veys [23]. In
these papers, the authors consider N/2 particles going from a to b, and N/2 particles
going from −a to −b. They show that the correlation functions of the positions of
the non-intersecting Brownian motions have a determinantal form, with a kernel that
can be expressed in terms of mixed multiple Hermite polynomials. They analyze
the kernel in the large N limit, for a small separation of the starting and ending
positions (i.e. when the product ab is sufficiently small), and find the limiting mean
density of particles is supported by one or two intervals. Taking usual scaling limits
of the kernel in the bulk and near the edges they find the Sine and the Airy kernel.
For large separation of the starting and ending positions, those results have been
extended by Delvaux-Kuijlaars [26]. In [4], Adler-Ferrari-van Moerbeke study
a similar situation, but with an asymmetric number of paths in the left and right
starting and ending positions. Recently, Adler-Ferrari-van Moerbeke [5] and also
Delvaux-Kuijlaars-Zhang [28] (see also [27]) analyzed the large N -limit in a critical
regime where the paths fill two tangent ellipses in the time-space plane. Using an
appropriate double scaling limit, they prove the existence of a new process describing
the diffusion of the particles near the point of tangency.

It is a hard problem to obtain concrete results about the processes describing the
critical infinite dimensional diffusions, obtained as limiting situations of the problem
of N non intersecting Brownian motions on the real line starting at q and ending at
p prescribed positions, with p, q ≥ 2. In the second part of this thesis we analyze
the finite N diffusion for two or more starting and ending positions. We consider N
non-intersecting Brownian motions x1(t), . . . , xN (t) on R, starting at time t = 0 in q
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different points, and arriving in t = 1 in p different points. If Pa1,...,aq
b1,...,bp

(
all xi(t) ∈ E

)
denotes the probability to find all the particles in a set E at an intermediate time
0 < t < 1, we prove the following theorem.

Theorem 6. (Adler-van Moerbeke-Vanderstichelen [13]) For each value of the pa-
rameters p ≥ 1 and q ≥ 1, let K∗ be the smallest positive integer such that

(x2 − 3x+ 4)(K∗)2 + (−x2 + 3x+ 4)K∗ − 2x(x2 − 2x− 1) > 0,

with x = p + q. Let E be a finite union of intervals. Under the assumptions
a1 + · · · + aq = 0 and b1 + · · · + bp = 0, the function log Pa1,...,aq

b1,...,bp

(
all xi(t) ∈ E

)
satisfies a nonlinear PDE of order K∗+ 3 or less, the variables being the coordinates
of the endpoints of the set E, and the coordinates of a1, . . . , aq and b1, . . . , bp.

For example, for 4 ≤ x ≤ 8, the value of K∗ in this theorem is given in the following
table :

x 4 5 6 7 8
K∗ 3 4 5 5 5

The proof of this Theorem will be given in Chapter 6, and is based on the use of a
particular integrable hierarchy, and Virasoro constraints. The use of these methods
is suggested by the fact that the probability Pa1,...,aq

b1,...,bp

(
all xi(t) ∈ E

)
has different

descriptions:

(1) It can be written, after making a space and time transformation, as a block
moment matrix

(24) Pa1,...,aq
b1,...,bp

(
all xi(t) ∈ E

)
=

1
ZN

det

[(〈
xmψi(x)

∣∣∣ynϕj(y)
〉)

0≤m≤mi−1
0≤n≤nj−1

]
1≤i≤q
1≤j≤p

,

where ψi(x) = eãix, ϕj(y) = eb̃jy , and the following inner product〈
xmψi(x)

∣∣∣ynϕj(y)
〉

=
∫
Ẽ

xm+ne(ãi+b̃j)xe−
x2
2 dx.

The ∼’s indicate that a space-time transformation has been performed.
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(2) It can be written as a sum of multiple integrals

Pa1,...,aqb1,...,bp

(
all xi(t) ∈ E

)
=

1

ZN

∑
σ∈SN

(−1)σ
∫
ẼN

( N∏
i=1

e−
x2i
2 dxi

)(
∆m1(x1, x2, . . . , xm1)

m1∏
i=1

ψ1(xi)
)

× . . . ×
(

∆mq (xm1+···+mq−1+1, . . . , xm1+···+mq )

mq∏
i=1

ψq(xm1+···+mq−1+i)
)

×
[(

∆n1(xσ(1), . . . , xσ(n1))

n1∏
i=1

ϕ1(xσ(i))
)

× . . .

×
(

∆np(xσ(n1+···+np−1+1), . . . , xσ(n1+···+np))

np∏
i=1

ϕp(xσ(n1+···+np−1+i))
)]
,(25)

where ∆n is the Vandermonde determinant, and SN is the group of permu-
tations of N elements.

As shown in Adler-van Moerbeke-Vanhaecke [14], the determinants of block moment
matrices deformed in an appropriate way satisfy integrable hierarchies. Concretely,
the determinant (24) is deformed by adding exponentials containing additional fami-
lies of time variables, one family for each weight function ϕi and ψj , or equivalently,
(25) is deformed by adding exponentials containing additional families of time vari-
ables, one family for each Vandermonde determinant. The determinants of the de-
formed block-moment matrices (24) are then tau functions for the multi-component
KP hierarchy. The multi-component KP hierarchy is a very general hierarchy of in-
tegrable equations, describing the time-evolution of matrix-valued pseudo-differential
operators, depending on several families of time variables. These operators can be
expressed in terms of so-called tau-functions, which encode the whole hierarchy. As a
consequence, the determinants of the deformed block moment matrices satisfy some
nonlinear PDE’s. The multi-component KP hierarchy is explained in Chapter 5.

As we have seen, matrix integrals deformed in an appropriate way satisfy Virasoro
constraints (see [6]). Although we do not know if (25) for general p and q corresponds
to (the reduction to polar coordinates of) a matrix integral, we show that each term
in (25) separately satisfies Virasoro constraints. As a surprise, it appears that all the
terms satisfy the same Virasoro constraints, and hence, by linearity, it follows that (25)
satisfies Virasoro constraints.

Following the method developped by Adler-Shiota-van Moerbeke, Virasoro con-
straints with time and boundary parts can be used to eliminate all the partial derivatives
with respect to the added time variables in the non-linear PDE’s from the integrable
hierarchy, and hence to obtain a non-linear PDE with respect to the variables of the
unperturbed problem. The complexity of the problem studied does not enable one
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to perform concretely this elimination process and to obtain an explicit formula for
arbitrary values p, q > 2. It is a priori not even obvious at all that it converges to a
PDE after a finite number of steps! In Theorem 6 we prove, however, using a simple
combinatorial argument, that it indeed does, and this for general p and q. We would
like to emphasize that the existence of a PDE satisfied by Pa1,...,aq

b1,...,bp

(
all xi(t) ∈ E

)
is not obvious at all. Our proof rests on two surprising facts, the first being that the
perturbed problem satisfies Virasoro constraints, and the second that the elimination
process converges after a finite number of steps.





Part 1

The Ablowitz-Ladik hierarchy and the
Circular Unitary Ensemble





Chapter1
The circular unitary ensemble

In this first chapter we introduce the concept of random matrix and random matrix
ensemble. We will be mainly concerned with the study of one particular matrix en-
semble: the circular unitary ensemble. The aim of this first chapter is to introduce in
a self-contained way some methods and material that will be used later on.

1. Random matrices : Definition and Examples

A matrix ensemble is a set of matrices with a probability measure defined on it. A
random matrix is a randomly chosen matrix in a given matrix ensemble, for the proba-
bility measure defined on it. Of particular interest is the distribution of the eigenvalues
of a random matrix. We refer to Mehta’s book [55] for a detailed discussion. We give
some examples of matrix ensembles.

1.1. The Gaussian Unitary Ensemble (GUE). LetHn be the space of complex
n× n Hermitian matrices. A matrix M ∈ Hn has n2 independent variables

M
(0)
ii , M

(0)
jk , M

(1)
jk , 1 ≤ i ≤ n, 1 ≤ j < k ≤ n,

respectively the real part of the diagonal elements (the imaginary part of the diagonal
elements is zero), the real part of the elements above the diagonal, and the imaginary
part of the elements above the diagonal. Consider the probability measure onHn

P (M)dM =
1
Zn

e−Tr(M2) dM,(26)

23
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where Zn = 2−n(n−1)/2πn
2/2 is a normalization constant, and

dM =
∏
k≤j

dM (0)
kj

∏
k<j

dM (1)
kj

is the Lebesgue measure on the independent variables of the matrix M . Two observa-
tions can be made concerning this probability measure:

(1) Developping the trace in the exponential, we get

P (M)dM =
1
Zn

( n∏
i=1

e−M
(0)2
ii dM (0)

ii

)
×
( ∏

1≤k<j≤n

e−2M
(0)2
kj dM (0)

kj

)( ∏
1≤k<j≤n

e−2M
(1)2
kj dM (1)

kj

)
and we observe that the independent variables of a matrix M ∈ Hn are also
statistically independent random variables. They are distributed as Gaussian
random variables, with zero mean.

(2) The probability measure (26) is invariant under the automorphism

h : Hn → Hn, M 7→ U−1MU,

where U ∈ U(n) is a n × n unitary matrix. Consequently, the measure is
said to be unitary invariant.

These two observations explain the name of the matrix ensemble. Due to the uni-
tary invariance of the probability measure (26), it induces a joint probability density
measure on the eigenvalues

Pn(x1, . . . , xn)dx1 . . . dxn =
1
Z ′n

∆n(x)2 exp
(
−

n∑
j=1

x2
j

)
dx1 . . . dxn,(27)

where

∆n(x) =
∏

1≤i<j≤n

(xj − xi) = det
[
xi−1
j

]
1≤i,j≤n,(28)

is the Vandermonde determinant, and Z ′n is a normalizing constant. Consequently, the
probability that a randomly chosen matrix in this ensemble has its spectrum in a set
E ⊂ R is given by the integral

Pn
(
spectrum M in E

)
=

1
Zn

∫
Hn(E)

e−Tr(M2)dM

=
1
Z ′n

∫
En

∆n(x)2 exp
(
−

n∑
j=1

x2
j

)
dx1 . . . dxn,

whereHn(E) is the set of Hermitian matrices with spectrum inE. We refer to [55,25]
for a detailed discussion.
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1.2. The Gaussian Ensemble with external source. Consider onHn, the space
of complex n× n Hermitian matrices, the probability measure

P (M)dM =
1
Zn

e
−Tr

(
M2
2 −AM

)
dM,(29)

where dM is, as in the example of the Gaussian Unitary Ensemble, the Lebesgue
measure on the independent variables of M ∈ Hn, and

A = diag(α1, . . . , αn),

is a fixed diagonal matrix, α1, . . . , αn ∈ R. This measure is not invariant under
conjugation by a unitary matrix any more. The probability that a randomly chosen
matrix in this ensemble has its spectrum in a set E ⊂ R can be transformed in an
integral over the eigenvalues, if all the αi are distinct,

Pn
(
spectrum M in E

)
=

1
Zn

∫
Hn(E)

e
−Tr

(
M2
2 −AM

)
dM

=
1
Z ′n

∫
En

∆n(x)2
n∏
i=1

e−
x2i
2 dxi

∫
U(n)

eTrAUdiag(x1,...,xn)U−1
dµH(U)

=
1
Z ′′n

∫
En

∆n(x)2
n∏
i=1

e−
x2i
2 dxi

det
[
eαixj

]
1≤i,j≤n

∆n(x)∆n(α)

=
1
Z ′′′n

∫
En

∆n(x) det
[
e−

x2j
2 +αixj

]
1≤i,j≤n

n∏
i=1

dxi,

where in the third step we have used the Harish-Chandra-Itzykson-Zuber for-
mula to evaluate the integral over the unitary group U(n), µH being the nor-
malized Haar measure on U(n). When several αi coincide, the formula re-
mains valid, upon taking appropriate limits. Suppose α1, . . . , αm1 → a1,
. . . ,αm1+···+mq−1+1, . . . , αm1+···+mq → aq , with m1 + · · ·+mq = n, then

Pa1,...,aq
n

(
spectrum M in E

)
:= lim

α1,...,αm1→a1
...

αm1+···+mq−1+1,...,αm1+···+mq→aq

Pn
(
spectrum M in E

)

=
1
Z ′′′′n

∫
En

∆n(x)
(

∆m1(x(1))
m1∏
i=1

ea1xi
)
× . . .

×
(

∆mq (x
(q))

mq∏
i=1

ea1xm1+···+mq−1+i
) n∏
i=1

e−
x2j
2 dxi,(30)

where x(1) = (x1, x2, . . . , xm1), . . . , x(q) = (xm1+···+mq−1+1, . . . , xm1+···+mq ).
In [15] a non-intersecting Brownian motion interpretation is given of the Gaussian
ensemble with external source. More details on non-intersecting Brownian motions
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can be found in chapter 6. We refer to [15] and references here-in for a detailed
discussion of the Gaussian ensemble with external source.

1.3. The Circular Unitary Ensemble (CUE). The unitary group U(n) is the set
of n× n complex matrices A ∈ Cn×n such that

AA† = I,

where I is the n × n identity matrix, together with matrix multiplication as group
action. The eigenvalues of a unitary matrix all lie on the unit circle in the complex
plane. The group U(n) is a closed and bounded submanifold of R2n2

of dimension
n2, after identification of Cn×n with R2n2

, and thus it is a compact Lie group. The
group acts on itself by left or right multiplication by an element of the group. As U(n)
is a compact group, it has a unique normalized measure µH that is both invariant under
left and right multiplication:

µH(hE) = µH(E) = µH(Eh),

for all h ∈ U(n) and every measurable set E. This measure is called the normalized
Haar measure. The Haar measure induces a joint eigenvalue measure density on the
torus (S1)n, given by Weyl’s formula

(31) Pn(θ1, . . . , θn)dθ1 . . . dθn =
1

(2π)nn!
|∆(eiθ1 , . . . , eiθn)|2dθ1 . . . dθn.

The Circular Unitary Ensemble (CUE) is the set U(n) of unitary n × n matrices,
together with the normalized Haar measure µH on U(n) as probability measure. Let
J ⊂ S1 be a subset of the unit circle. The probability that a randomly chosen matrix
from U(n) has all its spectrum in J is given by

Pn(J) :=
∫
U(n,J)

dµH(U),

where U(n, J) is the set of unitary matrices with spectrum in J . Using Weyl’s for-
mula, this can be transformed in a multiple integral over the eigenvalues1

Pn(J) =
∫
Jn
Pn(θ1, . . . , θn)dθ1 . . . dθn,

with Pn(θ1, . . . , θn) given in (31). Notice that ∆(eiθ1 , . . . , eiθn) = 0 as soon as
θl = θk mod 2π for any pair l 6= k. As a consequence, the eigenvalues of a
randomly chosen matrix in U(n) for the normalized measure are almost surely all
distinct.

We will be mainly concerned with the circular unitary ensemble in this chapter.

1For simplicity, we denote by J a subset of S1 and the set {θ ∈ [0, 2π]|eiθ ∈ J}.
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2. Joint eigenvalue probability density for the CUE : Fredholm determinants
and Toeplitz moment matrices

2.1. Fredholm determinants. As shown in the preceding section, the joint
eigenvalue probability density of the Circular Unitary Ensemble is

Pn(θ1, . . . , θn) =
1

(2π)nn!

∏
1≤k<l≤n

|eiθk − eiθl |2.

It is a symmetric function of its arguments. As we will see, it can be written as a
determinant. Indeed, using the expression (28) of the Vandermonde determinant, we
have ∏

1≤k<l≤n

|eiθk − eiθl |2 = det
(
ei(j−1)θk

)
1≤j,k≤n

det
(
e−i(j−1)θk

)
1≤j,k≤n

= det
( n∑
j=1

ei(j−1)(θk−θl)
)

1≤k,l≤n

= det

(
1− ein(θk−θl)

1− ei(θk−θl)

)
1≤k,l≤n

= det

(
sin n

2 (θk − θl)
sin 1

2 (θk − θl)

)
1≤k,l≤n

.

It follows that

Pn(θ1, . . . , θn) =
1
n!

det

(
1

2π
sin n

2 (θk − θl)
sin 1

2 (θk − θl)

)
1≤k,l≤n

.

Defining the following integral kernel

Kn(η, θ) :=
1

2π
sin n

2 (η − θ)
sin 1

2 (η − θ)
,(32)

this probability can be written

Pn(θ1, . . . , θn) =
1
n!

det
(
K(θk, θl)

)
1≤k,l≤n

.

One checks that the kernel Kn(η, θ) has the reproducing kernel property, i.e. it satis-
fies ∫ 2π

0

Kn(θ, θ)dθ = n, and
∫ 2π

0

Kn(η, ξ)Kn(ξ, θ)dξ = Kn(η, θ).

This yields the important property∫ 2π

0

det
(
Kn(θk, θl)

)
1≤k,l≤m dθm

= (n −m + 1) det
(
Kn(θk, θl)

)
1≤k,l≤m−1

,
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for all 1 ≤ m ≤ n. The function Kn(θ, θ) corresponds to the mean density of
eigenvalues at θ. Indeed, if I is any subset of [0, 2π], then we have∫

I
Kn(θ, θ)dθ = E

(
number of eigenvalues in I

)
.

One easily checks that the mean density of eigenvalues is

ρ := Kn(θ, θ) =
n

2π
.

We denote by I the union of p disjoint subintervals of [0, 2π] :

I = I1 ∪ · · · ∪ Ip,

and by Pn(n1, . . . , np; I) the probability to find exactly n1 eigenvalues in I1, . . . , np
eigenvalues in Ip, for a randomly chosen matrix of the Circular Unitary Ensemble,
with m = n1 + · · ·+ np ≤ n. We then have

Pn(n1, . . . , np; I)

=
(

n

n1, . . . , np, n−m

)∫ 2π

0

. . .

∫ 2π

0

Pn(θ1, . . . , θn)
n1∏
j1=1

χI1(θj1)

×
n1+n2∏
j2=n1+1

χI2(θj2) . . .
n1+···+np∏

jp=n1+···+np−1+1

χIp(θjp)

×
n∏

j=m+1

(
1− χI(θj)

)
dθ1 . . . dθn.

It is possible to prove that (see [25, 55])

Pn(n1, . . . , np; I) =
(−1)m

n1! . . . np!
∂mDn(I;λ)
∂λn1

1 . . . ∂λ
np
p

∣∣∣
λ1=···=λp=1

,

where

Dn(I;λ) = det
(

1−
p∑
j=1

λjKn(η, θ)χIj (θ)
)

=
∞∑
m=0

(−1)m

m!

×
∫

[0,2π]m
det
( p∑
j=1

λjKn(θk, θl)χIj (θl)
)

1≤k,l≤m
dθ1 . . . dθm,

is the Fredholm determinant of the integral kernelKn. As a consequence, we have the
following formula for the gap probability

P
(
no eigenvalues in I

)
= det

(
1−Kn(η, θ)χI(θ)

)
.
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The expression of the above probabilities as Fredholm determinants of the kernel
Kn(η, θ) is particularly useful when studying large n limits. As n → ∞, the size
of the matrices goes to infinity, and so does the density of eigenvalues. The mean
spacing 1

ρ between successive eigenvalues tends to 0. Hence, we rescale the variables
θj = xj

ρ to normalize the mean spacing between successive eigenvalues. With this
rescaling, we have

lim
n→∞

Kn

(2πx
n
,

2πy
n

)
d
(2πy
n

)
=

sinπ(x− y)
π(x− y)

dy =: Ksin(x, y)dy.

This is the famous Sine-kernel, appearing also in the study of the GUE ensemble. We
then have for I = I1 ∪ · · · ∪ Ip ⊂ [0, 2π] a union of p disjoint subintervals, and for
any fixed n1 + · · ·+ np = m:

lim
n→∞

Pn(n1, . . . , nm;
2π
n
I) =

(−1)m

n1! . . . np!
∂mDsin(I;λ)
∂λn1

1 . . . ∂λ
np
p

∣∣∣
λ1=···=λp=1

,

where Dsin(I;λ) is the Fredholm determinant of the Sine-kernel. We have the follow-
ing celebrated result of Jimbo, Miwa, Môri and Sato, linking Random Matrix Theory
with integrable systems.

Theorem 1.1 (Jimbo-Miwa-Môri-Sato [46]). We have

det
(

1−Ksin(η, θ)χ(−t/2,t/2)(θ)
)

= 1− F (t),

with

1− F (t) = exp
(∫ t

0

σ(x)
x

dx
)
, for t ≥ 0,

with σ the solution of the Painlevé V equation

(tσ′′)2 + 4(tσ′ − σ)
(
tσ′ − σ + (σ′)2

)
= 0,

so that

σ = − t
π
− t2

π2
− t3

π3
+O(t4), as t→ 0.

2.2. Joint eigenvalue probabilities as determinants of Toeplitz moment ma-
trices. The probability that a n × n random CUE matrix has all its eigenvalues with
argument within an arc of circle J is given by

Pn(J) =
∫
Jn
Pn(θ1, . . . , θn)dθ1 . . . dθn,

where the joint eigenvalue density of the Circular Unitary Ensemble Pn(θ1, . . . , θn) is
given in (31). This probability can be written as the determinant of a Toeplitz matrix.
A matrix A is a Toeplitz matrix if all the elements on the same diagonal are equal, i.e.
if A can be written

A =
n∑

k=−n

akΛk,
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with Λ = (δi,j−1)1≤i,j≤n, and Λ−1 is interpreted as ΛT . The probability Pn(J) can
be written as the determinant of a finite Toeplitz moment matrix

Pn(J) = detmn,(33)

where

mn = (µk−l)0≤j,k≤n−1,(34)

with µk the trigonometric moments defined by

µk =
∫
S1
zk ρ(z)

dz
2πiz

,(35)

for k ∈ Z, with the weight function ρ(z) = χJ(z). Indeed, we have

detmn =
∫

(S1)n
det

 z0
1 · · · z

−(n−1)
n

...
...

zn−1
1 · · · z0

n

 n∏
j=1

ρ(zj)
dzj

2πizj

=
∫

(S1)n
det
(
zk−1
l

)
1≤k,l≤n z

0
1z
−1
2 . . . z−(n−1)

n

n∏
j=1

ρ(zj)
dzj

2πizj
.

Let Sn be the group of permutations of n elements and σ ∈ Sn. Relabeling the
integration variables (z1, . . . , zn) → (zσ(1), . . . , zσ(n)) in the multiple integral above
gives

detmn =
∫

(S1)n
(−1)σ det

(
zk−1
l

)
1≤k,l≤n

× z0
σ(1)z

−1
σ(2) . . . z

−(n−1)
σ(n)

n∏
j=1

ρ(zj)
dzj

2πizj
,

where (−1)σ is the signature of the permutation σ. The value of the integral is inde-
pendent of the choice of σ ∈ Sn. Hence, summing over all σ ∈ Sn and dividing by
n!, the number of elements in Sn, we get

detmn =
1
n!

∑
σ∈Sn

∫
(S1)n

(−1)σ det
(
zk−1
l

)
1≤k,l≤n

× z0
σ(1)z

−1
σ(2) . . . z

−(n−1)
σ(n)

n∏
j=1

ρ(zj)
dzj

2πizj
.
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By definition of the Vandermonde determinant, this gives

detmn

=
1
n!

∫
(S1)n

det
(
zk−1
l

)
1≤k,l≤n det

(
z
−(k−1)
l

)
1≤k,l≤n

n∏
j=1

ρ(zj)
dzj

2πizj

=
1
n!

∫
(S1)n

|∆n(z)|2
n∏
j=1

ρ(zj)
dzj

2πizj
.

But this is Pn(J), establishing the identity (33).

Remark 1.2. We observe that the above argument is independent of the nature of the
weight function ρ(z). Consequently, for an arbitrary weight function ρ(z) we have

det
[ ∮

S1
zj−k ρ(z)

dz
2πiz

]
0≤j,k<n

=
1
n!

∫
(S1)n

|∆n(z)|2
n∏
j=1

ρ(zj)
dzj

2πizj
.

Identity (33) is deeply connected with the theory of bi-orthogonal polynomials on the
unit circle, as we will see. Good references for this material are [9, 12, 36], though
this authors don’t use the formalism of bi-moment functionals, which we will use in
Chapter 2.

3. A differential equation due to Tracy and Widom

For η, θ ∈]− π, π[, with η ≤ θ, the probability that a n× n random CUE matrix has
no eigenvalues within an arc of circle (η, θ) = {z ∈ S1|η < arg(z) < θ} is given by

(36) τn(η, θ) =
1

(2π)nn!

∫ 2π+η

θ

. . .

∫ 2π+η

θ

∏
1≤k<l≤n

|eiϕk − eiϕl |2dϕ1 . . . dϕn.

Obviously, this probability depends only on the length θ − η. Consequently, without
loss of generality, we can chose a symmetric arc of circle (−θ, θ). We shall denote by

(37) R(θ) = −1
2

d
dθ

log τn(−θ, θ),

the logarithmic derivative of the probability that an arc of circle of length 2θ contains
no eigenvalues of a randomly chosen unitary matrix.

Using functional analytic techniques in the study of the kernelKn(η, θ) in (32), Tracy
and Widom prove in [66] that the function R(θ) satisfies the differential equation

R(θ)2 + 2 sin θ cos θ R(θ)R′(θ) + sin2 θ R′(θ)2

=
1
2

(1
4

sin2 θ
R′′(θ)2

R′(θ)
+ sin θ cos θ R′′(θ) +

(
cos2 θ + n2 sin2 θ

)
R′(θ)

)
.(38)
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At the end of this chapter, we will give a new proof of this differential equation, and
show it is a disguised form of the Painlevé VI equation. Our proof will be based on
an integrable deformation of the multiple integral τn(η, θ) defined in (36), and the
construction of so-called Virasoro constraints for the deformed integral. This will be
developped in the following section.

4. An integrable deformation of the joint probability distribution

The unitary matrix model was first discussed in [54] from the point of view of inte-
grable deformations. Following [9, 12], let us consider the following deformation of
the weight function ρ(z) = χJ(z) defined on S1, J being the arc of circle [η, θ],

ρ(z) 7→ ρ(z)e
∑∞
j=1 tjz

j+
∑∞
j=1 sjz

−j
,

in the trigonometric moments µk defined in (35), and the corresponding deformation
of the moments

µk(t, s) =
∫
S1
zk ρ(z)e

∑∞
j=1 tjz

j+
∑∞
j=1 sjz

−j dz
2πiz

.

This deformation of the moments induces, through formula (33), a deformation of the
probability τn(η, θ)

τn(t, s; η, θ) = det(µk−l(t, s))0≤j,k≤n−1,(39)

or equivalently, working out the determinant

(40) τn(t, s; η, θ) =
1
n!

∫
(S1)n

|∆n(z)|2
n∏
k=1

(
ρ(zk)e

∑∞
j=1(tjz

j
k+sjz

−j
k ) dzk

2πizk

)
,

with zk = eiϕk , such that τn(0, 0; η, θ) = τn(η, θ). The deformed trigonometric
moments satisfy the following simple equations

∂µk(t, s)
∂tj

= µk+j(t, s),
∂µk(t, s)
∂sj

= µk−j(t, s), ∀j ≥ 1.

These equations define the Ablowitz-Ladik hierarchy on the space of the trigonometric
moments, as we will see in Chapter 3. The Ablowitz-Ladik hierarchy can be obtained
as a reduction of the 2-Toda lattice described in [67]. The functions τn(t, s; η, θ)
in (40) are special instances of τ -functions in the sense of Sato theory for the 2-
Toda lattice hierarchy, as we will see. Consequently, the sequence of τ -functions
(τn(t, s; η, θ))n≥0 satisfy the KP equation both in the t and the s variables :

(41)
( ∂4

∂t41
+ 3

∂2

∂t22
− 4

∂2

∂t1∂t3

)
log τn + 6

( ∂2

∂t21
log τn

)2

= 0,

and ( ∂4

∂s4
1

+ 3
∂2

∂s2
2

− 4
∂2

∂s1∂s3

)
log τn + 6

( ∂2

∂s2
1

log τn
)2

= 0.
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In the first part of this section we give a proof of this statement based on orthogonality
conditions of time-dependent polynomials and their Cauchy transforms. The proof is a
particularization of a general proof given in [14]. In the second part of this section, we
prove that the sequence of τ -functions (τn(t, s; η, θ))n≥0 also satisfies linear PDE’s
with a boundary part (differentials with respect to η and θ) and a time part (differentials
with respect to t and s), called Virasoro constraints.

From now on, we shall use the notation

ρt,s(z) = ρ(z)e
∑∞
j=1(tjz

j+sjz
−j)

for the deformed weight function.

4.1. The 2-Toda lattice and the KP equation. Let C[z] be the space of poly-
nomials in the variable z with complex coefficients. We define on C[z] × C[z] the
bilinear pairing

〈f, g〉t,s =
∮
S1
f(z)g(z−1)ρt,s(z)

dz

2πiz
.

Associated to this pairing, we define the trigonometric moments µk,l(t, s) =〈
zk, zl

〉
t,s

with k, l ≥ 0. The bilinear pairing is completely determined by the se-
quence of its trigonometric moments. Obviously, the moments µk,l(t, s) only depend
on the difference k − l. For simplicity, we shall omit the explicit dependence on the
time variables (t, s) and we shall write µk,l(t, s) = µk,l. We define the semi-infinite
moment matrix m∞ = (µk,l)k,l≥0. We have proven in section 2.2 that the multiple
integral τn(t, s) can be represented as a Toeplitz determinant

τn(t, s) = det
(
µk,l

)
0≤k,l≤n−1

.

Let [z] =
(
z, z

2

2 ,
z3

3 , . . .
)
. Using the expansion ln(1− x) = −

∑∞
j=1

xj

j , one has the
following identities{

µk,l(t− [z−1], s) = µk,l − 1
zµk,l−1,

µk,l(t+ [z−1], s) =
∑∞
j=0

1
zj µk,l−j ,

and {
µk,l(t, s− [z]) = µk,l − zµk,l+1,

µk,l(t, s+ [z]) =
∑∞
j=0 z

jµk,l+j .
(42)
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It then follows that

τn(t+ [z−1], s) = det
( ∞∑
j=0

1
zj
µk,l−j

)
0≤k,l<n

,

τn(t− [z−1], s) = det
(
µk,l −

1
z
µk,l−1

)
0≤k,l<n

,

τn(t, s+ [z]) = det
( ∞∑
j=0

zjµk,l+j

)
0≤k,l<n

,

τn(t, s− [z]) = det
(
µk,l − zµk,l+1

)
0≤k,l<n

.(43)

It is well-known that

p(1)
n (t, s; z) =

1
τn(t, s)

det


1

mn z
...

µn,0 . . . µn,n−1 zn

 ,

p(2)
n (t, s; z) =

1
τn(t, s)

det


1

mT
n z

...
µ0,n . . . µn−1,n zn

 ,(44)

define two sequences of monic bi-orthogonal polynomials with respect to the pairing
〈· | ·〉t,s, i.e. p(i)

n (t, s; z), i = 1, 2, is a polynomial of exact degree n, the coefficient of
the highest order term being 1, and〈

p(1)
n (t, s, z)|p(2)

m (t, s, z)
〉
t,s

= hnδnm,

with hn = τn+1
τn

. We refer to Chapter 2 for a more detailed discussion on bi-orthogonal
polynomials. As proven in [9], the polynomials can be written in terms of the functions
τn(t, s):

p(1)
n (t, s, z) = zn

τn(t− [z−1], s)
τn(t, s)

, p(2)
n (t, s, z) = zn

τn(t, s− [z−1])
τn(t, s)

.(45)

As shown in [14], the Cauchy transforms of the polynomials p
(1)
n (t, s, z) and

p
(2)
n (t, s, z) admit also expressions in terms of τ -function. We have〈

1
z − u

∣∣∣p(2)
n (t, s, u)

〉
t,s

= z−n−1 τn+1(t+ [z−1], s)
τn(t, s)

,〈
p(1)
n (t, s, u)

∣∣∣ 1
z − u

〉
t,s

= z−n−1 τn+1(t, s+ [z−1])
τn(t, s)

.(46)
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Using expressions (45), (46), and the following simple, formal residue identities with
f(z) =

∑∞
j=0 ajz

j∮
z=∞

f(z)
〈
h(u)
z − u

|g(u)
〉
t,s

dz

2πi
= 〈f(u)h(u)|g(u)〉t,s ,∮

z=0

f(z−1)
〈
g(u)| h(u)

z−1 − u

〉
t,s

dz

2πiz2
= 〈g(u)|f(u)h(u)〉t,s ,

we obtain easily the following theorem.

Theorem 1.3. The functions τn(t, s) satisfy the following bilinear identity∮
z=∞

τn(t− [z−1], s)τm+1(t′ + [z−1], s′)e
∑∞
j=1(tj−t′j)z

j

zn−m−1dz

=
∮
z=0

τn+1(t, s+ [z])τm(t′, s′ − [z])e−
∑∞
j=1(sj−s′j)z

−j
zn−m−1dz,(47)

for all n,m ≥ 0 and all t, t′, s, s′.

The bilinear identities (47) are the bilinear identities of the 2-Toda lattice hierarchy, as
described in [67]. These identities completely describe the 2-Toda lattice hierarchy.
They admit an equivalent formulation in terms of the so-called Hirota symbol, defined
by

p(∂t)f ◦ g := p
( ∂
∂y

)
f(t+ y)g(t− y)

∣∣∣
y=0

,

for any polynomial p. Shifting the time variables t → t− a, t′ → t′ + a, s → s− b,
s′ → s′ + b in (47) and evaluating the residue in the left-hand side and the right-
hand side, we have that the functions τn(t, s) satisfy the following bilinear identities
in Hirota form

∞∑
k=0

Sk−n+m(−2a)Sk(∂̃t)e
∑∞
j=1

(
aj

∂
∂tj

+bj
∂
∂sj

)
τm+1 ◦ τn

=
∞∑
k=0

Sk+n−m(2b)Sk(−∂̃s)e
∑∞
j=1

(
aj

∂
∂tj

+bj
∂
∂sj

)
τm ◦ τn+1,(48)

for all m,n ≥ 0, where Sk are the elementary Schur polynomials, and ∂̃t =(
∂
∂t1
, 1

2
∂
∂t2
, 1

3
∂
∂t3
, . . .

)
. As a consequence of these bilinear identities, we can prove

that the functions τn are solutions of the KP hierarchy, and in particular of the KP
equation.

Corollary 1.4. The functions τn(t, s) satisfy the KP hierarchy in the t and in the s
variables, i.e. we have for all k = 0, 1, 2, . . . and all n = 1, 2, . . .(

Sk+4(∂̃t)−
1
2

∂2

∂t1∂tk+3

)
τn ◦ τn = 0,(49)
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of which the first equation is the KP equation(( ∂

∂t1

)4

+ 3
( ∂

∂t2

)2

− 4
∂2

∂t1∂t3

)
ln τn + 6

( ∂2

∂t21
ln τn

)2

= 0,(50)

and analoguous equations in the s variables.

PROOF. We shall only prove the statement for the t-variables. If we take n =
m + 1 and b = 0 the right-hand of (48) is equal to 0 as Sk(0) = 0 for k > 0. Thus
(48) gives

0 = e
∑∞
j=1 aj

∂
∂tj

∞∑
k=0

Sk(−2a)Sk+1(∂̃t)τn ◦ τn

=
(

1 +
∞∑
j=1

aj
∂

∂tj
+O(a2)

)
×
( ∂

∂t1
+
∞∑
k=1

(
− 2ak +O(a2)

)
Sk+1(∂̃t)

)
τn ◦ τn

=

(
∂

∂t1
+
∞∑
k=1

ak

( ∂2

∂t1∂tk
− 2Sk+1(∂̃t)

))
τn ◦ τn +O(a2).

We have ∂
∂t1
τn◦τn = 0 for all n. This equation must be valid for all ak. Consequently

we have

0 =
( ∂2

∂t1∂tk
− 2Sk+1(∂̃t)

)
τn ◦ τn, for k = 1, 2, . . . .

For k = 1 and k = 2 this equation is trivial. Consequently, we obtain (49) after
relabeling. For k = 0 an easy computation gives the KP equation (50). �

4.2. A centerless algebra of Virasoro constraints. In this subsection we prove
that the sequence of τ -functions (τn(t, s; η, θ))n≥0 satisfies linear PDE’s with a
boundary part (differentials with respect to η and θ) and a time part (differentials with
respect to t and s), called Virasoro constraints. In their study of Painlevé equations
satisfied (as functions of x) by integrals of Gessel’s type EU(n)

[
exTr(M+M)

]
, where

the expectation EU(n) refers to integration with respect to the Haar measure over the
whole unitary group U(n), Adler and van Moerbeke [12] consider the tau-functions(
τn(t, s;−π, π)

)
n≥0

, with τn defined in (40). Notice that

EU(n)

[
exTr(M+M)

]
= τn(t, s;−π, π)

∣∣
t=s=(x,0,0,... )

.

They prove that the tau-functions
(
τn(t, s;−π, π)

)
n≥0

satisfy the following con-
straints

Lnkτn(t, s;−π, π) = 0, k = −1, 0, 1,
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with

Ln−1 = −n ∂

∂s1
−
∞∑
j=1

jsj
∂

∂sj+1
+
∞∑
j=2

jtj
∂

∂tj−1
+ nt1,

Ln0 =
∞∑
j=1

jtj
∂

∂tj
−
∞∑
j=1

jsj
∂

∂sj
,

Ln1 = n
∂

∂t1
+
∞∑
j=1

jtj
∂

∂tj+1
−
∞∑
j=2

jsj
∂

∂sj−1
− ns1.

For each n ≥ 0, the operators Lnk provide a representation of the sl(2) algebra in the
space of formal power series in t, s. In this subsection, we prove that the tau-functions
(τn(t, s; η, θ))n≥0, with arbitrary η, θ, satisfy a full Virasoro algebra of constraints,
with a boundary part. The results in this section are based on [43]. Our proof is a non-
trivial adaptation of the self-similarity argument exploited in the case of the Gaussian
ensembles, based on the invariance of the integrals with respect to translations, see
[10] and references therein. Here, we replace translations by appropriate rotations.
More precisely, setting

(51) dIn(t, s, z) = |∆n(z)|2
n∏
α=1

(
e
∑∞
j=1(tjz

j
α+sjz

−j
α ) dzα

2πizα

)
,

with zα = eiϕα and |∆n(z)|2 =
∏

1≤α<β≤n |zα − zβ |2, we have the fundamental
next proposition.

Proposition 1.5 (Haine-Vanderstichelen [43]). The following variational formulas
hold

d
dε

dIn
(
zα 7→ zαe

ε(zkα−z
−k
α )
)∣∣
ε=0

=
(
L

(n)
k − L(n)

−k
)

dIn,(52)

d
dε

dIn
(
zα 7→ zαe

iε(zkα+z−kα )
)∣∣
ε=0

= i
(
L

(n)
k + L

(n)
−k
)

dIn,(53)
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for all k ≥ 0, with

L
(n)
k =

k−1∑
j=1

∂2

∂tj∂tk−j
+ n

∂

∂tk
+
∞∑
j=1

jtj
∂

∂tj+k

−
∞∑

j=k+1

jsj
∂

∂sj−k
−
k−1∑
j=1

jsj
∂

∂tk−j
− nksk, k ≥ 1,(54)

L
(n)
0 =

∞∑
j=1

jtj
∂

∂tj
−
∞∑
j=1

jsj
∂

∂sj
,(55)

L
(n)
−k =−

k−1∑
j=1

∂2

∂sj∂sk−j
− n ∂

∂sk
−
∞∑
j=1

jsj
∂

∂sj+k

+
∞∑

j=k+1

jtj
∂

∂tj−k
+
k−1∑
j=1

jtj
∂

∂sk−j
+ nktk, k ≥ 1.(56)

The proof of this proposition is based on the following elementary lemma, which we
prove first.

Lemma 1.6. Upon setting

E =
n∏
α=1

e
∑∞
j=1(tjz

j
α+sjz

−j
α ),

the following four relations hold, for k ≥ 0,( ∂

∂tk
+ nδk,0

)
E =

( n∑
α=1

zkα

)
E

( ∂

∂sk
+ nδk,0

)
E =

( n∑
α=1

z−kα

)
E,(57) (

1
2

∑
i+j=k
i,j>0

∂2

∂ti∂tj
− n

2
δk,0

)
E =

( ∑
1≤α<β≤n
i+j=k
i,j>0

ziαz
j
β +

k − 1
2

n∑
α=1

zkα

)
E

(
1
2

∑
i+j=k
i,j>0

∂2

∂si∂sj
− n

2
δk,0

)
E =

( ∑
1≤α<β≤n
i+j=k
i,j>0

z−iα z−jβ +
k − 1

2

n∑
α=1

z−kα

)
E.(58)

PROOF. The two relations (57) are trivial. We shall only give the proof of the
first relation in (58). For k > 0, applying twice successively the first formula (57), we
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have (
1
2

∑
i+j=k
i,j>0

∂2

∂ti∂tj
− n

2
δk,0

)
E =

1
2

∑
i+j=k
i,j>0

( ∑
1≤α≤n

zjα

)( ∑
1≤α≤n

ziα

)
E

=
1
2

∑
i+j=k
i,j>0

( ∑
1≤α,β≤n

zjα z
i
β

)
E

=
1
2

∑
i+j=k
i,j>0

(
2

∑
1≤α<β≤n

zjα z
i
β +

∑
1≤α≤n

zi+jα

)
E

=

( ∑
1≤α<β≤n
i,j>0
i+j=k

ziα z
j
β +

k − 1
2

∑
1≤α≤n

zkα

)
E.

This equation is also trivially satisfied for k = 0. This proves the first equation in (58).
The proof of the second equation in (58) is similar. �

We now turn to the proof of proposition 1.5.

PROOF. We shall first give the proof of (52). We split the computation into four
contributions, corresponding to various factors in (51).

Contribution 1: For k > 0, we have
∂

∂ε

∣∣∆n

(
zeε(z

k−z−k)
)∣∣2∣∣∣

ε=0

= |∆n(z)|2
∑

1≤α<β≤n

[ ∂
∂ε

(
zαe

ε
(
zkα−z

−k
α

)
− zβeε

(
zkβ−z

−k
β

))
zα − zβ

+
∂
∂ε

(
z−1
α e−ε

(
zkα−z

−k
α

)
− z−1

β e−ε
(
zkβ−z

−k
β

))
z−1
α − z−1

β

]∣∣∣∣∣
ε=0

= |∆n(z)|2
∑

1≤α<β≤n

(zα + zβ)(zkα − zkβ − (z−kα − z−kβ ))
zα − zβ

.

As

zkα − zkβ = (zα − zβ)
k−1∑
i=0

ziα z
k−1−i
β ,(59)

and

z−kα − z−kβ = (z−1
α − z−1

β )
k−1∑
i=0

z−iα z
i−(k−1)
β = −(zα − zβ)

k−1∑
i=0

z−i−1
α zi−kβ ,(60)
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we obtain
∂

∂ε

∣∣∆n

(
zeε(z

k−z−k)
)∣∣2∣∣∣

ε=0

= |∆n(z)|2
∑

1≤α<β≤n

(zα + zβ)
( k−1∑
i=0

ziαz
k−1−i
β +

k−1∑
i=0

z−i−1
α zi−kβ

)
.

Developing the product we get

∂

∂ε

∣∣∣∆n

(
z eε
(
zk−z−k

))∣∣∣2∣∣∣∣∣
ε=0

=
∣∣∆n(z)

∣∣2 ∑
1≤α<β≤n

[
2
∑
i+j=k
i,j>0

(
ziαz

j
β + z−iα z−jβ

)
+ zkα + zkβ + z−kα + z−kβ

]

=
∣∣∆n(z)

∣∣2 [2
∑

1≤α<β≤n
i+j=k
i,j>0

(
ziαz

j
β + z−iα z−jβ

)
+

∑
1≤α≤n

(n− α)
(
zkα + z−kα

)

+
∑

1≤β≤n

(β − 1)
(
zkβ + z−kβ

)]
,

and hence

∂

∂ε

∣∣∣∆n

(
z eε(z

k−z−k)
)∣∣∣2∣∣∣∣∣

ε=0

=
∣∣∆n(z)

∣∣2E−1×

×

[
2

∑
1≤α<β≤n
i+j=k
i,j>0

(
ziαz

j
β + z−iα z−jβ

)
+ (n− 1)

∑
1≤α≤n

(
zkα + z−kα

)]
E.

Using the four relations (57) and (58), we obtain

(61)
∂

∂ε

∣∣∆n

(
zeε(z

k−z−k)
)∣∣2∣∣∣

ε=0
= 2|∆n(z)|2E−1

[
1
2

∑
i+j=k
i,j>0

∂2

∂ti∂tj

+
1
2

∑
i+j=k
i,j>0

∂2

∂si∂sj
+
n− k

2
∂

∂tk
+
n− k

2
∂

∂sk

]
E,

which is also trivially satisfied for k = 0.
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Contribution 2: For k ≥ 0, using the relations (57) in the last step, we have

∂

∂ε

n∏
α=1

d
(
zα e

ε(zkα−z
−k
α )
)∣∣∣∣∣
ε=0

=
∂

∂ε

n∏
α=1

d
(
zα
(
1 + ε(zkα − z−kα ) + O(ε2)

))∣∣∣∣∣
ε=0

=
∂

∂ε

n∏
α=1

(
dzα + ε(k + 1)zkαdzα + ε(k − 1)z−kα dzα + O(ε2)

))∣∣∣∣∣
ε=0

= E−1
n∑
β=1

(
(k + 1)zkβ + (k − 1)z−kβ

)
E

n∏
α=1

dzα

= E−1
[
(k + 1)

∂

∂tk
+ (k − 1)

∂

∂sk

]
E

n∏
α=1

dzα.(62)

Contribution 3: For k ≥ 0, using the relations (57), we have

∂

∂ε

n∏
α=1

e

∑∞
j=1

(
tj

(
zαe

ε(zkα−z
−k
α )
)j

+sj

(
zαe

ε(zkα−z
−k
α )
)−j)∣∣∣∣∣

ε=0

=
n∑
α=1

[ ∞∑
j=1

jtjz
j
α(zkα − z−kα )−

∞∑
j=1

jsjz
−j
α (zkα − z−kα )

]
E

=

[ ∞∑
j=1

jtj

n∑
α=1

zj+kα −
k−1∑
j=1

jtj

n∑
α=1

zj−kα −
∞∑
j=k

jtj

n∑
α=1

zj−kα

−
k−1∑
j=1

jsj

n∑
α=1

zk−jα −
∞∑
j=k

jsj

n∑
α=1

zk−jα +
∞∑
j=1

jsj

n∑
α=1

z−k−jα

]
E

=

[ ∞∑
j=1

jtj
∂

∂tk+j
−
k−1∑
j=1

jtj
∂

∂sk−j
−

∞∑
j=k+1

jtj
∂

∂tj−k
− nktk

−
k−1∑
j=1

jsj
∂

∂tk−j
−

∞∑
j=k+1

jsj
∂

∂sj−k
− nksk +

∞∑
j=1

jsj
∂

∂sk+j

]
E.(63)

Contribution 4: For k ≥ 0, using the relations (57), we have

∂

∂ε

n∏
α=1

1

2πizαeε(z
k
α−z

−k
α )

∣∣∣
ε=0

= E−1
[
−

n∑
α=1

zkα +
n∑
α=1

z−kα

]
E

n∏
α=1

1
2πizα

= E−1
[
− ∂

∂tk
+

∂

∂sk

]
E

n∏
α=1

1
2πizα

.(64)
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Adding up (61), (62), (63) and (64) gives (52).

We now sketch briefly without comments the proof of (53). We split the computation
in four contributions, corresponding to various factors in (51).

Contribution 1: For k > 0, we have

∂

∂ε

∣∣∣∆n

(
z eiε(z

k+z−k)
)∣∣∣2∣∣∣∣∣

ε=0

= i
∣∣∆n(z)

∣∣2 ∑
1≤α<β≤n

[
(zα + zβ)

(
zkα − zkβ + z−kα − z−kβ

)
zα − zβ

]

= i
∣∣∆n(z)

∣∣2E−1

[
2

∑
1≤α<β≤n
i+j=k
i,j>0

(
ziαz

j
β − z

−i
α z−jβ

)

+ (n− 1)
∑

1≤α≤n

(
zkα − z−kα

)]
E

= 2i
∣∣∆n(z)

∣∣2E−1

[
1
2

∑
i+j=k
i,j>0

∂2

∂ti∂tj
− 1

2

∑
i+j=k
i,j>0

∂2

∂si∂sj

+
n− k

2
∂

∂tk
− n− k

2
∂

∂sk

]
E,(65)

which is also trivially satisfied for k = 0.

Contribution 2: For k ≥ 0, using the relations (57) in the last step, we have

∂

∂ε

n∏
α=1

d
(
zα e

iε(zkα+z−kα )
)∣∣∣∣∣
ε=0

= i E−1
n∑
β=1

(
(k + 1)zkβ − (k − 1)z−kβ

)
E

n∏
α=1

dzα

= i E−1
[
(k + 1)

∂

∂tk
− (k − 1)

∂

∂sk
+ 2nδk,0

]
E

n∏
α=1

dzα.(66)
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Contribution 3: For k ≥ 0, using the relations (57), we have

∂

∂ε

n∏
α=1

e

∑∞
j=1

(
tj

(
zα e

iε(zkα+z−kα )
)j

+sj

(
zα e

iε(zkα+z−kα )
)−j)∣∣∣∣∣

ε=0

= i

[ ∞∑
j=1

jtj

n∑
α=1

zj+kα +
k−1∑
j=1

jtj

n∑
α=1

zj−kα +
∞∑
j=k

jtj

n∑
α=1

zj−kα

−
k−1∑
j=1

jsj

n∑
α=1

zk−jα −
∞∑
j=k

jsj

n∑
α=1

zk−jα −
∞∑
j=1

jsj

n∑
α=1

z−k−jα

]
E

= i

[ ∞∑
j=1

jtj
∂

∂tj+k
+
k−1∑
j=1

jtj
∂

∂sk−j
+

∞∑
j=k+1

jtj
∂

∂tj−k
−
k−1∑
j=1

jsj
∂

∂tk−j

−
∞∑

j=k+1

jsj
∂

∂sj−k
−
∞∑
j=1

jsj
∂

∂sj+k
+ nktk − nksk

]
E.(67)

Contribution 4: For k ≥ 0, using the relations (57), we have

∂

∂ε

n∏
α=1

1

2πizα eiε(z
k
α+z−kα )

∣∣∣∣∣
ε=0

= i E−1
[
−

n∑
α=1

zkα −
n∑
α=1

z−kα

]
E

n∏
α=1

1
2πizα

= i E−1
[
− ∂

∂tk
− ∂

∂sk
− 2nδk,0

]
E

n∏
α=1

1
2πizα

.(68)

Adding up (65), (66), (67) and (68) gives (53). This concludes the proof of Proposition
1.5. �

Remark 1.7. After [43] was completed, we noticed that Bowick et al. [17] have ob-
tained the same result with a method closely related to ours, though full details are
not given in their work.

We are now able to state the main result of this section.

Theorem 1.8 (Haine-Vanderstichelen [43]). (i) The tau functions τn(t, s; η, θ), n ≥ 1,
defined in (40), satisfy

(69) Bk(η, θ)τn(t, s; η, θ) = L
(n)
k τn(t, s; η, θ), k ∈ Z,

with L(n)
k , k ∈ Z, defined as in (54), (55), (56), and

(70) Bk(η, θ) =
1
i

(
eikθ

∂

∂θ
+ eikη

∂

∂η

)
; i =

√
−1.
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(ii) The operators L(n)
k , k ∈ Z, satisfy the commutation relations of the centerless

Virasoro algebra, that is

(71)
[
L

(n)
k , L

(n)
l

]
= (k − l)L(n)

k+l, k, l ∈ Z.

PROOF. (i) Denoting zα = eiϕα , the change of variable zα 7→ zαe
ε(zkα−z

−k
α )

in the integral (40) gives the following transformation on the angle ϕα 7→ ϕα +
2ε sin(kϕα), inducing a change in the limits of integration given by the inverse map

(72) ϕα 7→ ϕα − 2ε sin(kϕα) +O(ε2),

for ε small enough. Making the change of variable in the integral (40), with the corre-
sponding change in the limits of integration, leaves it invariant. Thus, by differentiat-
ing the result with respect to ε and evaluating it at ε = 0, using the chain rule together
with (52) and (72), we obtain

(73) 0 =
(
− 2 sin(kθ)

∂

∂θ
− 2 sin(kη)

∂

∂η
+ L

(n)
k − L(n)

−k

)
τn(t, s; η, θ).

Similarly, the change of variable zα 7→ zαe
iε(zkα+z−kα ) corresponds to the transforma-

tion ϕα 7→ ϕα + 2ε cos(kϕα), with inverse

ϕα 7→ ϕα − 2ε cos(kϕα) +O(ε2),

which, using (53), leads to

(74) 0 =
(
− 2
i

cos(kθ)
∂

∂θ
− 2
i

cos(kη)
∂

∂η
+ L

(n)
k + L

(n)
−k

)
τn(t, s; η, θ).

Adding and subtracting (73) and (74) gives the constraints (69), with Bk(η, θ) defined
as in (70).

(ii) Consider the complex Lie algebra A given by the direct sum of two commuting
copies of the Heisenberg algebra2 with bases {~a, aj |j ∈ Z} and {~b, bj |j ∈ Z} and
defining commutation relations

[~a, aj ] = 0 , [aj , ak] = jδj,−k~a,
[~b, bj ] = 0 , [bj , bk] = jδj,−k~b,(75)

[~a, ~b] = 0 , [aj , bk] = 0 , [~a, bj ] = 0 , [~b, aj ] = 0,

with j, k ∈ Z. Let B be the space of formal power series in the variables t1, t2, . . .
and s1, s2, . . . , and consider the following representation of A in B :

aj =
∂

∂tj
, a−j = jtj , bj =

∂

∂sj
, b−j = jsj ,

a0 = b0 = µ , ~a = ~b = 1,(76)

2See Appendix A for a short introduction to the Heisenberg and the Virasoro algebra, and their oscil-
lator representation.
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for j > 0, and µ ∈ C. Define the operators

(77) A
(n)
k =

1
2

∑
j∈Z

: a−jaj+k : , B
(n)
k =

1
2

∑
j∈Z

: b−jbj+k :,

where k ∈ Z, aj , bj as in (76) with µ = n, and where the colons indicate normal
ordering, defined by

: ajak :=
{
ajak if j ≤ k,
akaj if j > k,

and a similar definition for : bjbk :, obtained by changing the a’s in b’s in the former.
Expanding the expressions in (77) we obtain for k > 0

A
(n)
0 =

∑
j>0

jtj
∂

∂tj
+
n2

2
,

A
(n)
k =

1
2

∑
0<j<k

∂2

∂tj∂tk−j
+
∑
j>k

(j − k)tj−k
∂

∂tj
+ n

∂

∂tk
,(78)

A
(n)
−k =

1
2

∑
0<j<k

j(k − j)tjtk−j +
∑
j>k

jtj
∂

∂tj−k
+ nktk,

and similar expressions for B(n)
k , by changing the t-variables in s-variables. Using

these notations, we can rewrite (54), (55) and (56) as follows

L
(n)
k = A

(n)
k −B(n)

−k +
1
2

k−1∑
j=1

(aj − b−j)(ak−j − bj−k), k ≥ 1

L
(n)
0 = A

(n)
0 −B(n)

0 ,(79)

L
(n)
−k = A

(n)
−k −B

(n)
k − 1

2

k−1∑
j=1

(a−j − bj)(aj−k − bk−j), k ≥ 1.

As shown in [48] (see Lecture 2) the operators A(n)
k , k ∈ Z, provide a representation

of the Virasoro algebra in B with central charge c = 1, that is

(80) [A(n)
k , A

(n)
l ] = (k − l)A(n)

k+l + δk,−l
k3 − k

12
,

for k, l ∈ Z. Similarly, the operators B(n)
k satisfy the commutation relations

(81) [B(n)
k , B

(n)
l ] = (k − l)B(n)

k+l + δk,−l
k3 − k

12
,

for k, l ∈ Z. Furthermore we have for k, l ∈ Z

[ak, A
(n)
l ] = kak+l , [bk, B

(n)
l ] = kbk+l,

[ak, B
(n)
l ] = 0 , [bk, A

(n)
l ] = 0.(82)
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Let us now establish the commutation relations (71). We give the proof for k, l ≥ 0,
the other cases being similar. As [A(n)

i , B
(n)
j ] = 0, i, j ∈ Z, we have using (75), (80),

(81) and (82)

[L(n)
k , L

(n)
l ] =(k − l)

(
A

(n)
k+l −B

(n)
−k−l

)
− 1

2

l−1∑
j=1

j(aj+k − b−j−k)(al−j − bj−l)

− 1
2

l−1∑
j=1

(l − j)(aj − b−j)(ak+l−j − bj−k−l)

+
1
2

k−1∑
j=1

j(aj+l − b−j−l)(ak−j − bj−k)

+
1
2

k−1∑
j=1

(k − j)(aj − b−j)(ak+l−j − bj−k−l).

Relabeling the indices in the sums, we have

[L(n)
k , L

(n)
l ] =(k − l)

(
A

(n)
k+l −B

(n)
−k−l

)
− 1

2

k+l−1∑
j=k+1

(j − k)(aj − b−j)(ak+l−j − bj−k−l)

− 1
2

l−1∑
j=1

(l − j)(aj − b−j)(ak+l−j − bj−k−l)

+
1
2

k+l−1∑
j=l+1

(j − l)(aj − b−j)(ak+l−j − bj−k−l)

+
1
2

k−1∑
j=1

(k − j)(aj − b−j)(ak+l−j − bj−k−l)

=(k − l)L(n)
k+l.

This concludes the proof. �

5. The circular unitary ensemble and the Painlevé VI equation

In this section, using the method of [6], we establish the following result.

Theorem 1.9 (Tracy-Widom [66], Haine-Vanderstichelen [43]). The function R(θ)
defined in (37) satisfies (38).
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PROOF. Remembering the definition of L(n)
0 in (55), the Virasoro constraint in

(69) for k = 0, evaluated along the locus t = s = 0, gives

(83)
∂ log τn(t, s; η, θ)

∂θ

∣∣∣∣∣
t=s=0

= −∂ log τn(t, s; η, θ)
∂η

∣∣∣∣∣
t=s=0

,

which is a reformulation of the fact that the gap probability τn(0, 0; η, θ) only depends
on the length θ − η.

Define the operator D = ∂
∂θ −

∂
∂η and put for a fixed n

f(t, s; η, θ) = log τn(t, s; η, θ),

g(η, θ) = −1
2
D log τn(t, s; η, θ)

∣∣
t=s=0

.(84)

Notice that for k ≥ 0

Dk log τn(t, s; η, θ)
∣∣
t=s=0
η=−θ

=
dk

dθk
log τn(t, s;−θ, θ)

∣∣
t=s=0

.

Clearly, from the definition of R(θ) in (37), we have

R(θ) = g(−θ, θ) = −1
2

d
dθ

log τn(t, s;−θ, θ)
∣∣
t=s=0

.

Remembering the definition of L(n)
k in (54), the constraints in (69) for k = 1, 2,

evaluated at s = (s1, s2, s3, . . . ) = (0, 0, 0, . . . ), can be written

B1(η, θ)f
∣∣∣
s=0

=
∑
j≥1

jtj
∂f

∂tj+1

∣∣∣∣∣
s=0

+ n
∂f

∂t1

∣∣∣∣∣
s=0

,(85)

B2(η, θ)f
∣∣∣
s=0

=
∑
j≥1

jtj
∂f

∂tj+2

∣∣∣∣∣
s=0

+
∂2f

∂t21

∣∣∣∣∣
s=0

+
( ∂f
∂t1

)2
∣∣∣∣∣
s=0

+ n
∂f

∂t2

∣∣∣∣∣
s=0

.(86)

Using (83) and the definition of g(η, θ) (84), the constraint (85) evaluated along the
locus t = s = 0 gives

(87)
∂f

∂t1

∣∣∣∣∣
t=s=0

=
1
in

(eiη − eiθ)g(η, θ).

Consequently, along the locus η = −θ, we have

∂f

∂t1

∣∣∣∣∣t=s=0
η=−θ

= − 2
n

sin(θ)R(θ).

We then proceed by induction. We call
∂nf

∂tj1∂tj2 . . . ∂tjn
,
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a t derivative of weighted degree |j| = j1 + j2 + · · · + jn. Then, for k ≥ 1, we
compute the system formed by

(88)

{
all t-derivatives of weighted degree k of (85),

all t-derivatives of weighted degree k − 1 of (86),

evaluated at t = s = 0. For instance, for k = 1, (88) reduces to

B1(η, θ)
( ∂f
∂t1

∣∣∣
t=s=0

)
=
∂f

∂t2

∣∣∣∣∣
t=s=0

+ n
∂2f

∂t21

∣∣∣∣∣
t=s=0

,

B2(η, θ)f
∣∣∣
t=s=0

=
∂2f

∂t21

∣∣∣∣∣
t=s=0

+ n
∂f

∂t2

∣∣∣∣∣
t=s=0

+

(
∂f

∂t1

∣∣∣∣∣
t=s=0

)2

.

After substitution of (87), this system of equations can be solved for ∂2f
∂t21

∣∣∣
t=s=0

and
∂f
∂t2

∣∣∣
t=s=0

in terms of η, θ, g(η, θ) and Dg(η, θ), whenever n 6= 1. Consequently, on

the locus η = −θ, the partials ∂2f
∂t21

∣∣∣t=s=0
η=−θ

and ∂f
∂t2

∣∣∣t=s=0
η=−θ

can be expressed in terms of

θ, R(θ) and R′(θ).

For general k ≥ 1, suppose all the t-derivatives of f of weighted degree k, evaluated
at t = s = 0, have been expressed in terms of η, θ and g(η, θ), . . . ,Dk−1g(η, θ),
whenever n 6= 1, . . . , k − 1. Then (88) is a system of linear equations where the
unknowns are all the t-derivatives of f of weighted degree k+ 1, evaluated at t = s =
0, and the coefficients can be expressed in terms of η, θ and g(η, θ), . . . ,Dk−1g(η, θ).
This is a system of p(k)+p(k−1) linear equations in p(k+1) unknowns, where p(k)
is the number of partitions of the natural number k. As p(k+1) ≤ p(k)+p(k−1), this
system can be solved and all the t-derivatives of f of weighted degree k+1, evaluated
at t = s = 0 can be expressed in terms of η, θ, and g(η, θ), . . . , Dkg(η, θ), whenever
n 6= k. Consequently, on the locus η = −θ, the t-derivatives of f of weighted degree
k + 1, evaluated at t = s = 0 and on the locus η = −θ, can be expressed in terms of
θ, R(θ), R′(θ), . . . , R(k)(θ).

Since the KP equation (41) contains t-derivatives of f of weighted degree less or equal
to 4, by performing the above scheme up to k = 3, we can express all these derivatives,
evaluated at t = s = 0 and η = −θ, in terms of θ, R(θ) and its first three derivatives,
whenever n ≥ 4. This gives us a third order differential equation for R(θ):

0 = 4R(θ)2 − 2
(
n2 + (1− n2) cos 2θ

)
R′(θ) + 8 sin 2θ R(θ)R′(θ)

− 2 sin 2θ R′′(θ) + sin2 θ
(
12R′(θ)2 − R′′′(θ)

)
.

We refer to Appendix B for a detailed discussion of the above method. Multiplying
the left-hand and the right-hand side of this equation with 1

4 sin θ
(

2 cos θ R′(θ) +
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sin θ R′′(θ)
)

, we obtain

(89) 0 =
d
dθ

(
sin2 θ R′(θ)W (θ)

)
,

with

W (θ) = R(θ)2 + 2 sin θ cos θ R(θ)R′(θ) + sin2 θ R′(θ)2

− 1
2

(1
4

sin2 θ
R′′(θ)2

R′(θ)
+sin θ cos θ R′′(θ)+

(
cos2 θ+n2 sin2 θ

)
R′(θ)

)
.

Equation (89) implies that W (θ) = 0, which is the equation (38), obtained by Tracy
and Widom in [66]. This concludes the proof of Theorem 3.1. �

Remark 1.10. In the above proof, we had to assume that n ≥ 4, where n is the size of
the random unitary matrices. For n = 1, 2, 3, the function R(θ) also satisfies (38), as
can be shown by direct computation, using the representation (39) of the probability
τn(η, θ) as a Toeplitz determinant. It would be interesting to relate the proof with the
original derivation in [66]. For the Gaussian ensembles, the relation between the two
methods has been studied in [59].

Finally, similarly to the case of the Jacobi polynomial ensemble (see [42]), we observe
that R(θ) in (37) is linked to the Painlevé VI equation. Precisely, we show that it is
the restriction to the unit circle of a solution of (a special case of) the Painlevé VI
equation, defined for z ∈ C.

Corollary 1.11 (Haine-Vanderstichelen [43]). Put R(θ) = r(e−2iθ). Then, the func-
tion

σ(z) = −i(z − 1)r(z)− n2

4
z

satisfies the Okamoto-Jimbo-Miwa form of the Painlevé VI equation

(90) [z(z − 1)σ′′]2 + 4z(z − 1)(σ′)3 + 4σ′σ2 + 4(1− 2z)σ(σ′)2

− c1(σ′)2 + [2(1− 2z)c4 − c2]σ′ + 4c4σ − c3 = 0,

with

(91) c1 = n2, c2 =
3n4

8
, c3 =

n6

16
, c4 = −n

4

16
.

PROOF. From (38), by a straightforward computation, putting R(θ) = r(e−2iθ),
we obtain that r(z) satisfies

(92) [z(z − 1)r′′]2 + 4z2(z − 1)r′r′′ − 4iz(z − 1)2(r′)3 − 4i(z2 − 1)r(r′)2

+ [4z2 − n2(z − 1)2](r′)2 − 4ir2r′ = 0.
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Substituting in (92)

r(z) = i
σ(z) + xz

z − 1
for some constant x, and multiplying the equation by (z − 1)4, we obtain

0 =n2x2(−1 + z)2

+
[
2n2x(−1 + z)2 − 2n2x(−1 + z)2z + 4x2(−1 + z)2z

]
σ′

+
[
n2(−1 + z)2 − 2n2(−1 + z)2z + 8x(−1 + z)2z

+ n2(−1 + z)2z2 − 4x(−1 + z)2z2
]
(σ′)2

− 4(−1 + z)3z(σ′)3 +
(
n2(−1 + z)2 − 4x(−1 + z)2

)
σ2

− 4(−1 + z)2σ′σ2 +
(

2n2x(−1 + z)2 − 4x2(−1 + z)2
)
σ

+
[
2n2(−1 + z)2 − 8x(−1 + z)2 − 2n2(−1 + z)2z

+ 8x(−1 + z)2z
]
σ′σ

+
(
− 4(−1 + z)2 + 8(−1 + z)2z

)
(σ′)2σ

− (−1 + z)2
(
z2 − 2z3 + z4

)
(σ′′)2.

Annihilating the coefficient of σ2, one finds that x = n2/4. With this choice of x, the
new function σ(z) satisfies

0 = [z(z − 1)σ′′]2 + 4z(z − 1)(σ′)3 + 4σ′σ2 + 4(1− 2z)σ(σ′)2

− n2(σ′)2 +
n4

4
(z − 2)σ′ − n4

4
σ − n6

16
.

This is the Painlevé VI equation (90) if we pick c1, c2, c3 and c4 as in (91), which
establishes Corollary 3.3. �



Chapter2
Bi-orthogonal polynomials and
bi-orthogonal Laurent
polynomials on the unit circle

We introduce in this chapter the important concepts of bi-orthogonal polynomials and
bi-orthogonal Laurent polynomials on the unit circle. We have already briefly seen in
the first chapter the usefulness of bi-orthogonal polynomials in the theory of random
matrices and integrable deformations. Bi-orthogonal polynomials and bi-orthogonal
Laurent polynomials on the unit circle will play a crucial role in the following chap-
ters.

1. Orthogonal polynomials on the real line

In this section we recall some well-known facts about orthogonal polynomials on the
real line. We refer to [20] for more details and proofs.

Let C[x] be the complex vector space of polynomials in the variable x ∈ R with
complex coefficients. For n ≥ 0, we define Pn := 〈1, x, . . . , xn〉 the vector subspace
of polynomials with degree less than or equal to n, and P−1 := {0} is the trivial
subspace.

Definition 2.1. A moment functional is a linear functional L

L : C[x]→ C.

51
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The moments are defined by

µn = L [xn].

Due to the linearity of L , it is completely determined by the sequence of moments
{µn}n≥0.

Definition 2.2. The moment functional L is quasi-definite if and only if ∆n 6= 0,
for n ≥ 1, where ∆n := det(µi+j)0≤i,j≤n−1. A sequence of moments {µn}n≥0 is
quasi-definite if the moment functional defined by this sequence is quasi-definite.

Given a moment functional L , we define the concept of orthogonal polynomials with
respect to L .

Definition 2.3. A sequence of polynomials {Pn(x)}n≥0 is orthogonal with respect to
the moment functional L if

(1) Pn(x) ∈ Pn \ Pn−1;
(2) L [Pm(x)Pn(x)] = 0 when m 6= n;
(3) L [Pn(x)2] 6= 0.

A necessary and sufficient condition for the existence of a sequence of orthogonal
polynomials with respect to L is that the moment functional L is quasi-definite.

A polynomial of degree n is said to be monic if the coefficient of the term of degree
n is 1. We denote by {pn(x)}n≥0 the sequence of monic orthogonal polynomials
associated to a quasi-definite moment functional L . They are given by the following
Heine-formula

pn(x) =
1

∆n
det


µ0 . . . µn−1 1
µ1 . . . µn x
...

...
...

µn . . . µ2n−1 xn

 .(93)

It is a well-known fact that orthogonal polynomials on the real line satisfy three-term
recurrence relations.

Theorem 2.4. Let L be a quasi-definite moment functional, and {pn(x)}n≥0 a se-
quence of monic orthogonal polynomials with respect to L . Then there exist coeffi-
cients cn and λn 6= 0 such that

pn(x) = (x− cn)pn−1(x)− λnpn−2(x),(94)

with n = 1, 2, . . . and initial conditions p−1(x) = 0 and p0(x) = 1.
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Defining the semi-infinite vector p(x) =
(
pn(x)

)
n≥0

and the semi-infinite matrix

L =


c1 1
λ2 c2 1

λ3 c3 1
. . . . . . . . .

 ,

the recurrence relation (94) takes the simple form

x p(x) = Lp(x).

The knowledge of the three-term recurrence relations is sufficient to reconstruct the
quasi-definite moment functional. This result is known as Favard’s Theorem.

Theorem 2.5 (Favard). Let cn, λn ∈ C for n ≥ 0, with λn 6= 0. Let {pn(x)}n≥0 be
a sequence of monic polynomials satisfying the three-term recurrence relations (94)
with initial conditions p−1(x) = 0 and p0(x) = 1. Then there is a unique quasi-
definite moment functional L such that L [1] = λ1 and {pn(x)}n≥0 is a sequence of
orthogonal polynomials for L .

To summarize this section, we have a correspondence between quasi-definite se-
quences of moments and three-band matrices :

{µn}n≥0 ←→ L =


c1 1
λ2 c2 1

λ3 c3 1
. . . . . . . . .

 .

2. Bi-orhogonal polynomials

We give in this section a short introduction to bi-orthogonal polynomials. We refer
to [16, 34, 56] for more details.

2.1. Definitions and existence theorem. Let C[z] be the complex vector space
of polynomials in the variable z with complex coefficients. For n ≥ 0, we define
Pn := 〈1, z, . . . , zn〉 the vector subspace of polynomials with degree less than or
equal to n, and P−1 := {0} is the trivial subspace.

Definition 2.6. A bi-moment functional is a bilinear functional L

L : C[z]× C[z]→ C.

The bi-moments are defined by

µij = L[zi, zj ].
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A bi-moment functional is uniquely determined by its bi-moments {µij}i,j≥0. We
define the semi-infinite bi-moment matrix

m∞ =
(
µm,n

)
m,n≥0

.(95)

Definition 2.7. The bi-moment functional L is quasi-definite if and only if ∆n 6= 0,
for n ≥ 1, where ∆n := det(µij)0≤i,j≤n−1. The sequence of bi-moments {µij}i,j≥0

(resp. the bi-moment matrix m∞) is quasi-definite if the bi-moment functional defined
by this sequence (resp. this bi-moment matrix) is quasi-definite.

Given a bi-moment functional, we define the concept of bi-orthogonal polynomials.

Definition 2.8. A sequence of polynomials {P (1)
n (z), P (2)

n (z)}n≥0 is bi-orthogonal
with respect to the bi-moment functional L if

(1) P (1)
n (z), P (2)

n (z) ∈ Pn \ Pn−1;
(2) L[P (1)

m (z), P (2)
n (z)] = 0 when m 6= n;

(3) L[P (1)
n (z), P (2)

n (z)] 6= 0.

For a given bi-moment functional, bi-orthogonal polynomials are uniquely deter-
mined, if they exist, if one fixes the leading coefficient of each polynomial. From now
on, we will impose the leading coefficients to be equal to 1. The corresponding se-
quence of monic bi-orthogonal polynomials will be denoted by{p(1)

n (z), p(2)
n (z)}n≥0,

and we have

L[p(1)
m (z), p(2)

n (z)] = hnδmn, hn 6= 0, ∀n ∈ N.(96)

The following theorem is the analogue of a classical result for orthogonal polynomials.
It guarantees the existence of a sequence of bi-orthogonal polynomials given a bi-
moment functional L, if and only if L is quasi-definite.

Theorem 2.9 (Bertola [16]). Consider a bi-moment functional L. There exist a se-
quence of bi-orthogonal polynomials with respect toL if and only ifL is quasi-definite.
Each polynomial in this sequence is uniquely determined up to an arbitrary non-zero
factor. The monic sequence {p(1)

n (z), p(2)
n (z)}n≥0 is given by the formulae

p(1)
n (z) =

1
∆n

det


µ0,0 . . . µ0,n−1 1
µ1,0 . . . µ1,n−1 z

...
...

...
µn,0 . . . µn,n−1 zn

 ,(97)

p(2)
n (z) =

1
∆n

det


µ0,0 µ0,1 . . . µ0,n

...
...

...
µn−1,0 µn−1,1 . . . µn−1,n

1 z . . . zn

 .(98)
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We define the vectors p(1)(z) =
(
p

(1)
n (z)

)
n≥0

and p(2)(z) =
(
p

(2)
n (z)

)
n≥0

. Defining
the vector

χ(z) = (1, z, z2, . . . )T ,

these two vectors can be written

p(1)(z) = S1χ(z), p(2)(z) = h(ST2 )−1χ(z),

where S1 is a lower triangular matrix with all its diagonal elements equal to 1, S2 is
an upper triangular matrix such that the diagonal entries of h−1S2 are equal to 1, and
h = diag(hn)0≤n≤∞ with hn given in (96). It is easy to prove that the existence of a
sequence of bi-orthogonal polynomials with respect to the bi-moment functional L, is
equivalent to the factorization of the bi-moment matrix m∞

m∞ = S−1
1 S2,

with S1, S2 as above.

Both sequences {p(1)
n (z)} and {p(2)

n (z)} form a basis of C[z]. We have the following
theorem.

Theorem 2.10. Let L be a quasi-definite bi-moment functional and
{p(1)
n (z), p(2)

n (z)}n≥0 a sequence of monic bi-orthogonal polynomials with re-
spect to L. Then for every polynomial Q(z) of degree n,

Q(z) =
n∑
k=0

c
(1)
k p

(1)
k (z), Q(z) =

n∑
k=0

c
(2)
k p

(2)
k (z),

where

c
(1)
k =

L[Q(z), p(2)
k (z)]

L[p(1)
k (z), p(2)

k (z)]
, c

(2)
k =

L[p(1)
k (z), Q(z)]

L[p(1)
k (z), p(2)

k (z)]
,

for 0 ≤ k ≤ n.

2.2. A Favard-like theorem for bi-orthogonal polynomials. Let
{p(1)
n (z), p(2)

n (z)}n≥0 be a sequence of monic bi-orthogonal polynomials for a
quasi-definite bi-moment functional L. In general these polynomials do not satisfy
three-term recurrence relations, as for classical orthogonal polynomials. They
however satisfy recurrence relations which are not given by finite band matrices :

zp(1)
n (z) =

n+1∑
i=0

ainp
(1)
n+1−i(z), zp(2)

n (z) =
n+1∑
i=0

binp
(2)
n+1−i(z),

where aij , bij ∈ C and an0, bn0 6= 0 for all n ≥ 0. Those relations can be written in
the following simpler form

zp(1)(z) = L1p
(1)(z), zp(2)(z) = LT2 p

(2)(z),(99)
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where p(1)(z) and p(2)(z) are the vectors
(
p

(1)
n (z)

)
n≥0

and
(
p

(2)
n (z)

)
n≥0

, and

L1 =
∞∑
l=0

diag(aln)n∈NΛ1−l =


a1,0 a0,0

a2,1 a1,1 a0,1 O

a3,2 a2,2 a1,2 a0,2

...
...

...
...

. . .

 ,(100)

LT2 =
∞∑
l=0

diag(bln)n∈NΛ1−l =


b1,0 b0,0
b2,1 b1,1 b0,1 O

b3,2 b2,2 b1,2 b0,2
...

...
...

...
. . .

 ,(101)

with Λ = (δi,j−1)i,j≥0 and a0n, b0n = 1 for all n ≥ 0. Favard’s theorem for or-
thogonal polynomials on the real line can be extended to the case of bi-orthogonal
polynomials. The proof can be found in [16].

Theorem 2.11 (Bertola [16]). Let L1 and LT2 be semi-infinite matrices as in (100)
and (101), where a0n, b0n = 1 for all n ≥ 0, and let {p(1)

n (z)}n≥0 and {p(2)
n (z)}n≥0

be sequences of monic polynomials defined by the recurrence relations (99), with
initial conditions p(1)

0 (z) = 1 and p
(2)
0 (z) = 1. Let {hn}n≥0 be a sequence of

complex numbers such that hn 6= 0 for all n ≥ 0. Then there exists a unique
quasi-definite bi-moment functional L for which the sequence of monic polynomials
{p(1)
n (z), p(2)

n (z)}n≥0 is bi-orthogonal, and L[p(1)
n , p

(2)
n ] = hn.

2.3. A Toeplitz bi-moment functional. Let L be a bi-moment functional.

Definition 2.12. The bi-moment functional L is a Toeplitz bi-moment functional if it
satisfies the Toeplitz condition

L[zn+1, zm+1] = L[zn, zm],

for all m,n ≥ 0. The sequence of bi-moments {µij}i,j≥0 is a sequence of Toeplitz bi-
moments if the bi-moment functional defined by this sequence is a Toeplitz bi-moment
functional.

A typical example of a Toeplitz bi-moment functional to have in mind is

L[f, g] =
∮
S1
f(z)g(z−1)ρ(z)

dz

2πiz
,

for some weight function ρ(z).

We suppose from now on that L is a quasi-definite Toeplitz bi-moment functional.
Let {p(1)

n (z), p(2)
n (z)}n≥0 be the sequence of monic bi-orthogonal polynomials with

respect to L. The bi-orthogonality conditions give

L[p(1)
m (z), p(2)

n (z)] = hnδmn, hn 6= 0, ∀n ∈ N.
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We define

xn = p(1)
n (0), yn = p(2)

n (0).

In this section we prove that the sequence of monic bi-orthogonal polynomials
{p(1)
n (z), p(2)

n (z)}n≥0 satisfy two type of recurrence relations. First we prove that
they satisfy Szegö-type recurrence relations, similar to the recursion relations ob-
tained by Szegö for orthogonal polynomials on the unit circle. Secondly, they satisfy
classical infinite band recurrence relations, as in the previous section. However, the
semi-infinite matrices describing these recurrence relations have a particular form.
A Favard-type Theorem exists for monic-bi-orthogonal polynomials associated with
Toeplitz bi-moment functionals.

We start with the Szegö-type recurrence relations. We first need a small lemma.

Lemma 2.13. Let P (z) and Q(z) be polynomials of degree n. If

L[P, zj ] = L[Q, zj ] = 0, ∀1 ≤ j ≤ n,

then Q(z) = cP (z), with c ∈ C.

PROOF. Let P (z) be a polynomial of degree n such that L[P, zj ] = 0, ∀1 ≤ j ≤
n. Then P (z) is a linear combination of the polynomials p(1)

0 (z), . . . , p(1)
n (z)

P (z) =
n∑
j=0

ajp
(1)
j (z),

and the coefficients aj satisfy

a1 = −a0
L[p(1)

0 , z]

L[p(1)
1 , z]

,

a2 = a0
L[p(1)

0 , z]L[p(1)
1 , z2]− L[p(1)

0 , z2]L[p(1)
1 , z]

L[p(1)
1 , z]L[p(1)

2 , z2]
,

etc.

All the coefficients aj , 1 ≤ j ≤ n, are multiples of a0 and are uniquely determined by
a0. It follows that if Q(z) is another polynomial of degree n such that L[Q, zj ] = 0,
∀1 ≤ j ≤ n, then Q(z) = cP (z), with c ∈ C. �

We then have a Szegö-type lemma for the monic bi-orthogonal polynomials.

Lemma 2.14 (Hisakado [45]). We have for n ≥ 0

p
(1)
n+1(z)− zp(1)

n (z) = xn+1z
np(2)
n (z−1),

p
(2)
n+1(z)− zp(2)

n (z) = yn+1z
np(1)
n (z−1),

where xn = p
(1)
n (0) and yn = p

(2)
n (0).
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PROOF. The statement is trivial for n = 0. Suppose n > 0. For 1 ≤ j ≤ n we
have on the one hand

L
[
p

(1)
n+1(z)− zp(1)

n (z), zj
]

= L
[
p

(1)
n+1(z), zj

]
− L

[
p(1)
n (z), zj−1

]
= 0− 0 = 0,

and on the other hand

L
[
znp(2)

n (z−1), zj
]

= L
[
zn−j , p(2)

n (z)
]

= 0.

As znp(2)
n (z−1) and p(1)

n+1(z)− zp(1)
n (z) are both polynomials of degree n, the above

equations imply by lemma 2.13 that

p
(1)
n+1(z)− zp(1)

n (z) = cznp(2)
n (z−1),

for some c ∈ C. We have c = xn+1 as

p
(1)
n+1(z)− zp(1)

n (z)
∣∣∣
z=0

= xn+1, and znp(2)
n (z−1)

∣∣∣
z=0

= 1.

This proves the first equation of the statement. The second equation is proven in a
similar way. �

We have the following consequence of Hisakado’s lemma.

Lemma 2.15. We have for all n ≥ 0

xn+1yn+1 = 1− hn+1

hn
,(102)

where hn = L[p(1)
n , p

(2)
n ].

PROOF. On the one hand we have

L
[
p

(1)
n+1(z)− zp(1)

n (z), p(2)
n+1(z)− zp(2)

n (z)
]

= hn+1 − L
[
p

(1)
n+1(z), zp(2)

n (z)
]
− L

[
zp(1)
n (z), p(2)

n+1(z)
]

+ hn

= hn+1 − L
[
p

(1)
n+1(z), zn+1

]
− L

[
zn+1, p

(2)
n+1

]
+ hn

= hn+1 − hn+1 − hn+1 + hn

= hn − hn+1.

On the other hand we have using Hisakado’s lemma

L
[
p

(1)
n+1(z)− zp(1)

n (z), p(2)
n+1 − zp(2)

n (z)
]

= L
[
xn+1z

np(2)
n (z−1), yn+1z

np(1)
n (z−1)

]
= xn+1yn+1L

[
p(1)
n (z), p(2)

n (z)
]

= hnxn+1yn+1.

Comparing both identities gives the statement. �
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We now turn to the classical infinite-band recurrence relations. It is proven
in [9, 12] that the recurrence relations for the monic bi-orthogonal polynomials
{p(1)
n (z), p(2)

n (z)}n≥0 take the particular form

zp(1)(z) = l1p
(1)(z),(103)

zp(2)(z) = lT2 p
(2)(z),(104)

with

l1 =


−x1y0 1
−h1
h0
x2y0 −x2y1 1 O

−h2
h0
x3y0 −h2

h1
x3y1 −x3y2 1

...
...

...
...

. . .

 ,(105)

and

lT2 =


−x0y1 1
−h1
h0
x0y2 −x1y2 1 O

−h2
h0
x0y3 −h2

h1
x1y3 −x2y3 1

...
...

...
...

. . .

 .(106)

We have the following Favard-like theorem. The proof can be found in the appendix
C.

Theorem 2.16. Let {hn;xn, yn}n≥0 be sequences of complex numbers such that
x0 = y0 = 1 and hn

hn−1
= 1 − xnyn 6= 0 for all n ≥ 1, and let {p(1)

n (z)}n≥0

and {p(2)
n (z)}n≥0 be sequences of monic polynomials defined by the recurrence re-

lations (103) and (104), with initial conditions p(1)
0 (z) = 1 and p

(2)
0 (z) = 1.

Then there exists a unique quasi-definite Toeplitz bi-moment functional L such that
{p(1)
n (z), p(2)

n (z)}n≥0 is a sequence of bi-orthogonal polynomials with respect to L
and

L[p(1)
n (z), p(2)

m (z)] = hnδn,m.

To summarize this section, we have a correspondence between sequences of quasi-
definite Toeplitz moments, couples of semi-infinite matrices (l1, l2) as in (105) and
(106) together with a non-zero constant h0, and sequences {hn;xn, yn}n≥0 such that
x0 = y0 = 1 and hn

hn−1
= 1− xnyn 6= 0 for all n ≥ 1:

{µi,j}i,j≥0 ←→ {(l1, l2);h0} ←→ {hn;xn, yn}n≥0.
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3. Bi-orhogonal Laurent polynomials

A Laurent polynomial, or simply a L-polynomial, in one variable z over a field F is a
linear combination of positive and negative powers of z with coefficients in F :

n∑
k=m

ckz
k, ck ∈ F, m, n ∈ Z.

Laurent polynomials in the variable z form a ring denoted F[z, z−1].

In [19], Cantero-Moral-Velázquez consider the ring C[z, z−1] of Laurent polynomials
over C, with z on the unit circle

S1 = {z ∈ C| |z| = 1}.

For a sesquilinear Hermitian1 functional

〈 · | · 〉 : C[z, z−1]× C[z, z−1]→ C,

satisfying the Toeplitz condition

〈zn|zm〉 =
〈
zn−m|1

〉
,

they define the concept of sequences of orthogonal Laurent polynomials on S1 with re-
spect to the functional 〈 · | · 〉 (in fact they distinguish between two types of sequences
of orthogonal Laurent polynomials : right and left ones). They prove that there is
a close relation between sequences of left orthogonal L-polynomials, sequences of
right orthogonal L-polynomials and sequences of orthogonal polynomials on S1. The
main result in [19] is the existence of five-term recurrence relations for the sequences
of left and right orthogonal L-polynomials on S1. The main ingredient in the proof
of these recurrence relations is the Toeplitz condition satisfied by the functional 〈 · | · 〉.

In this section, we translate the results obtained by Cantero-Moral-Velazquez to the
case of bi-orthogonal L-polynomials on S1 with respect to a quasi-definite bilinear
Toeplitz bi-moment functional, as defined in the previous section. All their proofs are
easily adapted to this case.

1A sesquilinear Hermitian functional satisfies

(1) ∀f, g, h ∈ C[z, z−1], ∀α, β ∈ C : 〈f |αg + βh〉 = α 〈f |g〉+ β 〈f |h〉;
(2) ∀f, g ∈ C[z, z−1] : 〈f, g〉 = 〈g, f〉.
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3.1. Definitions - First properties. Let S1 = {z ∈ C | |z| = 1} be the unit
circle in the complex plane, and C[z, z−1] the ring of L-polynomials over C. A bi-
moment functional on C[z, z−1] is a bilinear form on C[z, z−1]× C[z, z−1]

L : C[z, z−1]× C[z, z−1]→ C, (f, g) 7→ L[f, g].

If a bi-moment functional L satisfies the Toeplitz condition

L[zn, zm] = L[zn−m, 1], ∀n,m ∈ Z,(107)

we shall simply call it a Toeplitz bi-moment functional. The bi-moments associated to
L are

µmn = L[zm, zn], ∀m,n ∈ Z.

Associated to L we also define the semi-infinite bi-moment matrix

m̃∞ =


µ0,0 µ0,1 µ0,−1 . . .

µ1,0 µ1,1 µ1,−1 . . .

µ−1,0 µ−1,1 µ−1,−1 . . .
...

...
...

. . .

 .(108)

A bi-moment functional is completely determined by the sequence of bi-moments
{µij}i,j∈Z. We shall say that a sequence of bi-moments {µij}i,j∈Z is a Toeplitz
sequence of bi-moments if the bi-moment functional defined by this sequence is a
Toeplitz bi-moment functional.

We define the vector subspaces

Lm,n :=
〈
zm, zm+1, . . . , zn−1, zn

〉
, ∀m,n ∈ Z, m ≤ n,

and for n ≥ 0

L+
2n := L−n,n, L+

2n+1 := L−n,n+1,

L−2n := L−n,n, L−2n+1 := L−n−1,n,

with the convention L+
−1 = L−−1 = {0}.

Given a Toeplitz bi-moment functional L, a Gram-Schmidt bi-orthogonalization pro-
cess applied to the sequence {1, z, z−1, z2, z−2, . . . } gives a sequence of right bi-
orthogonal Laurent polynomials in the sense of the following definition.

Definition 2.17 (Right bi-orthogonal L-polynomials). A sequence {fn, gn}n≥0 is a
sequence of right bi-othogonal L-polynomials with respect to L if

(1) fn ∈ L+
n \ L+

n−1;
(2) gn ∈ L+

n \ L+
n−1;

(3) L[fn, gm] = hnδn,m, with hn 6= 0.
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One can replace condition (3) in the definition by

(3’)




L[f2n, z

k] = 0, if −n+ 1 ≤ k ≤ n,
L[f2n+1, z

k] = 0, if −n ≤ k ≤ n,
L[f2n, z

−n] 6= 0,
L[f2n+1, z

n+1] 6= 0,
L[zk, g2n] = 0, if −n+ 1 ≤ k ≤ n,
L[zk, g2n+1] = 0, if −n ≤ k ≤ n,
L[z−n, g2n] 6= 0,
L[zn+1, g2n+1] 6= 0.

We will say that the right bi-orthogonal L-polynomials {fn, gn}n≥0 are monic if

f2n(z)− z−n and g2n(z)− z−n ∈
〈
z−n+1, z−n+2, . . . , zn

〉
,

f2n−1(z)− zn and g2n−1(z)− zn ∈
〈
z−n+1, z−n+2, . . . , zn−1

〉
.

Similarly, one can apply a Gram-Schmidt bi-orthogonalization process to the sequence
{1, z−1, z, z−2, z2, . . . }. One gets a sequence of left bi-orthogonal Laurent polyno-
mials in the sense of the following definition.

Definition 2.18 (Left bi-orthogonal L-polynomials). A sequence {fn, gn}n≥0 is a
sequence of left bi-othogonal L-polynomials with respect to L if

(1) fn ∈ L−n \ L−n−1;
(2) gn ∈ L−n \ L−n−1;
(3) L[fn, gm] = hnδn,m, with hn 6= 0.

One can replace condition (3) in the definition by

(3’)




L[f2n, z

k] = 0, if −n ≤ k ≤ n− 1,
L[f2n+1, z

k] = 0, if −n ≤ k ≤ n,
L[f2n, z

n] 6= 0,
L[f2n+1, z

−n−1] 6= 0,
L[zk, g2n] = 0, if −n ≤ k ≤ n− 1,
L[zk, g2n+1] = 0, if −n ≤ k ≤ n,
L[zn, g2n] 6= 0,
L[z−n−1, g2n+1] 6= 0.

We will say that the left bi-orthogonal L-polynomials {fn, gn}n≥0 are monic if

f2n(z)− zn and g2n(z)− zn ∈
〈
z−n, z−n+1, . . . , zn−1

〉
,

f2n−1(z)− z−n and g2n−1(z)− z−n ∈
〈
z−n+1, z−n+2, . . . , zn−1

〉
.

For a Toeplitz bi-moment functional L, the existence of a sequence of right or left
bi-orthogonal L-polynomials is guaranteed only under certain necessary and suffi-
cient conditions on L, as we will see. But we first need to establish the link that
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exists between bi-orthogonal Laurent polynomials and bi-orthogonal polynomials for
a Toeplitz bi-moment functional. We start by proving that sequences of right and left
bi-orthonal L-polynomials for a given Toeplitz bi-moment functional L are closely
related to each other.

Theorem 2.19. Let f∗n(z) = fn(z−1) and g∗n(z) = gn(z−1). Then {fn, gn}n≥0

is a sequence of right bi-orthogonal L-polynomials with respect to L if and only if
{g∗n, f∗n}n≥0 is a sequence of left bi-orthogonal L-polynomials with respect to L.

PROOF. We have f∗n, g
∗
n ∈ L−n \ L−n−1 if and only if fn, gn ∈ L+

n \ L+
n−1. The

result then follows from

L
[
g∗m(z), f∗n(z)

]
= L

[
gm(z−1), fn(z−1)

]
= L

[
fn(z), gm(z)

]
.

�

Sequences of right or left bi-orthogonal L-polynomials with respect to L are also very
closely related to sequences of bi-orthogonal polynomials forL, in the sense of section
2. This is proven in the next two theorems.

Theorem 2.20. Let {fn, gn}n≥0 be a sequence of L-polynomials and
p

(1)
2n (z) = zng2n(z−1),
p

(1)
2n+1(z) = znf2n+1(z),
p

(2)
2n (z) = znf2n(z−1),
p

(2)
2n+1(z) = zng2n+1(z),

(109)

The sequence {fn, gn}n≥0 is a sequence of right bi-orthogonal L-polynomials with
respect to L if and only if {p(1)

n , p
(2)
n }n≥0 is a sequence of bi-orthogonal polynomials

with respect to L. Furthermore we have

L[fn, gn] = L[p(1)
n , p(2)

n ].

PROOF. For {p(1)
n , p

(2)
n }n≥0 defined as in (109) we have

p
(1)
2n ∈ P2n \ P2n−1 ⇔ g2n ∈ L+

2n \ L+
2n−1,

p
(1)
2n+1 ∈ P2n+1 \ P2n ⇔ f2n+1 ∈ L+

2n+1 \ L+
2n,

p
(2)
2n ∈ P2n \ P2n−1 ⇔ f2n ∈ L+

2n \ L+
2n−1,

p
(2)
2n+1 ∈ P2n+1 \ P2n ⇔ g2n+1 ∈ L+

2n+1 \ L+
2n.

Furthermore we have using the Toeplitz condition (107)

L
[
p

(1)
2n+1(z), zk

]
= L

[
znf2n+1(z), zk

]
= L

[
f2n+1(z), zk−n

]
,
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and similarly

L
[
p

(1)
2n (z), zk

]
= L

[
zn−k, g2n(z)

]
,

L
[
zk, p

(2)
2n+1(z)

]
= L

[
zk−n, g2n+1(z)

]
,

L
[
zk, p

(2)
2n (z)

]
= L

[
f2n(z), zn−k

]
.

Consequently we have

L
[
p

(1)
2n+1(z), zk

]
= 0, 0 ≤ k ≤ 2n

⇔ L
[
f2n+1(z), zk

]
= 0, −n ≤ k ≤ n,

L
[
p

(1)
2n (z), zk

]
= 0, 0 ≤ k ≤ 2n− 1

⇔ L
[
zk, g2n(z)

]
= 0, −n + 1 ≤ k ≤ n,

L
[
zk, p

(2)
2n+1(z)

]
= 0, 0 ≤ k ≤ 2n

⇔ L
[
zk, g2n+1(z)

]
= 0, −n ≤ k ≤ n,

L
[
zk, p

(2)
2n (z)

]
= 0, 0 ≤ k ≤ 2n− 1

⇔ L
[
f2n(z), zk

]
= 0, −n + 1 ≤ k ≤ n,

and

L
[
p

(1)
2n+1(z), z2n+1

]
6= 0 ⇔ L

[
f2n+1(z), zn+1

]
6= 0,

L
[
p

(1)
2n (z), z2n

]
6= 0 ⇔ L

[
z−n, g2n(z)

]
6= 0,

L
[
z2n+1, p

(2)
2n+1(z)

]
6= 0 ⇔ L

[
zn+1, g2n+1(z)

]
6= 0,

L
[
z2n, p

(2)
2n (z)

]
6= 0 ⇔ L

[
f2n(z), z−n

]
6= 0.

This concludes the proof. �

We have an analoguous result for left bi-orthogonal L-polynomials.

Theorem 2.21. Let {fn, gn}n≥0 be a sequence of L-polynomials and
p̃

(1)
2n (z) = znf2n(z),
p̃

(1)
2n+1(z) = zng2n+1(z−1),
p̃

(2)
2n (z) = zng2n(z),
p̃

(2)
2n+1(z) = znf2n+1(z−1),

The sequence {fn, gn}n≥0 is a sequence of left bi-orthogonal L-polynomials with
respect to L if and only if {p̃(1)

n , p̃
(2)
n }n≥0 is a sequence of bi-orthogonal polynomials

with respect to L.
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PROOF. This theorem is a consequence of Theorems 2.19 and 2.20. �

We are now able to prove the existence and the unicity of bi-orthogonal L-polynomials
with respect to L. We first introduce the following definition.

Definition 2.22. The Toeplitz bi-moment functional L is quasi-definite if and only if
∆n 6= 0, for n ≥ 1, where ∆n := det(µij)0≤i,j≤n−1. The sequence of Toeplitz bi-
moments {µij}i,j∈Z is quasi-definite if the Toeplitz bi-moment functional defined by
this sequence is quasi-definite.

We have the following theorem.

Theorem 2.23. Consider a Toeplitz bi-moment functional L. There exists a sequence
of right bi-orthogonal L-polynomials with respect to L and a sequence of left bi-
orthogonal L-polynomials with respect to L if and only if L is quasi-definite. Each
L-polynomial in these sequences is uniquely determined up to an arbitrary non-zero
factor.

PROOF. By virtue of Theorems 2.20 and 2.21, the existence of a sequence of right
or left bi-orthogonal L-polynomials with respect to L is equivalent to the existence of
a sequence of bi-orthogonal polynomials with respect to L. The proof then follows
from Theorem 2.9. �

From now on we will always assume that L is a quasi-definite Toeplitz bi-moment
functional on C[z, z−1], and {fn, gn}n≥0 is a sequence of monic right bi-orthogonal
L-polynomials with respect to L. As in Theorem 2.19, we define f∗n(z) = fn(z−1)
and g∗n(z) = gn(z−1). The sequence {g∗n, f∗n}n≥0 is a sequence of monic left bi-
orthogonal L-polynomials for L. We denote by {p(1)

n , p
(2)
n }n≥0 the associated se-

quence of monic bi-orthogonal polynomials with respect to L. We define the vectors
f(z) =

(
fn(z)

)
n≥0

, g(z) =
(
gn(z)

)
n≥0

, f∗(z) = f(z−1) =
(
f∗n(z)

)
n≥0

and
g∗(z) = g(z−1) =

(
g∗n(z)

)
n≥0

. These vectors can be written

f(z) = S̃1 χ̃(z), g(z) = h
(
S̃T2
)−1

χ̃(z),(110)

and

f∗(z) = S̃1 χ̃(z−1), g∗(z) = h
(
S̃T2
)−1

χ̃(z−1),(111)

where the vector χ̃(z) is defined by

χ̃(z) =
(
1, z, z−1, z2, z−2, . . .

)
,

and h = diag(hn)0≤n<∞ with hn = L[fn, gn], S̃1 is a lower triangular matrix with
all the diagonal elements equal to 1, and S̃2 is an upper triangular matrix such that
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h−1 S̃2 has all diagonal elements equal to 1. The bi-moment matrix m̃∞ defined in
(108) can be written in terms of the vector χ̃(z)

m̃∞ =
(
L
[(
χ̃(z)

)
m
,
(
χ̃(z)

)
n

])
0≤m,n<∞

The existence of a sequence of right bi-orthogonal L-polynomials for L is equivalent
to the existence of a factorization of the bi-moment matrix m̃∞ in a product of a lower
triangular matrix and an upper triangular matrix with non-zero diagonal elements.

Proposition 2.24. The bi-moment matrix m̃∞ factorizes in a product of a lower tri-
angular matrix and an upper triangular matrix

m̃∞ = S̃−1
1 S̃2.

PROOF. By bi-orthogonality of the sequence {fn, gn}n≥0, we have

L[fm, gn] = hmδm,n.

This can be written in matrix form

h =
(
L[fm, gn]

)
0≤m,n<∞.

Using the expressions (135) we obtain

h =
(
L
[(
S̃1χ̃(z)

)
m
,
(
h(S̃T2 )−1χ̃(z)

)
n

])
0≤m,n≤∞

= S̃1 m̃∞ S̃−1
2 h.

Consequently we have

m̃∞ = S̃−1
1 S̃2.

�

Corollary 2.25. The bi-moment matrix m̃∞ factorizes in a product of a lower trian-
gular matrix with 1’s on the diagonal, a diagonal matrix, and an upper triangular
matrix with 1’s on the diagonal

m̃∞ = S̃−1
1 h (h−1S̃2).

3.2. Operators Λ̃ and ∆̃. In the previous section we defined the semi-infinite
vector

χ̃(z) =
(
1, z, z−1, z2, z−2, . . .

)
.

We define the semi-infinite matrix Λ̃ by

Λ̃ χ̃(z) = z χ̃(z).(112)
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We have

Λ̃ =



0 1 0 0 0 0 . . .

0 0 0 1 0 0 . . .

1 0 0 0 0 0 . . .

0 0 0 0 0 1 . . .

0 0 1 0 0 0 . . .
...

...
...

...
...

...
. . .


,

and Λ̃−1 = Λ̃T .

Similarly, we define the semi-infinite matrix ∆̃ by

∆̃ χ̃(z) =
d

dz
χ̃(z).(113)

We have

∆̃ = D̃Λ̃T ,

with D̃ = diag(0, 1,−1, 2,−2, . . . ).

The operators Λ̃ and ∆̃ satisfy the following commutation relation

[Λ̃, ∆̃] = 1.

3.3. Five term recurrence relations. We have proven that bi-orthogonal L-
polynomials and bi-orthogonal polynomials with respect to L are closely related. In
section 2 we have seen that bi-orthogonal polynomials satisfy recurrence relations,
but those recurrence relations in general do not have a fixed finite number of terms.
In this section we prove that bi-orthogonal L-polynomials with respect to a quasi-
definite Toeplitz bi-moment functional always satisfy five term recurrence relations.
This result has first been obtained by Cantero-Moral-Velazquez [19] for orthogonal
Laurent polynomials on the unit circle with respect to a sesquilinear Hermitian func-
tional 〈 · | · 〉 satisfying the Toeplitz condition. The essential ingredient in their proof
is the Toeplitz condition. Consequently, it can immediately be translated to the case
of bi-orthogonal L-polynomials with respect to a bilinear functional.
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Theorem 2.26. Let {fn, gn}n≥0 be a sequence of monic right bi-orthogononal L-
polynomials with respect to L. Then for n ≥ 0 there exist five term recurrence rela-
tions

zfn(z) =
n+2∑
i=n−2

αn,ifi(z), zgn(z) =
n+2∑
i=n−2

βn,igi(z),

zf∗n(z) =
n+2∑
i=n−2

α∗n,if
∗
i (z), zg∗n(z) =

n+2∑
i=n−2

β∗n,ig
∗
i (z),

where

α∗n,i =
hn
hi
βi,n, β∗n,i =

hn
hi
αi,n,

with hn = L[fn, gn]. Moreover, we have

α2n−1,2n−3 = 0, α2n,2n+2 = 0,

β2n−1,2n−3 = 0, β2n,2n+2 = 0.

PROOF. As fn ∈ L+
n \ L+

n−1, we have zfn(z) ∈ L+
n+2. This implies that zfn

admits an expansion in terms of f0, . . . , fn+2

zfn(z) =
n+2∑
i=0

αn,ifi(z),

with αn,i ∈ C, 0 ≤ i ≤ n + 2. Consequently, by bi-orthogonality of the sequence
{fn, gn}n≥0 we have

L[zfn, gm] =
n+2∑
i=0

hiαn,iδi,m.

But we also have

L[zfn, zgk] = L[fn, gk] = 0, 0 ≤ k ≤ n− 1,

and 〈g0, . . . , gn−3〉 ⊂ 〈zg0, . . . , zgn−1〉. It follows that

L[zfn, gk] = 0, 0 ≤ k ≤ n− 3.

Consequently we have αn,i = 0 if i < n− 2, and thus

zfn(z) =
n+2∑
i=n−2

αn,ifi(z).

We prove that α2n,2n+2 = α2n−1,2n−3 = 0. We first prove that α2n,2n+2 = 0.
Indeed, we have zf2n(z) ∈

〈
z1−n, . . . , z1+n

〉
. Consequently, using condition (3’)

in the definition of right biorthogonal L-polynomials, we have L[zf2n, g2n+2] = 0
and thus α2n,2n+2 = 0. We also have α2n−1,2n−3 = 0. Indeed, we have
L[zf2n−1, g2n−3] = L[f2n−1, z

−1g2n−3], and z−1g2n−3(z) ∈
〈
z1−n, . . . , zn−2

〉
.

From condition (3’) in the definition of right biorthogonal L-polynomials it follows
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that L[f2n−1, z
−1g2n−3] = 0 and thus L[zf2n−1, g2n−3] = 0. A similar argument

gives β2n,2n+2 = β2n−1,2n−3 = 0. The proof of the other recurrence relations is
similar.

The coefficients in the recurrence relations satisfy

αn,i =
L[zfn, gi]
L[fi, gi]

, βn,i =
L[fi, zgn]
L[fi, gi]

,

α∗n,i =
L[g∗i , zf

∗
n]

L[g∗i , f
∗
i ]
, β∗n,i =

L[zg∗n, f
∗
i ]

L[g∗i , f
∗
i ]
.

It follows from the definition of {g∗n, f∗n}n≥0 that

α∗n,i =
L[g∗i , zf

∗
n]

L[g∗i , f
∗
i ]

=
L[fn, zgi]
L[fi, gi]

=
L[fn, zgi]
L[fn, gn]

L[fn, gn]
L[fi, gi]

= βi,n
hn
hi
.

Similarly we have

β∗n,i =
L[zg∗n, f

∗
i ]

L[g∗i , f
∗
i ]

=
L[zfi, gn]
L[fi, gi]

=
L[zfi, gn]
L[fn, gn]

L[fn, gn]
L[fi, gi]

= αi,n
hn
hi
.

This concludes the proof. �

Corollary 2.27. With the same notations as in Theorem 2.26 we have

z−1fn(z) =
n+2∑
i=n−2

α∗n,ifi(z), z−1gn(z) =
n+2∑
i=n−2

β∗n,igi(z),

z−1f∗n(z) =
n+2∑
i=n−2

αn,if
∗
i (z), z−1g∗n(z) =

n+2∑
i=n−2

βn,ig
∗
i (z),

PROOF. The corollary follows from Theorem 2.26 and the definition of the the
L-polynomials {g∗n, f∗n}n≥0. �

The five term recurrence relations obtained in Theorem 2.26 and Corollary 2.27 can
be written in vector form

zf(z) = A1 f(z),
zg(z) = A2 g(z),
z−1f(z) = A∗1 f(z),
z−1g(z) = A∗2 g(z),


zf∗(z) = A∗1 f

∗(z),
zg∗(z) = A∗2 g

∗(z),
z−1f∗(z) = A1 f

∗(z),
z−1g∗(z) = A2 g

∗(z),

(114)

with

A1 =
(
αi,j
)
i,j≥0

, A2 =
(
βi,j
)
i,j≥0

,

where αi,j = βi,j = 0 if |i− j| > 2, and

A∗1 = hAT2 h
−1, A∗2 = hAT1 h

−1,(115)

where h = diag(hn)n≥0. We call the matrices A1, A2 the CMV-matrices. We have
the following proposition.
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Proposition 2.28.

A∗1 = A−1
1 , A∗2 = A−1

2 .

PROOF. We have

f(z) = z A∗1 f(z) = A∗1 A1 f(z),

and

f(z) = z−1A1 f(z) = A1A
∗
1 f(z).

Consequently we have A∗1 A1 = A1A
∗
1 = 1. The same argument applied to g(z)

gives B∗1 B1 = B1B
∗
1 = 1. �

The CMV-matrices admit the following factorizations.

Theorem 2.29. We have

A1 = S̃1 Λ̃ S̃−1
1 , A2 = h

(
S̃T2
)−1 Λ̃ S̃T2 h

−1,

with S̃1 and S̃2 defined in (110).

PROOF. We have

A1 f(z) = zf(z) = z S̃1 χ̃(z) = S̃1 Λ̃ χ̃(z) = S̃1 Λ̃ S̃−1
1 f(z).

It follows that

A1 = S̃1 Λ̃ S̃−1
1 .

The proof of the second identity is similar. �

Corollary 2.30. We have

A−1
1 = S̃2Λ̃T S̃−1

2 , A−1
2 = h(S̃−1

1 )T Λ̃T S̃T1 h
−1.

PROOF. This follows from (115), Proposition 2.28, and Theorem 2.29. �

Explicit expressions for the entries of the CMV-matrices can be found in terms of the
variables xn, yn defined by

xn = p(1)
n (0), and yn = p(2)

n (0).

Theorem 2.31. The non-zero entries of the CMV-matrices A1 and A2 are

(A1)2n−1,2n+1 = 1, (A1)2n−1,2n−1 = −x2ny2n−1,

(A1)2n−1,2n = −x2n+1, (A1)2n−1,2n−2 = −x2n(1− x2n−1y2n−1),

(A1)2n,2n+1 = y2n, (A1)2n,2n−1 = y2n−1(1− x2ny2n),

(A1)2n,2n = −x2n+1y2n, (A1)2n,2n−2 = (1− x2n−1y2n−1)(1− x2ny2n),
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and
(A2)2n−1,2n+1 = 1, (A2)2n−1,2n−1 = −x2n−1y2n,

(A2)2n−1,2n = −y2n+1, (A2)2n−1,2n−2 = −y2n(1− x2n−1y2n−1),

(A2)2n,2n+1 = x2n, (A2)2n,2n−1 = x2n−1(1− x2ny2n),

(A2)2n,2n = −x2ny2n+1, (A2)2n,2n−2 = (1− x2n−1y2n−1)(1− x2ny2n).

PROOF. (1) We have

(A1)2n−1,2n+1 =
1

h2n+1
L
[
zf2n−1(z), g2n+1(z)

]
.

By virtue of Theorem 2.20 we obtain

(A1)2n−1,2n+1 =
1

h2n+1
L
[
z2−np

(1)
2n−1(z), z−np(2)

2n+1(z)
]

=
1

h2n+1
L
[
z2p

(1)
2n−1(z), p(2)

2n+1(z)
]
.

As z2p
(1)
2n−1(z) is a monic polynomial of degree 2n+ 1, using the bi-orthogonality of

the polynomials, we have

(A1)2n−1,2n+1 =
1

h2n+1
L
[
z2n+1, p

(2)
2n+1(z)

]
= 1.

(2) We have

(A1)2n−1,2n =
1
h2n
L
[
zf2n−1(z), g2n(z)

]
By virtue of Theorem 2.20 we obtain

(A1)2n−1,2n =
1
h2n
L
[
z2−np

(1)
2n−1(z), znp(1)

2n (z−1)
]

=
1
h2n
L
[
z2p

(1)
2n−1(z), z2np

(1)
2n (z−1)

]
.

By using twice Lemma 2.14 we have

z2p
(1)
2n−1(z) = p

(1)
2n+1(z)− x2n+1z

2np
(2)
2n (z−1)− x2nz

2np
(2)
2n−1(z−1),

and hence

(A1)2n−1,2n =
1
h2n
L
[
p

(1)
2n+1(z), z2np

(1)
2n (z−1)

]
− x2n+1

h2n
L
[
p

(2)
2n (z−1), p(1)

2n (z−1)
]
− x2n

h2n
L
[
p

(2)
2n−1(z−1), p(1)

2n (z−1)
]
.
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As z2np
(1)
2n (z−1) is a polynomial of degree 2n, the first term is equal to 0 by bi-

orthogonality. The remaining terms give

(A1)2n−1,2n = −x2n+1

h2n
L
[
p

(1)
2n (z), p(2)

2n (z)
]
− x2n

h2n
L
[
p

(1)
2n (z), p(2)

2n−1(z)
]

= −x2n+1

h2n
L
[
p

(1)
2n (z), p(2)

2n (z)
]

= −x2n+1.

(3) We have

(A1)2n−1,2n−1 =
1

h2n−1
L
[
zf2n−1(z), g2n−1(z)

]
.

By virtue of Theorem 2.20 we obtain

(A1)2n−1,2n−1 =
1

h2n−1
L
[
z2−np

(1)
2n−1(z), z1−np

(2)
2n−1(z)

]
=

1
h2n−1

L
[
zp

(1)
2n−1(z), p(2)

2n−1(z)
]
.

By using Lemma 2.14 we have

(A1)2n−1,2n−1 =
1

h2n−1
L
[
p

(1)
2n (z)− x2nz

2n−1p
(2)
2n−1(z−1), p(2)

2n−1(z)
]

= − x2n

h2n−1
L
[
z2n−1p

(2)
2n−1(z−1), p(2)

2n−1(z)
]

= − x2n

h2n−1
L
[
y2n−1z

2n−1, p
(2)
2n−1(z)

]
= −x2ny2n−1.

(4) We have

(A1)2n−1,2n−2 =
1

h2n−2
L
[
zf2n−1(z), g2n−2(z)

]
.

By virtue of Theorem 2.20 we obtain

(A1)2n−1,2n−2 =
1

h2n−2
L
[
z2−np

(1)
2n−1(z), zn−1p

(1)
2n−2(z−1)

]
=

1
h2n−2

L
[
zp

(1)
2n−1(z), z2n−2p

(1)
2n−2(z−1)

]
.
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Using Lemma 2.14 we obtain

(A1)2n−1,2n−2

=
1

h2n−2
L
[
p

(1)
2n (z)− x2nz

2n−1p
(2)
2n−1(z−1), z2n−2p

(1)
2n−2(z−1)

]
=

1
h2n−2

L
[
p

(1)
2n (z), z2n−2p

(1)
2n−2(z−1)

]
− x2n

h2n−2
L
[
zp

(2)
2n−1(z−1), p(1)

2n−2(z−1)
]
.

The first term is equal to 0 as z2n−2p
(1)
2n−2(z−1) is a polynomial of degree 2n − 2.

Consequently we have

(A1)2n−1,2n−2 = − x2n

h2n−2
L
[
zp

(1)
2n−2(z), p(2)

2n−1(z)
]

= − x2n

h2n−2
L
[
z2n−1, p

(2)
2n−1(z)

]
= −h2n−1

h2n−2
x2n

= −(1− x2n−1y2n−1)x2n.

(5) The other relations are proven in a similar way. �

We have an immediate corollary.

Corollary 2.32. The non-zero entries of the modified CMV-matrices Ã1 = h−1A1h
and Ã2 = h−1A2h are

(Ã1)2n−1,2n+1 = (1− x2ny2n)(1− x2n+1y2n+1), (Ã1)2n−1,2n−1 = −x2ny2n−1,

(Ã1)2n−1,2n = −x2n+1(1− x2ny2n), (Ã1)2n−1,2n−2 = −x2n,

(Ã1)2n,2n+1 = y2n(1− x2n+1y2n+1), (Ã1)2n,2n−1 = y2n−1,

(Ã1)2n,2n = −x2n+1y2n, (Ã1)2n,2n−2 = 1,

and
(Ã2)2n−1,2n+1 = (1− x2ny2n)(1− x2n+1y2n+1), (Ã2)2n−1,2n−1 = −x2n−1y2n,

(Ã2)2n−1,2n = −y2n+1(1− x2ny2n), (Ã2)2n−1,2n−2 = −y2n,
(Ã2)2n,2n+1 = x2n(1− x2n+1y2n+1), (Ã2)2n,2n−1 = x2n−1,

(Ã2)2n,2n = −x2ny2n+1, (Ã2)2n,2n−2 = 1.

The next proposition is easily obtained from the preceding theorem and corollary.

Proposition 2.33. The non-zero entries of ∂A1
∂y2n

are( ∂A1

∂y2n

)
2n,2n+1

= (A1)2n−1,2n+1,
( ∂A1

∂y2n

)
2n,2n

= (A1)2n−1,2n,( ∂A1

∂y2n

)
2n,2n−1

= (A1)2n−1,2n−1,
( ∂A1

∂y2n

)
2n,2n−2

= (A1)2n−1,2n−2.(116)
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The non-zero entries of ∂A1
∂x2n+1

are( ∂A1

∂x2n+1

)
2n−1,2n

= −(A1)2n−1,2n+1,
( ∂A1

∂x2n+1

)
2n,2n

= −(A1)2n,2n+1,( ∂A1

∂x2n+1

)
2n+1,2n

= −(A1)2n+1,2n+1,
( ∂A1

∂x2n+1

)
2n+2,2n

= −(A1)2n+2,2n+1.

The non-zero entries of ∂Ã1
∂y2n+1

are( ∂Ã1

∂y2n+1

)
2n−1,2n+1

= (Ã1)2n−1,2n,
( ∂Ã1

∂y2n+1

)
2n,2n+1

= (Ã1)2n,2n,( ∂Ã1

∂y2n+1

)
2n+1,2n+1

= (Ã1)2n+1,2n,
( ∂Ã1

∂y2n+1

)
2n+2,2n+1

= (Ã1)2n+2,2n.(117)

The non-zero entries of ∂Ã1
∂x2n

are( ∂Ã1

∂x2n

)
2n−1,2n−2

= −(Ã1)2n,2n−2,
( ∂Ã1

∂x2n

)
2n−1,2n−1

= −(Ã1)2n,2n−1,( ∂Ã1

∂x2n

)
2n−1,2n

= −(Ã1)2n,2n,
( ∂Ã1

∂x2n

)
2n−1,2n+1

= −(Ã1)2n,2n+1.

The non-zero entries of ∂A2
∂y2n+1

are( ∂A2

∂y2n+1

)
2n−1,2n

= −(A2)2n−1,2n+1,
( ∂A2

∂y2n+1

)
2n,2n

= −(A2)2n,2n+1,( ∂A2

∂y2n+1

)
2n+1,2n

= −(A2)2n+1,2n+1,
( ∂A2

∂y2n+1

)
2n+2,2n

= −(A2)2n+2,2n+1.

The non-zero entries of ∂A2
∂x2n

are( ∂A2

∂x2n

)
2n,2n−2

= (A2)2n−1,2n−2,
( ∂A2

∂x2n

)
2n,2n−1

= (A2)2n−1,2n−1,( ∂A2

∂x2n

)
2n,2n

= (A2)2n−1,2n,
( ∂A2

∂x2n

)
2n,2n+1

= (A2)2n−1,2n+1.

The non-zero entries of ∂Ã2
∂y2n

are( ∂Ã2

∂y2n

)
2n−1,2n−2

= −(Ã2)2n,2n−2,
( ∂Ã2

∂y2n

)
2n−1,2n−1

= −(Ã2)2n,2n−1,( ∂Ã2

∂y2n

)
2n−1,2n

= −(Ã2)2n,2n,
( ∂Ã2

∂y2n

)
2n−1,2n+1

= −(Ã2)2n,2n+1.

The non-zero entries of ∂Ã2
∂x2n+1

are( ∂Ã2

∂x2n+1

)
2n−1,2n+1

= (Ã2)2n−1,2n,
( ∂Ã2

∂x2n+1

)
2n,2n+1

= (Ã2)2n,2n,( ∂Ã2

∂x2n+1

)
2n+1,2n+1

= (Ã2)2n+1,2n,
( ∂Ã2

∂x2n+1

)
2n+2,2n+1

= (Ã2)2n+2,2n.

In other words

(1) the 2nth line is the only non-zero line in ∂A1
∂y2n

, and coincides with the (2n−
1)th line of A1;
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(2) the 2nth column is the only non-zero column in ∂A1
∂x2n+1

, and coincides with
the opposite of the (2n+ 1)th column of A1;

(3) the (2n+ 1)th column is the only non-zero column in ∂Ã1
∂y2n+1

, and coincides

with the 2nth column of Ã1;
(4) the (2n− 1)th line is the only non-zero line in ∂Ã1

∂x2n
, and coincides with the

opposite of the 2nth line of Ã1;
(5) the 2nth column is the only non-zero column in ∂A2

∂y2n+1
, and coincides with

the opposite of the (2n+ 1)th column of A2;
(6) the 2nth line is the only non-zero line in ∂A2

∂x2n
, and coincides with the (2n−

1)th line of A2;
(7) the (2n− 1)th line is the only non-zero line in ∂Ã2

∂y2n
, and coincides with the

opposite of the 2nth line of Ã2;
(8) the (2n+ 1)th column is the only non-zero column in ∂Ã2

∂x2n+1
, and coincides

with the 2nth column of Ã2.

3.4. The operators D1, D
∗
1 and D2, D

∗
2 . Remember from (110) that

(118) f(z) = S1 χ(z), g(z) = h
(
ST2
)−1

χ(z),

and, according to (114) and (115), these vectors satisfy

A1 f(z) = zf(z), AT1
(
h−1 g∗(z)

)
= z
(
h−1 g∗(z)

)
,(119)

A2 g(z) = zg(z), AT2
(
h−1 f∗(z)

)
= z
(
h−1 f∗(z)

)
.(120)

We define the semi-infinite matrices D1, D
∗
1 and D2, D

∗
2 by the relations

d

dz
f(z) = D1 f(z),

d

dz

(
h−1 g∗(z)

)
= (D∗1)T

(
h−1 g∗(z)

)
,(121)

d

dz
g(z) = D2 g(z),

d

dz

(
h−1 f∗(z)

)
= (D∗2)T

(
h−1 f∗(z)

)
.(122)

From (119), (121) and from (120), (122), we deduce that

[A1, D1] = 1, and [D∗2 , A2] = 1.(123)

The matrices D1, D
∗
1 and D2, D

∗
2 admit the following factorizations.

Lemma 2.34. We have

D1 = S̃1 D̃ Λ̃T S̃−1
1 , D2 = (S̃T2 h

−1)−1 D̃ Λ̃T (S̃T2 h
−1),(124)

D∗1 = −S̃2 Λ̃T D̃ S̃−1
2 , D∗2 = −(S̃T1 h

−1)−1 Λ̃T D̃ (S̃T1 h
−1),(125)

with D̃ = diag(0, 1,−1, 2,−2, . . . ).

PROOF. Using (110) and (121), we have

D1f(z) =
d

dz
f(z) = S̃1

d

dz
χ̃(z).
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By definition of the operator ∆̃ in (113), we get

D1f(z) = S̃1∆̃S̃−1
1 f(z) = S̃1D̃Λ̃T S̃−1

1 f(z).

This proves the first formula in (124).

We have using (111)
d

dz
g∗(z) = h(S̃T2 )−1 d

dz
χ̃(z−1) = −h(S̃T2 )−1z−2

( d
du
χ̃(u)

)∣∣∣
u=z−1

,

which gives, by definition of ∆̃,
d

dz
g∗(z) = −h(S̃T2 )−1∆̃ z−2χ̃(z−1)

= −h(S̃T2 )−1D̃Λ̃T Λ̃2χ̃(z−1)

= −h(S̃T2 )−1D̃Λ̃
(
h(S̃T2 )−1

)−1
g∗(z).

Consequently, using the definition (121) of D∗1

(D∗1)Th−1g∗(z) =
d

dz

(
h−1g∗(z)

)
= −(S̃T2 )−1D̃Λ̃S̃T2

(
h−1g∗(z)

)
.

This proves the first formula in (125).

The proof of the two other formulas is identical, using the definitions of D2 and D∗2
in (122). �

3.5. A Favard-like Theorem. In section 2 we mentioned the existence of a
Favard-like Theorem for bi-orthogonal polynomials associated to a quasi-definite
Toeplitz bi-moment functional (see Theorem 2.16). As bi-orthogonal L-polynomials
with respect to a quasi-definite Toeplitz bi-moment functional are closely related to
bi-orthogonal polynomials with respect to the same bi-moment functional, this Favard
Theorem can readily be extended to the case of bi-orthogonal L-polynomials.

Theorem 2.35. Let {hn;xn, yn}n≥0 be such that x0 = y0 = 1 and hn
hn−1

= 1 −
xnyn 6= 0 for all n ≥ 1. Let A1, A2 be five-band matrices with entries as in Theorem
2.31. Let {fn}n≥0 and {gn}n≥0 be sequences of monic right L-polynomials defined by
the recurrence relations (114) with initial conditions f0(z) = g0(z) = 1. Then there
exist a unique quasi-definite Toeplitz bi-moment functional L such that the sequences
of L-polynomials are right bi-orthogonal with respect to L and

L[fn, gm] = hnδnm.

This theorem generalizes a similar result for orthogonal Laurent polynomials on the
unit circle obtained by Cruz-Barroso and Gonzalez-Vera [21]. But our proof rests
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completely on Theorems 2.16 and 2.20 and is independent of that given in [21].

To summarize this section on bi-orthogonal L-polynomials, we have a one-to-one cor-
respondence between sequences of quasi-definite Toeplitz bi-moment functionals de-
fined up to a multiplicative non-zero constant, couples of CMV-matrices (A1, A2),
and sequences {xn, yn}n≥0 with x0 = y0 = 1 and 1− xnyn 6= 0 for all n ≥ 1 :

{µi,j}i,j∈Z ←→ (A1, A2) ←→ {xn, yn}n≥0.(126)





Chapter3
The Ablowitz-Ladik hierarchy

In [9, 12] Adler and van Moerbeke study time-dependent bi-orthogonal polynomials,
in connexion with integrals over the unitary group U(n). They consider the following
time-dependent bilinear quasi-definite Toeplitz bi-moment functional on C[z]× C[z]

L[f, g] =
∮
S1
f(z)g(z−1) e

∑∞
j=1 tjz

j+
∑∞
j=1 sjz

−j
ρ(z)

dz
2πiz

.

Let {p(1)
n ( · ; t, s), p(2)

n ( · ; t, s)}n≥0 be the associated sequence of time-dependent
monic bi-orthogonal polynomials, and define

xn(t, s) = p(1)
n (0; t, s), yn(t, s) = p(2)

n (0; t, s).

These polynomials satisfy recurrence relations defined by the time-dependent matrices
l1 and l2 of the form (105) and (106). Adler and van Moerbeke [9] prove that L1 = l1
and L2 = hl2h

−1 are solutions of the 2-Toda lattice hierarchy described in [67]
∂Li
∂tn

= [(Ln1 )+, Li],
∂Li
∂sn

= [(Ln2 )−−, Li], i = 1, 2, n = 1, 2, . . .

where for a matrix A, we denote by A+ (resp. A−−) the upper triangular part (resp.
the strictly lower triangular part) of A. The particular form of the matrices L1, L2 is
preserved by these evolution equations. The reduction of the 2-Toda lattice hierarchy
to matrices with this particular form is called by Adler and van Moerbeke the Toeplitz
lattice. It is equivalent to the Ablowitz-Ladik hierarchy, see [9] and also [62, 18]. In
this chapter, we describe the Toeplitz lattice or the Ablowitz-Ladik hierarchy from
the point of view of the bi-orthogonal L-polynomials on the unit circle. Using the
correspondence (126) we will give three different descriptions of the Ablowitz-Ladik
hierarchy.

79
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1. The Ablowitz-Ladik vector fields on the space of bi-moments

LetL : C[z, z−1]×C[z, z−1]→ C be a quasi-definite Toeplitz bi-moment functional.
It is completely determined by its bi-moments µm,n = L[zm, zn]. As with all Toeplitz
bi-moment functionals, these bi-moments only depend on the difference m − n. We
have

µm,n := µm−n,

and we shall freely use both notations. The Ablowitz-Ladik hierarchy is defined on
the space of quasi-definite Toeplitz bi-moments by the vector fields

Tjµk ≡
∂µk
∂tj

= µk+j , T−jµk ≡
∂µk
∂sj

= µk−j , ∀j ≥ 1.(127)

Obviously, they satisfy the following commutation relations

[Ti, Tj ] = 0, ∀i, j ∈ Z,

if we define T0µk = µk.

To the basis {1, z, z2, . . . } of the vector space C[z] we associate the semi-infinite
Toeplitz bi-moment matrix

m∞ =
(
µk−l

)
k,l≥0

.

It follows immediately from (127) that
∂m∞
∂tn

= Λnm∞,

∂m∞
∂sn

= m∞
(
ΛT
)n
,

n ≥ 1,(128)

where Λ = (δi,j−1)i,j≥0 is the usual shift matrix.

To the basis {1, z, z−1, z2, z−2, . . . } of the vector space C[z, z−1] we associate the
semi-infinite bi-moment matrix m̃∞ defined by

m̃∞ =


µ0,0 µ0,1 µ0,−1 . . .

µ1,0 µ1,1 µ1,−1 . . .

µ−1,0 µ−1,1 µ−1,−1 . . .
...

...
...

. . .

 .

Unlike m∞, the bi-moment matrix m̃∞ is not a Toeplitz matrix. It follows from the
definition of Λ̃ in (112) that the time evolution of the bi-moment matrix m̃∞ is given



1. The Ablowitz-Ladik vector fields on the space of bi-moments 81

by the equations
∂m̃∞
∂tn

= Λ̃n m̃∞,

∂m̃∞
∂sn

= Λ̃−n m̃∞,
n ≥ 1.(129)

Notice that, because of the Toeplitz property satisfied by the bi-moments, we have the
commutation relation

[Λ̃, m̃∞].(130)

Equations (127), (128) and (129) are three equivalent formulations of the Ablowitz-
Ladik vector fields at the level of the bi-moments.

The expression of the Ablowitz-Ladik vector fields at the level of the bi-moment ma-
trices m∞ in (128) is particularly interesting in looking for explicit expressions for
the flows on the bi-moments. These flows will be expressed in terms of elementary
Schur polynomials Sn(t), defined by the generating function

(131) exp
( ∞∑
k=1

tkx
k
)

=
∑
n∈Z

Sn(t1, t2, . . .)xn.

The first elementary Schur polynomials are easily found to be

S−n(t) = 0, ∀n ≥ 1,

S0(t) = 1, S1(t) = t1, S2(t) =
t21
2

+ t2, S3(t) =
t31
6

+ t1t2 + t3,

S4(t) =
1
24
(
t41 + 12t21t2 + 12t22 + 24t1t3 + 24t4

)
, etc.

The formal solution to the Cauchy problem (128) with given initial conditions
m∞(0, 0) = M , where M is a semi-infinite quasi-definite Toeplitz matrix, is given
by

m∞(t, s) = e
∑∞
i=1 tiΛ

i

M e
∑∞
j=1 sj(Λ

T )j ,(132)

where

e
∑∞
i=1 tiΛ

i

=
∞∑
i=0

Si(t)Λi =


1 S1(t) S2(t) S3(t) S4(t) · · ·
0 1 S1(t) S2(t) S3(t) · · ·
0 0 1 S1(t) S2(t) · · ·
0 0 0 1 S1(t) · · ·
...

...
...

...
...


=
(
Sj−i(t)

)
1≤i,j<∞.
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We then have

µk,l(t, s) =
(
e
∑∞
i=1 tiΛ

i

M e
∑∞
j=1 sj(Λ

T )j
)
k,l

=
((
Sj−i(t)

)
1≤i,j<∞M

(
Sj−i(s)

)T
1≤i,j<∞

)
k,l

=
∑
m,n≥0

Mm,nSm−k(t)Sn−l(s).

Relabeling the indices m 7→ m+ k and l 7→ n+ l, we obtain

µk,l(t, s) =
∑
m,n≥0

Mm+k,n+lSm(t)Sn(s).

We thus have

µk,l(t, s) = µk−l(t, s) =
∞∑

m,n=0

Sm(t)Sn(s)µk−l+m−n(0, 0).(133)

This is the formal solution to the equations (127) with given initial conditions
µk−l(0, 0). Consequently, we observe that the Ablowitz-Ladik flows preserve the
Toeplitz property of the bi-moments.

Example 3.1. Let L : C[z, z−1] × C[z, z−1] → C be a time-dependent Toeplitz
bi-moment functional defined by

L[f, g] =
∮
S1
f(z)g(z−1) e

∑∞
j=1 tjz

j+
∑∞
j=1 sjz

−j
ρ(z)

dz
2πiz

.

We define for k, l ∈ Z the time-dependent bi-moments

µk,l(t, s) = L[zk, zl] =
∮
S1
zk−l e

∑∞
j=1 tjz

j+
∑∞
j=1 sjz

−j
ρ(z)

dz
2πiz

.(134)

The bi-moments clearly satisfy the equations (127). Expanding the exponential in
terms of Schur polynomials, we get

µk,l(t, s) =
∞∑

m,n=0

Sm(t)Sn(s)
∮
S1
zk+m−l−n ρ(z)

dz
2πiz

.

This is an expansion of the form (133).

Let {fn, gn}n≥0 be the sequence of monic right bi-orthogonal L-polynomials with
respect to L, {g∗n, f∗n}n≥0 the associated sequence of monic left bi-orthogonal L-
polynomials, and {p(1)

n , p
(2)
n }n≥0 the associated sequence of monic bi-orthogonal

polynomials with repsect to L. All these polynomials depend on t and s. We will
usually not indicate explicitly the dependence of all these polynomials on t and s. As
in the preceding chapter, we define the semi-infinite vectors f(z) =

(
fn(z)

)
n≥0

and

g(z) =
(
gn(z)

)
n≥0

, and the matrices S̃1 and S̃2 such that

f(z) = S̃1 χ̃(z), g(z) = h
(
S̃T2
)−1

χ̃(z),(135)
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where S̃1 is a lower triangular matrix with all the diagonal elements equal to 1, and
h−1 S̃2 is an upper triangular matrix with all the diagonal elements equal to 1. We
also define the vectors p(1)(z) =

(
p

(1)
n (z)

)
n≥0

and p(2)(z) =
(
p

(2)
n (z)

)
n≥0

. These
two vectors can be written

p(1)(z) = S1χ(z), p(2)(z) = h(ST2 )−1χ(z),

where S1 is a lower triangular matrix with all its diagonal elements equal to 1, S2 is an
upper triangular matrix such that the diagonal entries of h−1S2 are equal to 1. These
matrices depend on t and s. We also define the functions

xn(t, s) = p(1)
n (0; t, s), yn(t, s) = p(2)

n (0; t, s).(136)

2. The Ablowitz-Ladik hierarchy as a reduction of the 2-Toda lattice

In [9, 12] Adler and van Moerbeke have obtained the Ablowitz-Ladik hierarchy as a
reduction of the 2-Toda lattice. We briefly explain this here.

Let M be a semi-infinite quasi-definite Toeplitz matrix. As we have seen in Chapter
2, the quasi-definiteness of M implies that it factorizes

M = S1(0, 0)−1S2(0, 0),

with S1(0, 0) a lower triangular matrix with 1’s on the principal diagonal, and S2(0, 0)
an invertible upper triangular matrix. For generic values of (t, s), the solution
m∞(t, s)given by (132) to the Cauchy problem (128) with initial condition M , also
factorizes as follows

m∞(t, s) = S1(t, s)−1S2(t, s),

with S1(t, s) and S2(t, s) having the same properties as S1(0, 0) and S2(0, 0). We also
define a diagonal matrix h = diag(hn)n≥0, such that h−1S2(t, s) is upper triangular
with 1’s on the principal diagonal. We then have

Theorem 3.2. The vectors

Ψ1(z) := S1χ(z)e
∑∞
j=1 tjz

j

,

Ψ∗2(z) := (S−1
2 )Tχ(z−1)e−

∑∞
j=1 sjz

−j
,

and the matrices L1 := S1ΛS−1
1 and L2 := S2Λ−1S−1

2 satisfy the equations

L1Ψ1 = zΨ1,

LT2 Ψ∗2 = z−1Ψ∗2,
∂Ψ1
∂tn

= (Ln1 )+Ψ1,
∂Ψ∗2
∂tn

= −(Ln1 )T+Ψ∗2,
∂Ψ1
∂sn

= (Ln2 )−−Ψ1,
∂Ψ∗2
∂sn

= −(Ln2 )T−−Ψ∗2.

(137)
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The compatibility conditions for (137) are given by the Lax equations
∂Li
∂tn

=
[
(Ln1 )+, Li

]
,

∂Li
∂sn

=
[
(Ln2 )−, Li

]
,(138)

with i = 1, 2. These are the Lax equations for the 2-Toda lattice. The vectors Ψ1,Ψ∗2
are wave vectors for the 2-Toda lattice.

It is obvious that

Ψ1(t, s; z) = p(1)(t, s; z)e
∑∞
j=1 tjz

j

,

Ψ∗2(t, s; z) = h−1p(2)(t, s; z−1)e−
∑∞
j=1 sjz

−j
,

where {p(1)
n (t, s; z), p(2)

n (t, s; z)}n≥0 are bi-orthogonal polynomials in the sense of
Chapter 2, for the bi-moment functional L associated to the bi-moment matrix
m∞(t, s). We have

L[p(1)
m (t, s; z), p(2)

n (t, s; z)] = hnδmn.

The Lax matrices L1, L2 define reccurence relations on the bi-orthogonal polynomi-
als:

L1p
(1)(t, s; z) = z p(1)(t, s; z),

(
h−1L2h

)T
p(2)(t, s; z) = z p(2)(t, s; z).

As we have seen in section 1, if m∞(0, 0) is a Toeplitz matrix, then m∞(t, s) is a
Toeplitz matrix for all (t, s). By virtue of Theorem 2.16 the Lax matrices L1, L2 are
then completely determined by the sequences {hn;xn, yn}n≥0, with hn

hn−1
= 1 −

xnyn 6= 0 for all n ≥ 1, and

xn(t, s) = p(1)
n (t, s; 0), yn(t, s) = p(2)

n (t, s; 0).

We have

L1 = l1, L2 = h l2 h
−1,

with l1, l2 given in (105) and (106). Consequently, we see that the Ablowitz-Ladik
hierarchy is a reduction of the 2-Toda lattice hierarchy.

In Section 4 of Chapter 1, we obtained in (45) the following expressions for the bi-
orthogonal polynomials

p(1)
n (t, s, z) = zn

τn(t− [z−1], s)
τn(t, s)

, p(2)
n (t, s, z) = zn

τn(t, s− [z−1])
τn(t, s)

,

with

τn(t, s) = det
(
µk,l(t, s)

)
0≤k,l≤n−1

,
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with µk,l(t, s) =
(
m∞(t, s)

)
k,l

. It follows that τn(t, s) is a tau-function for the 2-
Toda lattice hierarchy in the sense of Sato. These tau-functions are completely deter-
mined by the sequence of bi-moments.

3. The Ablowitz-Ladik vector fields on the manifold of CMV-matrices

In this section we "dress up" the equations defining the Ablowitz-Ladik hierarchy
(127) on the bi-moments. This leads to Lax pair representations for the hierarchy
on the CMV matrices. In this section we shall denote the time variables (t, s) =
(t1, t2, . . . , s1, s2, . . .) of the AL hierarchy by (tk)k∈Z, with t−k = sk, k ≥ 1, and
T0 defined below (127). On the space of bi-moments, the Ablowitz-Ladik hierarchy
equations (127) then take the particularly simple form

(139) Tnµj ≡
∂µj
∂tn

= µj+n, ∀n ∈ Z,

or equivalently
∂m̃∞
∂tn

= Λ̃n m̃∞, ∀n ∈ Z.(140)

For a square matrix A, we define

• A0 the diagonal part of A;
• A− (resp. A+) the lower (resp. upper) triangular part of A;
• A−− (resp. A++) the strictly lower (resp. strictly upper) triangular part of
A.

We establish the following lemma, based on the factorization of the moment matrix
m̃∞ in Proposition 2.24 in a product of a lower triangular and an upper triangular
matrix.

Lemma 3.3. We have for n ∈ Z

∂S̃1

∂tn
S̃−1

1 = −(An1 )−−,(141)

(
S̃T2 h

−1
)−1 ∂

(
S̃T2 h

−1
)

∂tn
= (A−n2 )−−.(142)

PROOF. On the one hand, we have using Proposition 2.24

∂m̃∞
∂tn

= −S̃−1
1

∂S̃1

∂tn
S̃−1

1 S̃2 + S̃−1
1

∂S̃2

∂tn
.

On the other hand, by virtue of equation (140) we have
∂m̃∞
∂tn

= Λ̃n m̃∞ = Λ̃n S̃−1
1 S̃2.
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Consequently, as A1 = S̃1Λ̃S̃−1
1 , we obtain

An1 = −∂S̃1

∂tn
S̃−1

1 +
∂S̃2

∂tn
S̃−1

2 .

Since ∂S̃1
∂tn

is strictly lower triangular, the first term in this equation is strictly lower
triangular. The second term in this equation is upper triangular. Consequently, taking
the strictly lower triangular part of both sides of the equation yields

∂S̃1

∂tn
S̃−1

1 = −(An1 )−−,

which establishes (141).

To establish the other formula, we write m̃∞ = (S̃−1
1 h) (h−1 S̃2) which gives

∂m̃∞
∂tn

=
∂(S̃−1

1 h)
∂tn

(h−1S̃2) + (S̃−1
1 h)

∂(h−1 S̃2)
∂tn

.

Using the commutation relation (130) and (140), we also have
∂m̃∞
∂tn

= m̃∞ Λ̃n = (S̃−1
1 h) (h−1 S̃2) Λ̃n.

As A2 = (S̃T2 h
−1)−1 Λ̃ (S̃T2 h

−1), we obtain after some algebra

A−n2 =
∂(S̃−1

1 h)T

∂tn

(
(S̃−1

1 h)T
)−1 + (S̃T2 h

−1)−1 ∂(S̃T2 h
−1)

∂tn
.

Since (S̃−1
1 h)T is upper triangular, the first term in the right hand side of this equation

is upper triangular. As S̃T2 h
−1 is lower triangular with all diagonal entries equal to

1, the second term is strictly lower triangular. Consequently, taking the strictly lower
triangular part of both sides of the equation yields

(S̃T2 h
−1)−1 ∂(S̃T2 h

−1)
∂tn

= (A−n2 )−−,

which establishes (142), completing the proof. �

We are now able to obtain a Lax pair representation for the Ablowitz-Ladik hierarchy.

Theorem 3.4 (Haine-Vanderstichelen [44]). The "dressed up" form of the moment
equation (129) gives the following Lax pair representation for the Ablowitz-Ladik
hierarchy on the semi-infinite CMV matrices (A1, A2)

∂A1

∂tn
= [A1, (An1 )−−],

∂A2

∂tn
= [A2, (A−n2 )−−], ∀n ∈ Z.(143)

In the particular case of the defocusing Ablowitz-Ladik hierarchy (see introduction),
this result had already been obtained by Nenciu [58].
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PROOF. As A1 = S̃1 Λ S̃−1
1 and A2 = (S̃T2 h

−1)−1 Λ (S̃T2 h
−1), we have

∂A1

∂tn
=
[∂S̃1

∂tn
S̃−1

1 , A1

]
,

and
∂A2

∂tn
=
[
A2 , (S̃T2 h

−1)−1 ∂(S̃T2 h
−1)

∂tn

]
.

By Lemma 3.3 we obtain
∂A1

∂tn
= [−(An1 )−−, A1] and

∂A2

∂tn
= [A2, (A−n2 )−−],

which establishes (143), concluding the proof. �

The following theorem states that the system of equations in (143) is consistent, i.e.
that the flows induced by this system mutually commute. The proof is inspired on that
given in [67] for the 2-Toda lattice.

Theorem 3.5. The Ablowitz-Ladik hierarchy (143) is equivalent to the system of equa-
tions of Zakharov-Shabat type

∂tnBm − ∂tmBn + [Bm, Bn] = 0,(144)

∂tnCm − ∂tmCn + [Cm, Cn] = 0,(145)

for m,n ∈ Z, with Bn := (An1 )+ and Cn := (A−n2 )+.

PROOF. 1. We first prove that the first formula in (143) implies (144). We have
An1 = Bn + (An1 )−− for all n ∈ Z. Consequently

[Bn, Am1 ] = [Am1 , (A
n
1 )−−],

as [An1 , A
m
1 ] = 0 for all n,m ∈ Z. It follows that(

[Bn, Am1 ]
)

+
=
(
[Bm, (An1 )−−]

)
+
,(146)

as [(Am1 )−−, (An1 )−−] is strictly lower triangular.

From (143) we get for all n,m ∈ Z
∂Am1
∂tn

= [Bn, Am1 ], and
∂An1
∂tm

= [Bm, An1 ].

The upper triangular part of the difference of these equations gives
∂Bm
∂tn

− ∂Bn
∂tm

=
(
[Bn, Am1 ]

)
+
−
(
[Bm, An1 ]

)
+

=
(
[Bn, Am1 ]

)
+
−
(
[Bm, Bn]

)
+
−
(
[Bm, (An1 )−−]

)
+
.

Using (146), one gets (144).
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2. We now prove that (144) gives the first formula of (143). For a matrix

A =
n∑

i=−∞
aiΛi,

with ai diagonal matrices such that an 6= 0, we call n the order of A. From (144) we
get

∂Am1
∂tn

− [Bn, Am1 ] =
∂(Am1 )−−

∂tn
+
∂Bn
∂tm

− [Bn, (Am1 )−−],

for all n,m ∈ Z. In the right-hand side we have three terms whose order is ≤ |2n|,
for all m ∈ Z. Consequently, the left-hand side is also of finite order ≤ |2n| for all
m ∈ Z :

order
(∂Am1
∂tn

− [Bn, Am1 ]
)
≤ |2n|, ∀m ∈ Z.

Suppose now
∂Am1
∂tn

− [Bn, Am1 ] 6= 0.(147)

Then we have

lim
m→±∞

order
(∂Am1
∂tn

− [Bn, Am1 ]
)

= +∞,

and we obtain a contradiction with (147). We thus have
∂Am1
∂tn

− [Bn, Am1 ] = 0.

3. A similar argument proves that the second formula in (143) and (145) are equiva-
lent. �

Corollary 3.6. The vector fields defined by (143) commute.

PROOF. We have by virtue of (143)

∂tm(∂tnA1)− ∂tn(∂tmA1) = ∂tm [Bn, A1]− ∂tn [Bm, A1]

= [∂tmBn − ∂tnBm, A1] +
[
Bn, [Bm, A1]

]
−
[
Bm, [Bn, A1]

]
.

Using (144) we obtain

∂tm(∂tnA1)− ∂tn(∂tmA1) = ∂tm [Bn, A1]− ∂tn [Bm, A1]

=
[
[Bm, Bn], A1

]
+
[
Bn, [Bm, A1]

]
−
[
Bm, [Bn, A1]

]
,

which is equal to zero by virtue of the Jacobi identity. Similarly we get

∂tm(∂tnA2)− ∂tn(∂tmA2) = 0.

�
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4. Hamiltonian formalism

We prove in this section that the Ablowitz-Ladik hierarchy, as defined in (143), is a
Hamiltonian system. We first prove the following lemma.

Lemma 3.7. We have for k ≥ 1
∂S̃1
∂tk

S̃−1
1 = −(Ak1)−−,

∂h
∂tk

h−1 = (Ak1)0,
∂(h−1S̃2)

∂tk
(h−1S̃2)−1 = (Ãk1)++,

and 
∂S̃1
∂sk

S̃−1
1 = −(Ãk2)T−−,

∂h
∂sk

h−1 = (Ak2)0,
∂(h−1S̃2)
∂sk

(h−1S̃2)−1 = (Ak2)T−−.

PROOF. We have using Corollary 2.25

∂m̃∞
∂tk

= −S̃−1
1

∂S̃1

∂tk
S̃−1

1 h (h−1S̃2)

+ S̃−1
1

∂h

∂tk
(h−1S̃2) + S̃−1

1 h
∂(h−1S̃2)

∂tk
.

We also have by equation (129)
∂m̃∞
∂tk

= Λ̃k m̃∞ = Λ̃k S̃−1
1 h (h−1S̃2).

Consequently, as A1 = S̃1Λ̃S̃−1
1 , we obtain

Ak1 = −∂S̃1

∂tk
S̃−1

1 +
∂h

∂tk
h−1 + h

∂(h−1S̃2)
∂tn

(h−1S̃2)−1h−1.

We notice that ∂S̃1
∂tk

S̃−1
1 is strictly lower triangular, ∂h

∂tk
h−1 is diagonal, and

h∂(h−1S̃2)
∂tn

(h−1S̃2)−1h−1 is strictly upper triangular. Consequently, taking the
strictly lower triangular part, the diagonal part, and the strictly upper triangular part of
this equation, we obtain the first part of the lemma. The second part of the lemma is
obtained in a similar way. �

We deduce the following lemma.

Lemma 3.8.
∂f(z)
∂tk

= −(Ak1)−−f(z),
∂f(z)
∂sk

= −(Ãk2)T++f(z),

∂g(z)
∂tk

= −(Ãk1)T++g(z),
∂g(z)
∂sk

= −(Ak2)−−g(z).



90 Chapter 3. The Ablowitz-Ladik hierarchy

PROOF. We have using Lemma 3.7

∂f(z)
∂tk

=
∂

∂tk

(
S̃1χ̃(z)

)
=
(∂S̃1

∂tk
S̃−1

1

)
f(z) = −(Ak1)−−f(z),

and
∂g(z)
∂tk

=
∂

∂tk

((
(h−1S̃2)−1

)T
χ̃(z)

)
= −

(
(h−1S̃2)−1 ∂(h−1S̃2)

∂tk
(h−1S̃2)−1

)T
χ̃(z)

= −
(

(h−1S̃2)−1(Ãk1)++

)T
χ̃(z)

= −(Ãk1)T++g(z).

The proof of the two other equations is similar. �

On the space {(x1, y1, . . . ) | 1 − xkyk 6= 0, xk, yk ∈ C, ∀k ≥ 1}, consider the
symplectic form

ω := −
∞∑
k=1

dxk ∧ dyk
1− xkyk

.(148)

The following theorem, due to Adler-van Moerbeke [9], proves that the Ablowitz-
Ladik hierarchy is a Hamiltonian system. We give a new proof of this theorem, based
on bi-orthogonal L-polynomials.

Theorem 3.9 (Adler-van Moerbeke [9]). The functions xn(t, s), yn(t, s) defined in
(136) satisfy the following integrable Hamiltonian system

∂xn
∂tk

= (1− xnyn)∂H
(1)
k

∂yn
,

∂xn
∂sk

= (1− xnyn)∂H
(2)
k

∂yn
,

∂yn
∂tk

= −(1− xnyn)∂H
(1)
k

∂xn
,

∂yn
∂sk

= −(1− xnyn)∂H
(2)
k

∂xn
,

, n ≥ 1, k ≥ 1,(149)

with boundary condition x0 = y0 = 1, whereH(1)
k = − 1

kTrAk1 andH(2)
k = 1

kTrAk2 =
1
kTrA−k1 , k = 1, 2, . . . are integrals in involution with respect to the symplectic form
ω.

PROOF. We shall only prove the first equation. The proof of the three remaining
equations is similar.
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We first consider ∂x2n+1
∂tk

. We have x2n+1 = p
(1)
2n+1(0) = znf2n+1(z)|z=0. Conse-

quently, using Lemma 3.8 we get
∂x2n+1

∂tk
= −

(
(Ak1)−−znf(z)

)
2n+1

∣∣∣
z=0

= −
∑

l<2n+1

(Ak1)2n+1,lz
nfl(z)

∣∣∣
z=0

.

But znfl(z)
∣∣
z=0

= 0 for l < 2n, and as fl are monic L-polynomials, we have
znf2n(z)

∣∣
z=0

= 1. Consequently we obtain

∂x2n+1

∂tk
= −(Ak1)2n+1,2n = −h2n+1

h2n
(Ãk1)2n+1,2n,

with Ã1 = h−1A1h. We have

∂x2n+1

∂tk
= −h2n+1

h2n

2n+2∑
l=2n−1

(Ãk−1
1 )2n+1,l(Ã1)l,2n

= −h2n+1

h2n

2n+2∑
l=2n−1

(Ãk−1
1 )2n+1,l

( ∂Ã1

∂y2n+1

)
l,2n+1

,(150)

where we have applied (117). Defining on the space of square matrices the scalar
product

〈A,B〉 = Tr(AB),

one easily checks that

∂

∂x
TrAn =

〈
nAn−1,

∂A

∂x

〉
.

Using this identity, equation (150) gives

∂x2n+1

∂tk
= −h2n+1

h2n

〈
Ãk−1

1 ,
∂Ã1

∂y2n+1

〉
,

= −h2n+1

h2n

∂

∂y2n+1

1
k

Tr(Ãk1).

By the invariance of a trace under cyclic permutation of its arguments, we get
∂x2n+1

∂tk
= −h2n+1

h2n

∂

∂y2n+1

1
k

Tr(Ak1).

Defining H(1)
k = − 1

kTrAk1 , this expression can be written

∂x2n+1

∂tk
= (1− x2n+1y2n+1)

∂H
(1)
k

∂y2n+1
,

as h2n+1
h2n

= (1− x2n+1y2n+1) by virtue of Proposition 2.15.
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We now consider ∂x2n
∂tk

. We have x2n = p
(1)
2n (0) = zng2n(z−1)

∣∣
z=0

. Using Lemma
3.8 we get

∂x2n

∂tk
= −

(
(Ãk1)T++z

ng(z−1)
)

2n

∣∣∣
z=0

= −
∑
l<2n

(Ãk1)l,2nzngl(z−1)
∣∣∣
z=0

= −(Ãk1)2n−1,2n,

as zngl(z−1)
∣∣
z=0

= 0 for l < 2n − 1, and zng2n−1(z−1)
∣∣
z=0

= 1 by monicity. As
Ã1 = h−1A1h, we get

∂x2n

∂tk
= − h2n

h2n−1
(Ak1)2n−1,2n

= − h2n

h2n−1

2n+1∑
l=2n−2

(A1)2n−1,l(Ak−1
1 )l,2n

= − h2n

h2n−1

2n+1∑
l=2n−2

( ∂A1

∂y2n

)
2n,l

(Ak−1
1 )l,2n,

by virtue of (116). This gives

∂x2n

∂tk
= − h2n

h2n−1

〈
∂A1

∂y2n
, Ak−1

1

〉
= − h2n

h2n−1

∂

∂y2n

1
k

Tr(Ak1)

= (1− x2ny2n)
∂H

(1)
k

∂y2n
.

We now prove that the Hamiltonians H(1)
k and H(2)

k are integrals in involution with
respect to the symplectic form ω. Indeed, let { · , · } be the Poisson bracket associated
to ω. We have for n > 0 and m ∈ Z

∂TrAm1
∂tn

= {H(1)
n ,TrAm1 },

∂TrAm1
∂sn

= {H(2)
n ,TrAm1 }.

The Lax form (143) of the Ablowitz-Ladik hierarchy then implies

{H(1)
n ,TrAm1 } = Tr

∂Am1
∂tn

= Tr[Bn, Am1 ] = 0,

and similarly

{H(2)
n ,TrAm1 } = 0.

�
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5. The first flows of the Ablowitz-Ladik hierarchy : the Ablowitz-Ladik
equation

Consider the space {(x1, y1, . . . )|1−xkyk 6= 0, xk, yk ∈ C, ∀k ≥ 1} going with the
symplectic form ω defined in (148). We first compute the first flows of the Ablowitz-
Ladik hierarchy. The first equations in (149) are

∂xn
∂t1

= (1− xnyn)xn+1,
∂xn
∂s1

= −(1− xnyn)xn−1,

∂yn
∂t1

= −(1− xnyn)yn−1,
∂yn
∂s1

= (1− xnyn)yn+1.

Taking the following linear combination ∂
∂t := ∂

∂t1
− ∂

∂s1
of the vector fields gives

∂xk
∂t

= xk+1 + xk−1 − xkyk
(
xk+1 + xk−1

)
,

∂yk
∂t

= −yk+1 − yk−1 + ykxk
(
yk+1 + yk−1

)
.

Define new variables x̃n, ỹn such that

xn = x̃ne
2t, yn = ỹne

−2t.

These new variables satisfy
∂x̃k
∂t

= x̃k+1 − 2x̃k + x̃k−1 − x̃kỹk
(
x̃k+1 + x̃k−1

)
,

(151)

∂ỹk
∂t

= −ỹk+1 + 2ỹk − ỹk−1 + ỹkx̃k
(
ỹk+1 + ỹk−1

)
.

These equations are the Ablowitz-Ladik equations, obtained by Ablowitz and Ladik
[1, 2] as a discretization of the nonlinear cubic Schrödinger equation. Indeed, after
rescaling

t 7→ ε−2t, xk 7→ εxk, yk 7→ εyk,

the continuous limit ε→ 0 in (151) gives the system of partial differential equations

xt = xqq − 2x2y, yt = −yqq + 2xy2,(152)

where q is the space variable. Upon making the change of variables t 7→ it, with
i =
√
−1, and making the reduction y = ±x, where x is the complex conjugate of x,

the system (152) reduces to the cubic Schrödinger equation

−ixt = xqq ∓ 2x|x|2.(153)





Chapter4
Master Symmetries of the
Ablowitz-Ladik hierarchy

In Chapter 1 we constructed in (54), (55) and (56) a family of operators L(n)
k , k ∈ Z,

satisfying the commutation relations of the centerless Virasoro algebra. Following
an idea introduced in [42] in the context of 1-dimensional Toda lattices, we prove
that these operators precisely describe the master symmetries of the Ablowitz-Ladik
hierarchy on the tau functions of this hierarchy. We also construct Lax pairs for the
master symmetries, by translating their action on the manifold of CMV-matrices. The
results presented in this chapter are joined work with L. Haine [44].

1. Time-dependent symmetries

Let M be a differential manifold of class C∞, and X a vector field on M . An integral
curve of X is a smooth curve c : I →M defined on an open interval I ⊂ R such that

d

dt
c(t) = X

(
c(t)
)
, ∀t ∈ I.(154)

We denote by t 7→ φtX(p) the unique maximal integral curve of X with initial
condition φ0(p) = p. The map p 7→ φt(p) (for fixed t) is called the flow. A
time-independent vector field X is called an autonomous vector field.
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We first recall the concept of a symmetry of X . A symmetry of X is a vector field Y
on M such that

[X,Y ] = 0,(155)

where [X,Y ] is the Lie bracket of the vector fields X,Y . This is equivalent to saying
that the flows φtX and φsY commute

φtX ◦ φsY (p) = φsY ◦ φtX(p), ∀p ∈M,

for all values t, s for which the expressions in this equation make sense. Consequently,

t 7→ φsY
(
φtX(p)

)
is also an integral curve of X for fixed s sufficiently small.

We now turn to the more general case of time-dependent symmetries. Let Y be a
time-dependent vector field on M depending smoothly on time, i.e.

Y : R×M → TM, (t, p) 7→ Y (t, p) ∈ TpM,

is a smooth mapping, with TM the tangent bundle of M , and TpM the tangent space
to M at p ∈ M . An integral curve of Y is a smooth curve c : I → M defined on an
open interval I ⊂ R such that

d

dt
c(t) = Y

(
t, c(t)

)
, ∀t ∈ I.(156)

We denote t 7→ cY (t; t0, p) the unique maximal integral curve of Y on M with initial
condition p at time t = t0. To the time-dependent vector field Y on M , we associate
the autonomous vector field Ỹ on R×M

Ỹ (t, p) =
∂

∂t
+ Y (t, p) ∈ R× TpM.

In a similar way, we extend the vector field X to a vector field X̃ on R×M by

X̃(t, p) =
∂

∂t
+X(p) ∈ R× TpM.

The flows φ̃tX(t0, p) and φ̃tY (t0, p) of X̃ and Ỹ on R×M are then given by

φ̃tX(t0, p) =
(
t+ t0;φt+t0X (p)

)
, φ̃tY (t0, p) =

(
t+ t0; cY (t+ t0; t0, p)

)
.

We call Y a time-dependent symmetry of X if Ỹ is a symmetry of X̃ on R×M . A
necessary and sufficient condition for this to happen is

[X̃, Ỹ ] = 0,

or equivalently
∂Y

∂t
+ [X,Y ] = 0.(157)
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Consequently, the flows φ̃tX(t0, p) and φ̃sY (t0, p) of X̃ and Ỹ on R×M will commute.
Hence,

t 7→ cY
(
s+ t+ t0; t+ t0, φ

t+t0
X (p)

)
,

is an integral curve of X , for s sufficiently small.

2. Master symmetries

Following Fuchsteiner [37] we introduce the concept of master symmetries. LetM be
a smooth differential manifold and X (M) the algebra of vector fields onM . Consider
a vector field X on M and the evolution equation (154). A vector field Z on M is a
X-generator of degree n if[[

. . . [Z,X], . . . , X
]
, X
]

︸ ︷︷ ︸
n+1

= 0.

It then immediately follows from (157) that the time-dependent vector field

YZ =
n∑
k=0

tk

k!

[[
. . . [Z,X], . . . , X

]
, X
]

︸ ︷︷ ︸
k

,

is a time-dependent symmetry of X . One easily checks that every time-dependent
symmetry of X which is polynomial in t is of this form. Consequently, we have a
one-to-one correspondence between the set ofX-generators and the set of polynomial
time-dependent symmetries of X . The symmetries of X are generators of degree 0.

A master symmetry Z of X is a X-generator of degree 1 which is not a symmetry:[
[Z,X], X

]
= 0, and [Z,X] 6= 0.

Given Z, one constructs the time-dependent symmetry

YZ = Z + t[Z,X].(158)

We can generalize this definition and define the concept of master symmetries of a
hierarchy {Xj}j∈J , J ⊂ N, of commuting vector fields on M . A master symmetry of
the hierarchy {Xj}j∈J is a vector field Z on M such that[

[Z,Xi], Xj

]
= 0, and [Z,Xi] 6= 0,

for all i, j ∈ J . If Z is a master symmetry of the hierarchy, then

Yz = Z +
∑
j∈J

tj [Z,Xj ],

is a time-dependent symmetry of all the vector fields Xj .
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3. Plücker coordinates for the tau-functions of the Ablowitz-Ladik hierarchy

The Plücker coordinates for the tau-functions of the Ablowitz-Ladik hierarchy are
defined in terms of the elementary Schur polynomials. The elementary Schur poly-
nomials Sn(t) are defined in (131). As a direct consequence of the definition of the
elementary Schur polynomials, we notice that

nSn(t) =
∑

1≤k≤n

ktkSn−k(t), and
∂

∂tj
Si(t) = Si−j(t).(159)

As we have seen in Chapter 3, the tau functions of the Ablowitz-Ladik hierarchy are
given by

(160) τn(t, s) = det
(
µk−l(t, s)

)
0≤k,l<n.

It immediately follows from the generating function (131) that the moments µk admit
the following expansion in terms of elementary Schur polynomials

µk(s, t) =
∞∑

n,m=0

Sm(t)Sn(s)µk+m−n(0, 0).(161)

It follows that the tau functions (160) admit the expansion

τn(t, s) =
∑

0≤i0<···<in−1
0≤j0<···<jn−1

pi0,...,in−1
j0,...,jn−1

Sin−1−(n−1),...,i0(t)Sjn−1−(n−1),...,j0(s),

where

(162) pi0,...,in−1
j0,...,jn−1

= det
(
µik−jl(0, 0)

)
0≤k,l<n,

are the so-called Plücker coordinates, and Si1,...,ik(t) denote the Schur polynomials

Si1,...,ik(t) = det
(
Sir+s−r(t)

)
1≤r,s≤k.

Indeed, using the expansion (161) we have

τn(t, s) =
∑

0≤i0,i1,...,in−1
0≤j0,j1,...,jn−1

det
[
µk−l+ik−jl(0, 0)

]
0≤k,l<n

× Si0(t) . . . Sin−1(t)Sj0(s) . . . Sjn−1(s).

Relabeling the indices as follows

ik 7→ ik − k, jl 7→ jl − l,
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we get

τn(t, s)

=
∑

0≤i0,...,in−1
0≤j0,...,jn−1

det
[
µik−jl(0, 0)

]
0≤k,l<nSi0(t)Si1−1(t) . . . Sin−1−(n−1)(t)

× Sj0(s)Sj1−1(s) . . . Sjn−1−(n−1)(s)

=
∑

0≤i0<···<in−1
0≤j0<···<jn−1

∑
σ1,σ2∈Sn

(−1)σ1(−1)σ2 det
[
µik−jl(0, 0)

]
0≤k,l<n

× Siσ1(0)(t)Siσ1(1)−1(t) . . . Siσ1(n−1)−(n−1)(t)

× Sjσ2(0)(s)Sjσ2(1)−1(s) . . . Sjσ2(n−1)−(n−1)(s)

=
∑

0≤i0<···<in−1
0≤j0<···<jn−1

pi0,...,in−1
j0,...,jn−1

Sin−1−(n−1),...,i0(t)Sjn−1−(n−1),...,j0(s).

4. Master symmetries of the Ablowitz-Ladik hierarchy

Following an idea introduced in [42] in the context of the 1-dimensional Toda lattices,
we define the following vector fields on the Toeplitz bi-moments

(163) Vjµk = (k + j)µk+j , ∀j ∈ Z.

These vector fields trivially satisfy the commutation relations

[Vi, Vj ] = (j − i)Vi+j(164)

[Vi, Tj ] = jTi+j , ∀i, j ∈ Z,(165)

from which it follows that

(166) [[Vi, Tj ], Tj ] = j[Ti+j , Tj ] = 0, ∀i, j ∈ Z.

Equations (164), (165) and (166) mean that the vector fields Vj , j ∈ Z, form a Virasoro
algebra of master symmetries, in the sense of Fuchssteiner [37], for the Ablowitz-
Ladik hierarchy.

We shall establish the next result:

Theorem 4.1 (Haine-Vanderstichelen [44]). For all k ∈ Z, we have

L
(n)
k τn(t, s) =∑
0≤i0<···<in−1
0≤j0<···<jn−1

Vk

(
pi0,...,in−1
j0,...,jn−1

)
Sin−1−(n−1),...,i0(t)Sjn−1−(n−1),...,j0(s),
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with L(n)
k , k ∈ Z, defined as in (54), (55), (56), and Vk

(
pi0,...,in−1
j0,...,jn−1

)
the Lie derivative

of the Plücker coordinates (162) in the direction of the master symmetries Vk of the
Ablowitz-Ladik hierarchy, as defined in (163).

Thus the operators L(n)
k , k ∈ Z, precisely describe the master symmetries of the

Ablowitz-Ladik hierarchy on the tau functions of this hierarchy. Since master symme-
tries are usually connected with a bi-hamiltonian structure in the sense of Magri [52]
(see [24] for an overview, and also [53] and [40] for connexions with bispectral
problems), it suggests investigating the existence of a bi-Hamiltonian structure for the
Ablowitz-Ladik hierarchy, and in particular the link with the recursion operator for
this hierarchy that was found in [33].

The plan of the rest of this section is as follows. First we shall translate the
master symmetries on the Plücker coordinates pi0,...,in−1

j0,...,jn−1

. Next we shall com-

pute the action of the Virasoro operators on the products of Schur polynomials
Sin−1−(n−1),...,i0(t)Sjn−1−(n−1),...,j0(s). Finally we shall end with the proof of
Theorem 4.1.

4.1. Some algebraic lemmas. We shall need the following lemmas. In order to
formulate them, we introduce some notations. Given n vectors x1, . . . , xn ∈ Rn, we
shall denote by |x1x2 . . . xn| the determinant of the n × n matrix formed with the
columns xi. Also, given two vectors x and y, x ∧ y denotes the usual wedge product,
with components (x ∧ y)rs = xrys − xsyr. Finally, for an n × n matrix A, Ar
will denote the rth column of A, and ATr the rth column of the transposed matrix,
and tr(A) will mean the trace of A. With these conventions, we have the following
lemma.

Lemma 4.2 (Haine-Semengue [42]). LetA andB be n×nmatrices, withA invertible.
Then

(i)
n∑
r=1

|A1 . . . Ar−1BrAr+1 . . . An| = (detA)tr(BA−1),

(ii)
∑

1≤r<s≤n

|A1 . . . Ar−1BrAr+1 . . . As−1BsAs+1 . . . An|

= (detA)
∑

1≤r<s≤n

(
(BA−1)r ∧ (BA−1)s

)
rs
.
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PROOF. (i) Let A,B be n× n matrices, with A invertible. As A is invertible, its
colums form a basis of Cn and thus we have

Br = Ac(r) =
∑
j

c
(r)
j Aj ,(167)

for a certain c(r) ∈ Cn, whose components are c(r)j = (A−1B)jr. It then follows that
n∑
r=1

|A1 . . . Ar−1BrAr+1 . . . An|

=
n∑
r=1

|A1 . . . Ar−1

(∑
j

c
(r)
j Aj

)
Ar+1 . . . An|

= detA
n∑
r=1

c(r)r

= (detA)tr(BA−1).

(ii) Using (167), we have∑
1≤r<s≤n

|A1 . . . Ar−1BrAr+1 . . . As−1BsAs+1 . . . An|

=
∑

1≤r<s≤n

|A1 . . . Ar−1

(∑
j

c
(r)
j Aj

)
Ar+1 . . .

As−1

(∑
j

c
(s)
j Aj

)
As+1 . . . An|

=
∑

1≤r<s≤n

|A1 . . . Ar−1

(
c(r)r Ar + c(r)s As

)
Ar+1 . . .

As−1

(
c(s)r Ar + c(s)s As

)
As+1 . . . An|

= detA
∑

1≤r<s≤n

(c(r)r c(s)s − c(r)s c(s)r )

= detA
∑

1≤r<s≤n

(
(A−1B)r ∧ (A−1B)s

)
rs
.

We thus obtain∑
1≤r<s≤n

|A1 . . . Ar−1BrAr+1 . . . As−1BsAs+1 . . . An|

= detA
∑

1≤r<s≤n

(
(BA−1)r ∧ (BA−1)s

)
rs
,

where we have used the fact that for X,Y two n× n matrices, we have∑
1≤r<s≤n

(
(XY )r ∧ (XY )s

)
rs

=
∑

1≤r<s≤n

(
(Y X)r ∧ (Y X)s

)
rs
.(168)
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This concludes the proof of the lemma. �

We will also need a transposed version of this lemma.

Lemma 4.3. With the same conditions as in Lemma 4.2, we have

(i)
n∑
r=1

|AT1 . . . ATr−1(B)Tr A
T
r+1 . . . A

T
n |

=
n∑
r=1

|A1 . . . Ar−1BrAr+1 . . . An|,

(ii)
∑

1≤r<s≤n

|AT1 . . . ATr−1B
T
r A

T
r+1 . . . A

T
s−1B

T
s A

T
s+1 . . . A

T
n |

=
∑

1≤r<s≤n

|A1 . . . Ar−1BrAr+1 . . . As−1BsAs+1 . . . An|.

PROOF. Both formulas are direct consequences of Lemma 4.2, by observing that
for X,Y two n× n matrices, we have (168) and

(XT
r ∧XT

s )rs = (Xr ∧Xs)rs.

�

We give two consequences of this lemma. First we particularize the preceding lemma
to the Plücker coordinates, and then we particularize it to the Schur polynomials.

Lemma 4.4. For m ∈ Z we have

(i)
n∑
l=1

p i0,...,in−1
j0,...,jn−l−m,...,jn−1

=
n∑
l=1

pi0,...,in−l+m,...,in−1
j0,...,jn−1

,

(ii)
∑

1≤r<s≤n

p i0,...,in−1
j0,...,jn−s−m,...,jn−r−m,...,jn−1

=
∑

1≤r<s≤n

pi0,...,in−s+m,...,in−r+m,...,in−1
j0,...,jn−1

.

PROOF. Define the n× n matrices

A = (µik−jl)0≤k,l≤n−1, and B(m) = (µik−jl+m)0≤k,l≤n−1.
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We then have
n∑
l=1

p i0,...,in−1
j0,...,jn−l−m,...,jn−1

=
n∑
l=1

∣∣A1 . . . An−l−1

(
B(m)

)
n−lAn−l+1 . . . An−1

∣∣
=

n∑
l=1

∣∣AT1 . . . ATn−l−1

(
B(m)

)T
n−lA

T
n−l+1 . . . A

T
n−1

∣∣,
=

n∑
l=1

pi0,...,in−l+m,...,in−1
j0,...,jn−1

,

where we have used Lemma 4.3(i) in the second equality. This proves (i). The proof
of (ii) is similar. �

Lemma 4.5. The following holds

(i)
n∑
l=1

Sin−1−(n−1),...,in−l−(n−l)−1,...,i0(t)

= det


Sin−1−n(t) Sin−1−(n−2)(t) · · · Sin−1(t)
Sin−2−n(t) Sin−2−(n−2)(t) · · · Sin−2(t)

...
...

...
Si0−n(t) Si0−(n−2)(t) · · · Si0(t)

 ,

(ii)
n−1∑
l=1

Sin−1−(n−1),...,in−l−(n−l)+1,...,i1−1(t)

= det


Sin−1−(n−1)(t) · · · Sin−1−2(t) Sin−1(t)
Sin−2−(n−1)(t) · · · Sin−2−2(t) Sin−2(t)

...
...

...
Si1−(n−1)(t) · · · Si1−2(t) Si1(t)

 .

PROOF. We prove (i). Define the n× n matrices

A =
(
Sin−k−(n−k)+l−k(t)

)
1≤k,l≤n,

B(m) =
(
Sin−k−(n−k)+l−k+m(t)

)
1≤k,l≤n.
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We have Sin−1−(n−1),...,i0(t) = detA. It then follows that
n∑
l=1

Sin−1−(n−1),...,in−l−(n−l)−1,...,i0(t)

=
n∑
l=1

∣∣AT1 . . . ATn−l−1

(
B(−1)

)T
n−lA

T
n−l+1 . . . A

T
n−1

∣∣.
Using Lemma 4.3(i) we get

n∑
l=1

Sin−1−(n−1),...,in−l−(n−l)−1,...,i0(t)

=
n∑
l=1

∣∣A1 . . . An−l−1

(
B(−1)

)
n−lAn−l+1 . . . An−1

∣∣.
In the right-hand side, in the lth term, the lth and (l − 1)th colums coincide in the
determinant, provided that l 6= 1. Consequently, only the first term of the right-hand
side gives a non zero contribution. This proves (i). The proof of (ii) is similar. �

4.2. Expression of the master symmetries on the Plücker coordinates. We
now translate the master symmetries on Plücker coordinates.

Lemma 4.6. Let Vkpi0,...,in−1
j0,...,jn−1

denote the Lie derivative of the Plücker coordinates in

the direction of the vector fields Vk. Then for k ∈ Z,

Vkpi0,...,in−1
j0,...,jn−1

=
n−1∑
l=0

(il + k)pi0,...,il−1,il+k,il+1,...,in−1
j0,...,jn−1

−
n−1∑
l=0

jlp i0,...,in−1
j0,...,jl−1,jl−k,jl+1,...,jn−1

=
n−1∑
l=0

ilpi0,...,il−1,il+k,il+1,...,in−1
j0,...,jn−1

−
n−1∑
l=0

(jl − k)p i0,...,in−1
j0,...,jl−1,jl−k,jl+1,...,jn−1

.(169)

PROOF. Fix 0 ≤ i0 < i1 < · · · < in−1 and 0 ≤ j0 < j1 < · · · < jn−1. We
introduce the n× n matrices

A =
(
µik−jl(0, 0)

)
0≤k,l≤n−1

, B(m) =
(
µik−jl+m(0, 0)

)
0≤k,l≤n−1

,

as well as the diagonal matrix D = diag(j0, . . . , jn−1). We notice that pi0,...,in−1
j0,...,jn−1

=

detA, by definition of the Plücker coordinates. From the definition of Vk and using
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Leibniz’s rule we find for k ∈ Z
Vkpi0,...,in−1

j0,...,jn−1

=

n−1∑
l=0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

µi0−j0 µi0−j1 . . . µi0−jn−1
.
.
.

.

.

.
.
.
.

µil−1−j0 µil−1−j1 . . . µil−1−jn−1
(il − j0 + k)µil−j0+k (il − j1 + k)µil−j1+k . . . (il − jn−1 + k)µil−jn−1+k

µil−1−j0 µil−1−j1 . . . µil−1−jn−1
.
.
.

.

.

.
.
.
.

µin−1−j0 µin−1−j1 . . . µin−1−jn−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

or equivalently,

Vkpi0,...,in−1
j0,...,jn−1

=
n−1∑
l=0

(il + k)pi0,...,il−1,il+k,il+1,...,in−1
j0,...,jn−1

−
n∑
l=1

∣∣AT1 . . . ATl−1

(
B(k)D

)T
l
ATl+1 . . . A

T
n

∣∣.
Using Lemma 4.3 we obtain

Vkpi0,...,in−1
j0,...,jn−1

=
n−1∑
l=0

(il + k)pi0,...,il−1,il+k,il+1,...,in−1
j0,...,jn−1

−
n∑
l=1

∣∣A1 . . . Al−1

(
B(k)D

)
l
Al+1 . . . An

∣∣
=
n−1∑
l=0

(il + k)pi0,...,il−1,il+k,il+1,...,in−1
j0,...,jn−1

−
n∑
l=1

jl−1

∣∣A1 . . . Al−1

(
B(k)

)
l
Al+1 . . . An

∣∣.
This gives the first equality in (169). The second equality in (169) can be derived from
the first one by using Lemma 4.4(i). �

4.3. Action of the Virasoro operators L(n)
k on the Schur polynomials. Next

we shall compute the action of the Virasoro operators on the products of Schur poly-
nomials Sin−1−(n−1),...,i0(t)Sjn−1−(n−1),...,j0(s). In (79) we found the following ex-
pressions for the Virasoro operators

L
(n)
k = A

(n)
k −B(n)

−k +
1
2

k−1∑
j=1

(aj − b−j)(ak−j − bj−k), k ≥ 1

L
(n)
0 = A

(n)
0 −B(n)

0 ,(170)

L
(n)
−k = A

(n)
−k −B

(n)
k − 1

2

k−1∑
j=1

(a−j − bj)(aj−k − bk−j), k ≥ 1,
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with A(n)
k and B(n)

k defined in (77), or (78). We have the following lemma.

Lemma 4.7.

(i) L(n)
0 Sin−1−(n−1),...,i0(t)Sjn−1−(n−1),...,j0(s)

=
n−1∑
l=0

(il − jl)Sin−1−(n−1),...,i0(t)Sjn−1−(n−1),...,j0(s),

(ii) L(n)
1 Sin−1−(n−1),...,i0(t)Sjn−1−(n−1),...,j0(s)

=
n∑
l=1

in−lSin−1−(n−1),...,in−l−(n−l)−1,...,i0(t)Sjn−1−(n−1),...,j0(s)

−
n∑
l=1

(jn−l + 1)Sin−1−(n−1),...,i0(t)

× Sjn−1−(n−1),...,jn−l−(n−l)+1,...,j0(s),

(iii) L(n)
2 Sin−1−(n−1),...,i0(t)Sjn−1−(n−1),...,j0(s)

=
n∑
l=1

in−lSin−1−(n−1),...,in−l−(n−l)−2,...,i0(t)Sjn−1−(n−1),...,j0(s)

+
∑

1≤k<l≤n

Sin−1−(n−1),...,in−k−(n−k)−1,...,in−l−(n−l)−1,...,i0(t)

× Sjn−1−(n−1),...,j0(s)

−
n∑
l=1

(jn−l + 2)Sin−1−(n−1),...,i0(t)

× Sjn−1−(n−1),...,jn−l−(n−l)+2,...,j0(s)

−
∑

1≤k<l≤n

Sin−1−(n−1),...,i0(t)

× Sjn−1−(n−1),...,jn−k−(n−k)+1,...,jn−l−(n−l)+1,...,j0(s)

+ s1

n∑
l=1

Sin−1−(n−1),...,i0(t)Sjn−1−(n−1),...,jn−l−(n−l)+1,...,j0(s)

− s1

n∑
l=1

Sin−1−(n−1),...,in−l−(n−l)−1,...,i0(t)Sjn−1−(n−1),...,j0(s).
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PROOF. By using Leibniz’s rule we have for j ≥ 1,

∂

∂tj
Sin−1−(n−1),...,i0(t) =

n∑
l=1

Sin−1−(n−1),...,in−l−(n−l)−j,...,i0(t),(171)

and

(172)
∂2

∂t21
Sin−1−(n−1),...,i0(t) =

n∑
l=1

Sin−1−(n−1),...,in−l−(n−l)−2,...,i0(t)

+ 2
∑

1≤r<s≤n

Sin−1−(n−1),...,in−r−(n−r)−1,...,in−s−(n−s)−1,...,i0(t).

Define the following n× n matrices

A(t) :=

 Sin−1−(n−1)(t) . . . Sin−1(t)
...

...
Si0−(n−1)(t) . . . Si0(t)

 ,

B(j; t) :=

 Sin−1−(n−1)−j(t) . . . Sin−1−j(t)
...

...
Si0−(n−1)−j(t) . . . Si0−j(t)

 ,

and D = diag(n − 1, n − 2, . . . , 0). We shall denote Â(s) and B̂(j; s) the same
matrices with t→ s and (i0, . . . , in−1)→ (j0, . . . , jn−1). From the definition of the
elementary Schur polynomials we have for j ≥ 0,

∞∑
k=1

ktk
∂

∂tk+j
Si(t) = (i− j)Si−j(t),

∞∑
k=j+1

ktk
∂

∂tk−j
Si(t) = (i+ j)Si+j(t)−

∑
1≤l≤j

ltlSi+j−l(t).

Consequently, by first using Leibniz’s rule and then Lemma 4.2(i) we have for j ≥ 0
∞∑
k=1

ktk
∂

∂tk+j
Sin−1−(n−1),...,i0(t)

=
n∑
l=1

(in−l − j)Sin−1−(n−1),...,in−l−(n−l)−j,...,i0(t)

−
(

detA(t)
)
tr
(
A(t)−1B(j, t)D

)
,(173)
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∞∑
k=j+1

ktk
∂

∂tk−j
Sin−1−(n−1),...,i0(t)

=
n∑
l=1

(in−l + j)Sin−1−(n−1),...,in−l−(n−l)+j,...,i0(t)

−
(

detA(t)
)
tr
(
A(t)−1B(−j, t)D

)
−

j∑
m=1

mtm
(

detA(t)
)
tr
(
A(t)−1B(m− j, t)

)
.(174)

We are now ready to prove the lemma.

(i) From (170), we have L(n)
0 = A

(n)
0 −B(n)

0 . Using (173) with j = 0, we obtain

A
(n)
0 Sin−1−(n−1),...,i0(t)

=
∞∑
k=1

ktk
∂

∂tk
Sin−1−(n−1),...,i0(t) +

n2

2
Sin−1−(n−1),...,i0(t)

=
n∑
l=1

in−lSin−1−(n−1),...,i0(t)−
(

detA(t)
)
tr
(
A(t)−1B(0, t)D

)
+
n2

2
Sin−1−(n−1),...,i0(t).

We have B(0, t) = A(t), and thus(
detA(t)

)
tr
(
A(t)−1B(0, t)D

)
=
(

detA(t)
)
tr(D)

=
n(n− 1)

2
Sin−1−(n−1),...,i0(t).

Consequently, we get

A
(n)
0 Sin−1−(n−1),...,i0(t) =

[ n∑
l=1

in−l +
n

2

]
Sin−1−(n−1),...,i0(t).

Similarly, we get

B
(n)
0 Sjn−1−(n−1),...,j0(s) =

[ n∑
l=1

jn−l +
n

2

]
Sjn−1−(n−1),...,j0(s).

Combining both equations, we obtain (i).
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(ii) We have L(n)
1 = A

(n)
1 −B(n)

−1 . We compute, using (171) and (173)

A
(n)
1 Sin−1−(n−1),...,i0(t) =

[ ∞∑
j=1

jtj
∂

∂tj+1
+ n

∂

∂t1

]
Sin−1−(n−1),...,i0(t)

=
n∑
l=1

(
in−l + n− 1

)
Sin−1−(n−1),...,in−l−(n−l)−1,...,i0(t)

−
(

detA(t)
)
tr
(
A(t)−1B(1, t)D

)
By virtue of Lemma 4.2(i), we have(

detA(t)
)
tr
(
A(t)−1B(1, t)D

)
= (n− 1)

∣∣(B(1, t)
)

1
A2(t) . . . An(t)

∣∣.
But by virtue of Lemma 4.5(i), this is equal to(

detA(t)
)
tr
(
A(t)−1B(1, t)D

)
= (n− 1)

n∑
l=1

Sin−1−(n−1),...,in−l−(n−l)−1,...,i0(t).

Hence, we obtain

A
(n)
1 Sin−1−(n−1),...,i0(t) =

n∑
l=1

in−lSin−1−(n−1),...,in−l−(n−l)−1,...,i0(t).(175)

Similarly, we have using (174)

B
(n)
−1 Sjn−1−(n−1),...,j0(s) =

[ ∞∑
j=2

jsj
∂

∂sj−1
+ ns1

]
Sjn−1−(n−1),...,j0(s)

=
n∑
l=1

(jn−l + 1)Sjn−1−(n−1),...,jn−l−(n−l)+1,...,j0(s)

−
(

det Â(s)
)
tr
(
Â(s)−1B̂(−1, s)D

)
− s1

(
det Â(s)

)
tr
(
Â(s)−1B̂(0, s)

)
+ ns1Sjn−1−(n−1),...,j0(s).

We have using Lemma 4.2(i)(
det Â(s)

)
tr
(
Â(s)−1B̂(−1, s)D

)
= 0,

and, obviously, we also have(
det Â(s)

)
tr
(
Â(s)−1B̂(0, s)

)
= nSjn−1−(n−1),...,j0(s).

Consequently we obtain

(176) B
(n)
−1 Sjn−1−(n−1),...,j0(s)

=
n∑
l=1

(jn−l + 1)Sjn−1−(n−1),...,jn−l−(n−l)+1,...,j0(s).
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Substracting (175) and (176) gives (ii).

(iii) From (170), we have

L
(n)
2 = A

(n)
2 −B(n)

−2 +
1
2

( ∂

∂t1
− s1

)2

.

We study separately the contributions of the three terms in the operator L(n)
2 on the

product of Schur functions. We start with the contribtion of A(n)
2 . We compute, using

(171), (172) and (173)

A
(n)
2 Sin−1−(n−1),...,i0(t)

=
[1

2
∂2

∂t21
+
∞∑
j=1

jtj
∂

∂tj+2
+ n

∂

∂t2

]
Sin−1−(n−1),...,i0(t)

=
n∑
l=1

(
in−l + n− 3

2
)
Sin−1−(n−1),...,in−l−(n−l)−2,...,i0(t)

+
∑

1≤k<l≤n

Sin−1−(n−1),...,in−k−(n−k)−1,...,in−l−(n−l)−1,...,i0(t)

−
(

detA(t)
)
tr
(
A(t)−1B(2, t)D

)
.

The last term in this equation gives by developing the trace(
detA(t)

)
tr
(
A(t)−1B(2, t)D

)
=
(

detA(t)
)[

(n−1)
(
A(t)−1B(2, t)

)
11

+(n−2)
(
A(t)−1B(2, t)

)
22

]
.

We have (
detA(t)

)
tr
(
A(t)−1B(2, t)

)
=
(

detA(t)
)[(

A(t)−1B(2, t)
)

11
+
(
A(t)−1B(2, t)

)
22

]
,

and by a short computation(
A(t)−1B(2, t)

)
22

= −
∑

1≤k<l≤n

((
A(t)−1B(1, t)

)
k
∧
(
A(t)−1B(1, t)

)
l

)
kl
.

Consequently we have(
detA(t)

)
tr
(
A(t)−1B(2, t)D

)
= (n− 1)

(
detA(t)

)
tr
(
A(t)−1B(2, t)

)
+
(

detA(t)
) ∑

1≤k<l≤n

((
A(t)−1B(1, t)

)
k
∧
(
A(t)−1B(1, t)

)
l

)
kl
.
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Using Lemma 4.2, we obtain(
detA(t)

)
tr
(
A(t)−1B(2, t)D

)
=(n− 1)

n∑
l=1

Sin−1−(n−1),...,in−l−(n−l)−2,...,i0(t)

+
∑

1≤k<l≤n

Sin−1−(n−1),...,in−k−(n−k)−1,...,in−l−(n−l)−1,...,i0(t).

Hence, we get

(177) A
(n)
2 Sin−1−(n−1),...,i0(t)

=
n∑
l=1

(
in−l −

1
2
)
Sin−1−(n−1),...,in−l−(n−l)−2,...,i0(t).

We now turn to the contribution of B(n)
−2 . We have using (174)

B
(n)
−2 Sjn−1−(n−1),...,j0(s)

=
[1

2
s2

1 +
∞∑
j=3

jtj
∂

∂sj−2
+ 2ns2

]
Sjn−1−(n−1),...,j0(s)

=
[1

2
s2

1 + 2ns2

]
Sjn−1−(n−1),...,j0(s)

+
n∑
l=1

(
jn−l + 2

)
Sjn−1−(n−1),...,jn−l−(n−l)+2,...,j0(s)

−
(

det Â(s)
)
tr
(
Â(s)−1B̂(−2, s)D

)
−

2∑
m=1

msm
(

det Â(s)
)
tr
(
Â(s)−1B̂(m− 2, s)

)
.

By a similar argument as above, we have(
det Â(s)

)
tr
(
Â(s)−1B̂(−2, s)D

)
= −

(
det Â(s)

) ∑
1≤k<l≤n

((
Â(s)−1B̂(−1, s)

)
k
∧
(
Â(s)−1B̂(−1, s)

)
l

)
kl
,

and thus using Lemma 4.2(ii), we obtain(
det Â(s)

)
tr
(
Â(s)−1B̂(−2, s)D

)
= −

∑
1≤k<l≤n

Sjn−1−(n−1),...,jn−k−(n−k)+1,...,jn−l−(n−l)+1,...,j0(s).
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We also have, using Lemma 4.2(i),

2∑
m=1

msm
(

det Â(s)
)
tr
(
Â(s)−1B̂(m− 2, s)

)
= s1

n∑
l=1

Sjn−1−(n−1),...,jn−l−(n−l)+1,...,j0(s)+2ns2Sjn−1−(n−1),...,j0(s).

Consequently, we have

B
(n)
−2 Sjn−1−(n−1),...,j0(s)

=
n∑
l=1

(
jn−l + 2

)
Sjn−1−(n−1),...,jn−l−(n−l)+2,...,j0(s)

+
∑

1≤k<l≤n

Sjn−1−(n−1),...,jn−k−(n−k)+1,...,jn−l−(n−l)+1,...,j0(s)

− s1

n∑
l=1

Sjn−1−(n−1),...,jn−l−(n−l)+1,...,j0(s)

+
1
2
s2

1Sjn−1−(n−1),...,j0(s).(178)

Finally, we turn to the contribution of the term 1
2

(
∂
∂t1
− s1

)2

. We have using (171)
and (172)

1
2

[ ∂
∂t1
− s1

]2
Sin−1−(n−1),...,i0(t)

=
1
2

[ ∂2

∂t21
− 2s1

∂

∂t1
+ s2

1

]
Sin−1−(n−1),...,i0(t)

=
1
2

n∑
l=1

Sin−1−(n−1),...,in−l−(n−l)−2,...,i0(t)

+
∑

1≤k<l≤n

Sin−1−(n−1),...,in−k−(n−k)−1,...,in−l−(n−l)−1,...,i0(t)

− s1

n∑
l=1

Sin−1−(n−1),...,in−l−(n−l)−1,...,i0(t) +
1
2
s2

1Sin−1−(n−1),...,i0(t).(179)

Combining (177), (178) and (179), we obtain (iii). �

Remark 4.8. We observe that by definition of the operators L(n)
k we have

L
(n)
−kSin−1−(n−1),...,i0(t)Sjn−1−(n−1),...,j0(s)

= −L(n)
k Sin−1−(n−1),...,i0(t)Sjn−1−(n−1),...,j0(s)

∣∣∣ t↔s
(i0,...,in−1)↔(j0,...,jn−1)

.
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4.4. Expression of the master symmetries on the manifold of tau functions:
proof of the main theorem. We now turn to the last part of this section. We will
prove Theorem 4.1. We first prove the following lemma.

Lemma 4.9.
n∑
l=1

∑
0≤i0<···<in−1
0≤j0<···<jn−1

pi0,...,in−1
j0,...,jn−1

Sin−1−(n−1),...,i0(t)

× Sjn−1−(n−1),...,jn−l−(n−l)+1,...,j0(s)

+
∑

0≤i0<···<in−1
0<j1<···<jn−1

p i0,...,in−1
−1,j1,...,jn−1

Sin−1−(n−1),...,i0(t)Sjn−1−(n−1),...,j1−1,0(s)

=
n∑
l=1

∑
0≤i0<···<in−1
0≤j0<···<jn−1

pi0,...,in−1
j0,...,jn−1

Sin−1−(n−1),...,in−l−(n−l)−1,...,i0(t)

× Sjn−1−(n−1),...,j0(s).(180)

PROOF. For simplicity, we will use the notations

Si(t) = Sin−1−(n−1),...,i0(t), Sj(s) = Sjn−1−(n−1),...,j0(s),(181)

when no ’special’ shift on the indices of the Schur functions occur. Relabeling each
term in the first sum of the left-hand side of (180) in the following way jn−l 7→
jn−l − 1 gives

n∑
l=1

∑
0≤i0<···<in−1
0≤j0<···<jn−1

pi0,...,in−1
j0,...,jn−1

Si(t)Sjn−1−(n−1),...,jn−l−(n−l)+1,...,j0(s)

=
n∑
l=1

∑
0≤i0<···<in−1

0≤j0<···<jn−l−1<···<jn−1

p i0,...,in−1
j0,...,jn−l−1,...,jn−1

Si(t)Sj(s).

On the one hand, for a fixed 1 ≤ l ≤ n − 1, if jn−l = jn−l−1 + 1, then
p i0,...,in−1
j0,...,jn−l−1,...,jn−1

= 0. On the other hand, for a fixed 2 ≤ l ≤ n, if jn−l = jn−l+1,
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then Sjn−1−(n−1),...,jn−l−(n−l),...,j0(s) = 0. Therefore
n∑
l=1

∑
0≤i0<···<in−1
0≤j0<···<jn−1

pi0,...,in−1
j0,...,jn−1

Si(t)Sjn−1−(n−1),...,jn−l−(n−l)+1,...,j0(s)

=
n∑
l=1

∑
0≤i0<···<in−1
0≤j0<···<jn−1

p i0,...,in−1
j0,...,jn−l−1,...,jn−1

Si(t)Sj(s)

−
∑

0≤i0<···<in−1
0<j1<···<jn−1

p i0,...,in−1
−1,j1,...,jn−1

Si(t)Sjn−1−(n−1),...,j1−1,0(s).

Consequently, the left-hand side of (180) is equal to
n∑
l=1

∑
0≤i0<···<in−1
0≤j0<···<jn−1

pi0,...,in−1
j0,...,jn−1

Si(t)Sjn−1−(n−1),...,jn−l−(n−l)+1,...,j0(s)

+
∑

0≤i0<···<in−1
0<j1<···<jn−1

p i0,...,in−1
−1,j1,...,jn−1

Si(t)Sjn−1−(n−1),...,j1−1,0(s)

=
n∑
l=1

∑
0≤i0<···<in−1
0≤j0<···<jn−1

p i0,...,in−1
j0,...,jn−l−1,...,jn−1

Si(t)Sj(s).(182)

Similarly, one can show that the right-hand side of (180) is equal to
n∑
l=1

∑
0≤i0<···<in−1
0≤j0<···<jn−1

pi0,...,in−1
j0,...,jn−1

Sin−1−(n−1),...,in−l−(n−l)−1,...,i0(t)Sj(s)

=
n∑
l=1

∑
0≤i0<···<in−1
0≤j0<···<jn−1

pi0,...,in−l+1,...,in−1
j0,...,jn−1

Si(t)Sj(s).(183)

By virtue of Lemma 4.4, (182) and (183) are equal. �

Proof of Theorem 4.1: We will prove the theorem for k ≥ 0. The case k < 0 is
similar. Using the Plücker expansion of τn(t), and Lemmas 4.6 and 4.7 we have for
k = 0, 1, using the notations (181),

Vkτn(s, t) =
∑

0≤i0<···<in−1
0≤j0<···<jn−1

Vkpi0,...,in−1
j0,...,jn−1

Si(t)Sj(s)

=
∑

0≤i0<···<in−1
0≤j0<···<jn−1

pi0,...,in−1
j0,...,jn−1

L
(n)
k Si(t)Sj(s)

= L
(n)
k τn(s, t),
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where, in the second equality, we have performed some relabeling of the indices as
in the proof of Lemma 4.9. We will finish the proof with the case k = 2, for which
we provide some more details, but first we prove the theorem for general k ≥ 3. We
proceed by induction. Assume the theorem holds for some k ≥ 2. We will establish it
for k + 1. The argument follows from the commutation relations (71) and (164). We
have

(k − 1)Vk+1τn(s, t) =
∑

0≤i0<···<in−1
0≤j0<···<jn−1

[V1, Vk]pi0,...,in−1
j0,...,jn−1

Si(t)Sj(s)

=
∑

0≤i0<···<in−1
0≤j0<···<jn−1

pi0,...,in−1
j0,...,jn−1

[L(n)
k , L

(n)
1 ]Si(t)Sj(s)

= (k − 1)L(n)
k+1τn(s, t),

where in the second equality we have used the induction hypothesis.

We now provide some details for the case k = 2. Using Lemmas 4.7 and 4.9 we have

L
(n)
2 τn(s, t) = T1 + T2 + T3 + T4

− s1

∑
0≤i0<···<in−1
0<j1<···<jn−1

p i0,...,in−1
−1,j1,...,jn−1

Si(t)Sjn−1−(n−1),...,j1−1,0(s),(184)

with

T1 :=
∑

0≤i0<···<in−1
0≤j0<···<jn−1

pi0,...,in−1
j0,...,jn−1

×
n∑
l=1

in−lSin−1−(n−1),...,in−l−(n−l)−2,...,i0(t)Sj(s),

T2 := −
∑

0≤i0<···<in−1
0≤j0<···<jn−1

pi0,...,in−1
j0,...,jn−1

×
n∑
l=1

(jn−l + 2)Si(t)Sjn−1−(n−1),...,jn−l−(n−l)+2,...,j0(s),

T3 :=
∑

0≤i0<···<in−1
0≤j0<···<jn−1

pi0,...,in−1
j0,...,jn−1

×
∑

1≤k<l≤n

Sin−1−(n−1),...,in−k−(n−k)−1,...,in−l−(n−l)−1,...,i0(t)Sj(s),



116 Chapter 4. Master Symmetries of the Ablowitz-Ladik hierarchy

T4 := −
∑

0≤i0<···<in−1
0≤j0<···<jn−1

pi0,...,in−1
j0,...,jn−1

×
∑

1≤k<l≤n

Si(t)Sjn−1−(n−1),...,jn−k−(n−k)+1,...,jn−l−(n−l)+1,...,j0(s).

We will consider separately the four terms T1, T2, T3, T4. By arguments similar to that
used in the proof of Lemma 4.9, and using the fact that Sin−1−(n−1),...,i0(t) = 0 if
ik < 0 for some 0 ≤ k ≤ n− 1, we get for T1

T1 =
n∑
l=1

∑
0≤i0<···<in−1
0≤j0<···<jn−1

(in−l + 2)pi0,...,in−l+2,...,in−1
j0,...,jn−1

Si(t)Sj(s)

+
n−1∑
l=1

∑
−1≤i0−1<···<in−l−1−1

=in−l<···<in−1
0≤j0<···<jn−1

(in−l + 2)pi0,...,in−l+2,...,in−1
j0,...,jn−1

Si(t)Sj(s)

−
n∑
l=2

∑
−1≤i0−1<···<in−l−1−1

<in−l+1=in−l+1<···<in−1
0≤j0<···<jn−1

(in−l + 2)pi0,...,in−l+2,...,in−1
j0,...,jn−1

× Si(t)Sj(s).

The two last terms in this expression annihilate, i.e.

0 =
n−1∑
l=1

∑
−1≤i0−1<···<in−l−1−1

=in−l<···<in−1
0≤j0<···<jn−1

(in−l + 2)pi0,...,in−l+2,...,in−1
j0,...,jn−1

× Si(t)Sj(s)

−
n∑
l=2

∑
−1≤i0−1<···<in−l−1−1

<in−l+1=in−l+1<···<in−1
0≤j0<···<jn−1

(in−l + 2)pi0,...,in−l+2,...,in−1
j0,...,jn−1

× Si(t)Sj(s).(185)



4. Master symmetries of the Ablowitz-Ladik hierarchy 117

Indeed, we have for 1 ≤ l ≤ n− 1∑
−1≤i0−1<···<in−l−1−1

=in−l<···<in−1
0≤j0<···<jn−1

(in−l + 2)pi0,...,in−l+2,...,in−1
j0,...,jn−1

Si(t)Sj(s) =

∑
−1≤k0−1<···<kn−l−1

=kn−l−1<···<kn−1
0≤j0<···<jn−1

(kn−l−1+2)pk0,...,kn−l−2,kn−l,kn−l−1+2,kn−l+1,...,kn−1
j0,...,jn−1

×

Skn−1−(n−1),...,kn−l+1−(n−l+1),kn−l−1−(n−l),kn−l−(n−l−1),kn−l−2−(n−l−2),...,k0 (t)

× Sj(s),

where we have made the relabeling in−l−1 7→ kn−l, in−l 7→ kn−l−1, and im 7→ km
if m 6= n − l − 1, n − l. As the Plücker coordinates and the Schur functions are
determinants, we have, permuting lines in the determinants,

pk0,...,kn−l−2,kn−l,kn−l−1+2,kn−l+1,...,kn−1
j0,...,jn−1

= −pk0,...,kn−l−1+2,...,kn−1
j0,...,jn−1

,

and
Skn−1−(n−1),...,kn−l+1−(n−l+1),kn−l−1−(n−l),kn−l−(n−l−1),kn−l−2−(n−l−2),...,k0 (t)

= −Sk(t),

and hence ∑
−1≤i0−1<···<in−l−1−1=in−l<···<in−1

0≤j0<···<jn−1

(in−l + 2)pi0,...,in−l+2,...,in−1
j0,...,jn−1

× Si(t)Sj(s)

=
∑

−1≤k0−1<···<kn−l−1=kn−l−1<···<kn−1
0≤j0<···<jn−1

(kn−l−1 + 2)pk0,...,kn−l−1+2,...,kn−1
j0,...,jn−1

× Sk(t)Sj(s).

Summing this expression for 1 ≤ l ≤ n − 1, and relabeling l 7→ l − 1 we get (185).
Consequently we obtain

T1 =
n∑
l=1

∑
0≤i0<···<in−1
0≤j0<···<jn−1

(in−l + 2)pi0,...,in−l+2,...,in−1
j0,...,jn−1

Si(t)Sj(s).(186)
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By similar arguments, we have

T2 = −
n∑
l=1

∑
0≤i0<···<in−1
0≤j0<···<jn−1

jn−lp i0,...,in−1
j0,...,jn−l−2,...,jn−1

Si(t)Sj(s)

+
∑

0≤i0<···<in−1
0≤j1<···<jn−1

p i0,...,in−1
−1,j1,...,jn−1

Si(t)Sjn−1−(n−1),...,j1−1,1(s),(187)

T3 =
∑

1≤k<l≤n

∑
0≤i0<···<in−1
0≤j0<···<jn−1

pi0,...,in−l+1,...,in−k+1,...,in−1
j0,...,jn−1

Si(t)Sj(s),(188)

T4 = −
∑

1≤k<l≤n

∑
0≤i0<···<in−1
0≤j0<···<jn−1

p i0,...,in−1
j0,...,jn−l−1,...,jn−k−1,...,jn−1

Si(t)Sj(s)

+
∑

1≤k≤n−1

∑
0≤i0<···<in−1
0<j1<···<jn−1

p i0,...,in−1
−1,j1,...,jn−k−1,...,jn−1

× Si(t)Sjn−1−(n−1),...,j1−1,0(s).(189)

Substituting (186), (187), (188) and (189) in (184), using Lemmas 4.4 and 4.6 we
obtain

L
(n)
2 τn(s, t) =

∑
0≤i0<···<in−1
0≤j0<···<jn−1

V2pi0,...,in−1
j0,...,jn−1

Si(t)Sj(s)

+
n−1∑
k=1

∑
0≤i0<···<in−1
0<j1<···<jn−1

p i0,...,in−1
−1,j1,...,jn−k−1,...,jn−1

Si(t)Sjn−1−(n−1),...,j1−1,0(s)

− s1

∑
0≤i0<···<in−1
0<j1<···<jn−1

p i0,...,in−1
−1,j1,...,jn−1

Si(t)Sjn−1−(n−1),...,j1−1,0(s)

+
∑

0≤i0<···<in−1
0≤j1<···<jn−1

p i0,...,in−1
−1,j1,...,jn−1

Si(t)Sjn−1−(n−1),...,j1−1,1(s).
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We prove that the last three terms in this expression annihilate

0 =

n−1∑
k=1

∑
0≤i0<···<in−1
0<j1<···<jn−1

p i0,...,in−1
−1,j1,...,jn−k−1,...,jn−1

Si(t)Sjn−1−(n−1),...,j1−1,0(s)

− s1
∑

0≤i0<···<in−1
0<j1<···<jn−1

p i0,...,in−1
−1,j1,...,jn−1

Si(t)Sjn−1−(n−1),...,j1−1,0(s)

+
∑

0≤i0<···<in−1
0≤j1<···<jn−1

p i0,...,in−1
−1,j1,...,jn−1

Si(t)Sjn−1−(n−1),...,j1−1,1(s),(190)

and hence

L
(n)
2 τn(s, t) =

∑
0≤i0<···<in−1
0≤j0<···<jn−1

V2pi0,...,in−1
j0,...,jn−1

Si(t)Sj(s).(191)

Indeed, developping the determinant Sjn−1−(n−1),...,j1−1,1(s) with respect to the last
line, using the fact that the first elementary Schur polynomials are S0(s) = 1 and
S1(s) = s1, and Lemma 4.5(ii), we have∑

0≤i0<···<in−1
0≤j1<···<jn−1

p i0,...,in−1
−1,j1,...,jn−1

Si(t)Sjn−1−(n−1),...,j1−1,1(s)

= s1

∑
0≤i0<···<in−1
0≤j1<···<jn−1

p i0,...,in−1
−1,j1,...,jn−1

Si(t)Sjn−1−(n−1),...,j1−1(s)

−
∑

0≤i0<···<in−1
0≤j1<···<jn−1

p i0,...,in−1
−1,j1,...,jn−1

Si(t)

×
n−1∑
l=1

Sjn−1−(n−1),...,jn−l−(n−l)+1,...,j1−1(s).

By an argument similar to that of the proof of Lemma 4.9, we get∑
0≤i0<···<in−1
0≤j1<···<jn−1

p i0,...,in−1
−1,j1,...,jn−1

Si(t)Sjn−1−(n−1),...,j1−1,1(s)

= s1

∑
0≤i0<···<in−1
0≤j1<···<jn−1

p i0,...,in−1
−1,j1,...,jn−1

Si(t)Sjn−1−(n−1),...,j1−1(s)

−
n−1∑
l=1

∑
0≤i0<···<in−1
0≤j1<···<jn−1

p i0,...,in−1
−1,j1,...,jn−l−1,...,jn−1

Si(t)Sjn−1−(n−1),...,j1−1(s).

Noticing that Sjn−1−(n−1),...,j1−1(s) = 0 when j1 = 0, and

Sjn−1−(n−1),...,j1−1(s) = Sjn−1−(n−1),...,j1−1,0(s),
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when j1 > 0, we get (190), and hence (191). This proves the case k = 2 and finishes
the proof.

�

5. A Lax pair for the master symmetries

In the preceding sections, we have defined on the bi-moments vector fields Vk, k ∈ Z,
defining the master symmetries of the Ablowitz-Ladik hierarchy. We have obtained
the expression of these vector fields on the manifold of τ -functions. In this section we
translate the action of the vector fields Vk, k ∈ Z, on the manifold of CMV-matrices
A1.

We first decompose the vector fields Vk defined in (163)

Vk = kTk + Vk,

where Tk are the Ablowitz-Ladik vector fields. At the level of the bi-moments, the
vector fields Vk are given by

Vk :
d

duk
µj = jµj+k, j, k ∈ Z,(192)

or equivalently, at the level of the bi-moment matrix m̃∞

dm̃∞
duk

= D̃Λ̃km̃∞ − Λ̃km̃∞D̃ = [D̃, Λ̃km̃∞].(193)

These vector fields satisfy the following commutation relations

[Vi,Vj ] = (j − i)Vi+j ,
[Vi, Tj ] = jTi+j .

It follows that

[[Vi, Tj ], Tk] = 0, ∀i, j, k ∈ Z.

Consequently, like the vector fields Vk, the vector fields Vj , j ∈ Z, form a Virasoro
algebra of master symmetries for the Ablowitz-Ladik hierarchy.
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Lemma 4.10. We have for k ∈ Z

dS̃1

duk
S̃−1

1 = −
(
D1A

k+1
1

)
−− −

(
Ak+1

1 D∗1
)
−−,(194)

(S̃T2 h
−1)−1 d(S̃T2 h

−1)
duk

= −
(
D2A

1−k
2

)
−− −

(
A1−k

2 D∗2
)
−−.(195)

PROOF. By substituting the factorisation m̃∞ = S̃−1
1 S̃2 of the moment matrix

into (193), we obtain

−S̃−1
1

dS̃1

duk
S̃−1

1 S̃2 + S̃−1
1

dS̃2

duk
= D̃ Λ̃k S̃−1

1 S̃2 − Λ̃k S̃−1
1 S̃2 D̃.

Multiplying this equation on the left by S̃1 and on the right by S̃−1
2 , we get

−dS̃1

duk
S̃−1

1 +
dS̃2

duk
S̃−1

2 = S̃1 D̃ Λ̃k S̃−1
1︸ ︷︷ ︸

Term 1

− S̃1 Λ̃k S̃−1
1 S̃2 D̃ S̃−1

2︸ ︷︷ ︸
Term 2

.(196)

Using the factorisation of A1 given in Theorem 2.29 and the factorisation of D1 in
(124), Term 1 gives

Term 1 = S̃1 D̃ Λ̃T Λ̃k+1 S̃−1
1

=
(
S̃1 D̃ Λ̃T S̃−1

1

)(
S̃1 Λ̃k+1 S̃−1

1

)
= D1A

k+1
1 .

Similarly, the second term gives

Term 2 = Ak1 S̃2 D̃ S̃−1
2 = Ak+1

1 A−1
1 S̃2 D̃ S̃−1

2 .

Using the factorisation of A−1
1 in Corollary 2.30 we get

Term 2 = Ak+1
1

(
S̃2 Λ̃T S̃−1

2

)
S̃2 D̃ S̃−1

2

= Ak+1
1

(
S̃2 Λ̃T D̃ S̃−1

2

)
= −Ak+1

1 D∗1 ,

where we have used the expression of D∗1 in Lemma 2.34. Substituting these results
in (196), we obtain

−dS̃1

duk
S̃−1

1 +
dS̃2

duk
S̃−1

2 = D1A
k+1
1 +Ak+1

1 D∗1 .

The first term in the left-hand side is strictly lower triangular, while the second term in
the left-hand side is upper triangular. Consequently, taking the strictly lower triangular
part in both sides, we obtain

dS̃1

duk
S̃−1

1 = −
(
D1A

k+1
1

)
−− −

(
Ak+1

1 D∗1
)
−−,

which establishes (194).
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To establish the other formula, we substitute the factorisation m̃∞ =
(S̃−1

1 h) (h−1 S̃2) into equation (193) rewritten as

dm̃∞
duk

= [D̃, m̃∞ Λ̃k],

which follows from the commutation relation (130). This gives

d(S̃−1
1 h)
duk

(h−1 S̃2) + (S̃−1
1 h)

d(h−1 S̃2)
duk

= D̃ (S̃−1
1 h) (h−1 S̃2) Λ̃k − (S̃−1

1 h) (h−1 S̃2) Λ̃k D̃.

Multiplying this equation on the left by (S̃−1
1 h)−1 and on the right by (h−1 S̃2)−1,

we get

(S̃−1
1 h)−1 d(S̃−1

1 h)
duk

+
d(h−1 S̃2)
duk

(h−1 S̃2)−1(197)

= (S̃−1
1 h)−1 D̃ (S̃−1

1 h) (h−1 S̃2) Λ̃k (h−1 S̃2)−1︸ ︷︷ ︸
Term 1

− (h−1 S̃2) Λ̃k D̃ (h−1 S̃2)−1︸ ︷︷ ︸
Term 2

.

Using the factorisation of A2 in Theorem 2.29 and the factorisation of D2 in (125),
Term 2 gives

Term 2 = (h−1 S̃2) Λ̃k−1 Λ̃ D̃ (h−1 S̃2)−1

= (h−1 S̃2) Λ̃k−1 (h−1 S̃2)−1 (h−1 S̃2) Λ̃ D̃ (h−1 S̃2)−1

= (AT2 )1−kDT
2 .

Similarly, using the factorisation of A2 in Theorem 2.29, Term 1 gives

Term 1 = (S̃−1
1 h)−1 D̃ (S̃−1

1 h) (AT2 )−k

= (S̃−1
1 h)−1 D̃ (S̃−1

1 h) (AT2 )−1(AT2 )1−k.

Using the factorisation of A−1
2 in Corollary 2.30 and the factorisation of D∗2 in (125),

we get

Term 1 = (h−1 S̃1) D̃ Λ̃ (h−1 S̃1)−1 (AT2 )1−k = −(D∗2)T (AT2 )1−k.

Substituting these results in the transpose of (197), we obtain

d(S̃−1
1 h)T

duk

(
(S̃−1

1 h)T )−1 + (S̃T2 h
−1)−1 d(S̃T2 h

−1)
duk

= −D2A
1−k
2 − A1−k

2 D∗2 .

Since (S̃−1
1 h)T is upper triangular and S̃T2 h

−1 is lower triangular with diagonal el-
ements equal to 1, by taking the strictly lower part of both sides of this equation, we
obtain (195). This concludes the proof of the lemma. �
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We are now able to obtain a Lax pair representation for the master symmetries vector
fields Vk, k ∈ Z.

Theorem 4.11 (Haine-Vanderstichelen [44]). The "dressed up" form of the moment
equation (193) gives the following Lax pair representation for the master symmetries
vector fields Vk on the semi-infinite CMV matrices (A1, A2)

(198)

d
duk

A1 =
[
A1 ,

(
D1A

k+1
1

)
−− +

(
Ak+1

1 D∗1
)
−−

]
, ∀k ∈ Z,

d
duk

A2 =
[(
D2A

1−k
2

)
−− +

(
A1−k

2 D∗2
)
−− , A2

]
, ∀k ∈ Z,

or equivalently

d
duk

A1 = Ak+1
1 +

[(
D1A

k+1
1

)
+
−
(
Ak+1

1 D∗1
)
−− , A1

]
, ∀k ∈ Z,

d
duk

A2 = A1−k
2 +

[
A2 ,

(
A1−k

2 D∗2)+ −
(
D2A

1−k
2

)
−−

]
, ∀k ∈ Z.

PROOF. As A1 = S̃1 Λ̃ S̃−1
1 and A2 = (S̃T2 h

−1)−1 Λ̃ (S̃T2 h
−1), we have

dA1

duk
=
[dS̃1

duk
S̃−1

1 , A1

]
dA2

duk
=
[
A2 , (S̃T2 h

−1)−1 d(S̃T2 h
−1)

duk

]
.

Using (194) and (195) in Lemma 4.10, we obtain (198).

From the commutation relations (123), one readily obtains that[
A1 ,

(
D1A

k+1
1

)
+

]
+ [A1 ,

(
D1A

k+1
1

)
−−

]
= Ak+1

1 ,[(
A1−k

2 D∗2)+ , A2

]
+
[(
A1−k

2 D∗2
)
−− , A2

]
= A1−k

2 ,

which gives the equivalent formulation for the representation of the master symmetries
on the CMV-matrices (A1, A2). This concludes the proof. �

As a consequence, it is easy to obtain the Lax pair representation of the master sym-
metries Vk on the manifold of CMV-matrices.

Corollary 4.12 (Haine-Vanderstichelen [44]). On the CMV-matrices (A1, A2), the
master symmetries Vk, ∀k ∈ Z, admit the Lax pair representation

Vk(A1) =
[
A1 ,

(
D1A

k+1
1

)
−− +

(
Ak+1

1 D∗1
)
−− + k

(
Ak1
)
−−

]
,

Vk(A2) =
[(
D2A

1−k
2

)
−− +

(
A1−k

2 D∗2
)
−− − k

(
A−k2

)
−− , A2

]
.
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Using the explicit form of the CMV matrices (A1, A2) in Theorem 2.31 and Theorem
4.11, one can compute the first few master symmetry vector fields V2,V−1,V0,V1 in
terms of the variables xn, yn.

V−2(xn) = (n− 4)xn−2(1− xn−1yn−1)(1− xnyn)

− xn−1(1− xnyn)
(
(n− 4)xn−1yn + (n− 1)xnyn+1

)
− 2xn−1(1− xnyn)

n∑
k=1

ykxk−1 + xn

n∑
k=1

y2
kx

2
k−1

− 2xn
n∑
k=2

ykxk−2 + 2xn
n∑
k=2

ykyk−1xk−1xk−2,

V−2(yn) = −nyn+2(1− xnyn)(1− xn+1yn+1)

+ yn+1(1− xnyn)
(
nxnyn+1 + (n− 1)xn−1yn

)
+ 2yn+1(1− xnyn)

n∑
k=1

ykxk−1 − yn
n∑
k=1

y2
kx

2
k−1

+ 2yn
n∑
k=2

ykxk−2 − 2yn
n∑
k=2

ykyk−1xk−1xk−2,

V−1(xn) = (n− 2)xn−1(1− xnyn)− xn
n∑
k=1

ykxk−1,

V−1(yn) = −nyn+1(1− xnyn) + yn

n∑
k=1

ykxk−1,

V0(xn) = nxn,

V0(yn) = −nyn,

V1(xn) = nxn+1(1− xnyn)− xn
n∑
k=1

xkyk−1,

V1(yn) = −(n− 2)yn−1(1− xnyn) + yn

n∑
k=1

xkyk−1.



Part 2

Non-intersecting Brownian motions



Non-intersecting Brownian motion models are closely related to Hermitian random
matrix ensembles, as was shown by Aptekarev-Bleher-Kuijlaars [15], using a result by
Karlin-McGregor [49]. Karlin and McGregor established a formula allowing one to
compute the transition probability density pN (t,~a,~b) to findN independent Brownian
particles starting in a1 < · · · < aN at time t = 0 in positions b1, . . . , bN at a time
t > 0 without any two of them ever having been coincident during the time interval
[0, t]. It is given in terms of the transition probability density of one Brownian particle
on the real line

p(t, x, y) =
1√
πt
e
−(x−y)2

t ,

by the following determinant

pN (t, ~α, ~β) := det

 p(t, a1, b1) · · · p(t, a1, bN )
...

...
p(t, aN , b1) · · · p(t, aN , bN )

 .

In the second part of this thesis, we will consider N independent Brownian motions
during a time-interval [0, 1], conditioned to start at positions

(α1, . . . , αN ) =
(
a1, a1, . . . , a1︸ ︷︷ ︸

m1

, a2, a2, . . . , a2︸ ︷︷ ︸
m2

, . . . , aq, aq, . . . , aq︸ ︷︷ ︸
mq

)
,

at time t = 0 and to end up in positions

(β1, . . . , βN ) =
(
b1, b1, . . . , b1︸ ︷︷ ︸

n1

, b2, b2, . . . , b2︸ ︷︷ ︸
n2

, . . . , bp, bp, . . . , bp︸ ︷︷ ︸
np

)
,

at time t = 1, with
∑q
i=1mi =

∑p
i=1 ni = N , for general p and q, a1 < a2 <

· · · < aq and b1 < b2 < · · · < bp, without two of them ever having been coincident
during that time-interval. For arbitrary p and q, it is not known if the distribution of
the positions of the non-intersecting Brownian particles at a given time 0 < t < 1,
is the same as the joint distribution of the eigenvalues of a random matrix. Using the
formula of Karlin-McGregor, the probability to find all the Brownian particles in a set
E = ∪ri=1[c2i−1, c2i] ⊂ R at an intermediate time 0 < t < 1 is given by a block
moment matrix

Pa1,...,aq
b1,...,bp

(
all xi(t) ∈ E

)
=

1
ZN

det

[(〈
xmψi(x)

∣∣∣ynϕj(y)
〉)

0≤m≤mi−1
0≤n≤nj−1

]
1≤i≤q
1≤j≤p

,

where ψi(x) = eãix, ϕj(y) = eb̃jy , and the following inner product〈
xmψi(x)

∣∣∣ynϕj(y)
〉

=
∫
Ẽ

xm+ne(ãi+b̃j)xe−
x2
2 dx.
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The ∼’s in the former formula indicate that a space-time transformation has been
performed. We prove in Chapter 6 the existence, for general p and q, of a partial
differential equation (PDE) satisfied by the function log Pa1,...,aq

b1,...,bp

(
all xi(t) ∈ E

)
. The

variables are the coordinates of the starting and ending points of the particles, and
the boundary points of the set E. The proof of the existence of such a PDE, using
Virasoro constraints and the multicomponent KP hierarchy, is based on the method of
elimination of the unwanted partials. We start in Chapter 5 with a definition of the KP
and multi-component KP hierarchies.





Chapter5
KP and multi-component KP
hierarchy

The method of integrable deformations in random matrix theory and in the theory of
non-intersecting Brownian motions on the real line, reduces certain problems to the
study of moment matrices and block moment matrices with regard to one or several
weights, deformed by adding one set of times for each weight function. It is proven
in [14] that the determinants of these time-dependent (block) moment matrices are
tau-functions for the KP and multi-component KP hierarchy, as they satisfy the bi-
linear identities which completely encode the hierarchies. The proof is based on the
orthogonality conditions of the (multiple) orthogonal polynomials for the deformed
weight functions.

1. KP hierarchy

This section is based on [29] for the introduction of the KP hierarchy using pseudo-
differential operators, and on [7] for the link with time-dependent orthogonal polyno-
mials.
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1.1. Sato Theory.

1.1.1. Notations. A formal pseudo-differential operator of order m is a formal
series

R =
m∑

j=−∞
uj(x)∂j ,

where ∂ = ∂
∂x and ∂−1 is the operator of formal integration, such that

∂ · ∂−1 = ∂−1 · ∂ = 1,

and uj(x) are some functions of the variable x. LetR be the set of pseudo-differential
operators of finite order. Two elements ofR can be added together very naturally. Let
R =

∑m
j=−∞ uj(x)∂j and R̃ =

∑n
j=−∞ vj(x)∂j be pseudo-differential operators

of order m and n respectively, with m ≥ n, then their sum is a pseudo-differential
operator of order not higher then m defined by

R+ R̃ =
m∑

j=−∞

(
uj(x) + vj(x)

)
∂j ,

with the convention vj = 0 if j > n. Multiplication of two pseudo-differential opera-
tors is defined by the following extension of Leibniz’s rule

∂n · f(x) =
∑
j≥0

(
n

j

)
∂jf(x)
∂xj

∂n−j , ∀n ∈ Z,

where for n ∈ Z, j ≥ 0,(
n

j

)
=
n(n− 1) · · · (n− j + 1)

j!
.

This makes the setR of pseudo-differential operators into an associative ring.

Consider a pseudo-differential operator of order m

R =
m∑

j=−∞
uj(x)∂j ,

with um(x) = 1. Then there exists unique pseudo-differential operators

R−1 = ∂−m +
∑
j<−m

vj(x)∂j , R1/m = ∂ +
∑
j≤0

wj(x)∂j ,

such that
(
R1/m

)m = R and R · R−1 = R−1 · R = 1. These pseudo-differential
operators commute withR, i.e. [R,R−1] = [R,R1/m] = 0. We also define the formal
adjoint R∗ of R, by

R∗ =
m∑

j=−∞
(−∂)j · uj(x).
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For two pseudo-differential operators R1 and R2, one has (R1R2)∗ = R∗2R
∗
1.

Finally, for a pseudo-differential operator R =
∑m
j=−∞ uj(x)∂j we define

R+ =
m∑
j=0

uj(x)∂j

the differential part, and

R− =
∑
j<0

uj(x)∂j

the integral (or Volterra) part of R.

1.1.2. Lax form of the KP hierarchy. Let L be a pseudo-differential operator of
order 1,

L = ∂ + u1(x, t)∂−1 + u2(x, t)∂−2 + . . . ,

where uj are functions of x and of a family of time parameters t = (t1, t2, . . . ).

Definition 5.1. The Kadomtsev-Petviashvili hierarchy, or simply the KP hierarchy, is
the set of differential equations in Lax form

∂L

∂tn
= [Bn, L], n = 1, 2, . . .(199)

where Bn = (Ln)+.

At first, we observe that we can (and will) identify x = t1. Indeed, the equation in the
KP hierarchy corresponding to n = 1 is

∂L

∂t1
= [∂, L],

or equivalently

∀j ≥ 1 :
∂uj
∂t1

=
∂uj
∂x

.

The KP hierarchy is a compatible system, i.e. two or more equations can be solved
simultanously. One can find functions ui of two or more variables tn satisfying the
corresponding equations in the KP hierarchy with respect to each variable. This fol-
lows from the fact that the vector fields defined in (199) commute.

Proposition 5.2. Equations (199) of the KP hierarchy are equivalent to the system of
equations of Zakharov-Shabat type

∂Bn
∂tm

− ∂Bm
∂tn

+ [Bn, Bm] = 0, ∀n,m ≥ 1.(200)

Consequently the vector fields defined in (199) commute.
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PROOF. 1. We first deduce (200) from (199). Equations (199) of the KP hierar-
chy imply for all n,m ≥ 1

∂Ln

∂tm
= [Bm, Ln].

Hence, as [Ln, Lm] = 0 we have

∂Ln

∂tm
− ∂Lm

∂tn
= [Bn − Ln, Bm − Lm]− [Bn, Bm]

= [(Ln)−, (Lm)−]− [Bn, Bm],

where we have used the equality Ln = Bn + (Ln)−. Taking the differential part of
this equation gives the Zakharov-Shabat equations (200).
2. We now prove that (200) implies (199). From (200), using the decomposition
Ln = Bn + (Ln)−, we deduce

∂Ln

∂tm
− [Bm, Ln] =

∂

∂tm
(Ln)− +

∂Bm
∂tn

− [Bm, (Ln)−].(201)

In the right-hand side of this equation, we have three terms of which the orders satisfy

(1) ord
(

∂
∂tm

(Ln)−
)
< 0;

(2) ord
(
∂Bm
∂tn

)
< m− 1;

(3) ord
(
[Bm, (Ln)−]

)
< m− 1.

Hence, for fixed m, the order of the left-hand side of (201) is bounded for all n ≥ 0

ord
(∂Ln
∂tm

− [Bm, Ln]
)
≤ m− 1,(202)

where ord( · ) is the order of the pseudo-differential operator in the brackets. Suppose
now that

∂Ln

∂tm
− [Bm, Ln] 6= 0.

But it then follows that

lim
n→+∞

ord
(∂Ln
∂tm

− [Bm, Ln]
)

= +∞,

which is in contradiction with (202).
3. We finally prove that the flows of the vector fields defined by (199) commute. We
have, by virtue of (199)

∂

∂tm

( ∂L
∂tn

)
− ∂

∂tn

( ∂L
∂tm

)
=

∂

∂tm
[Bn, L]− ∂

∂tn
[Bm, L]

=
[∂Bn
∂tm

− ∂Bm
∂tn

, L
]

+
[
Bn, [Bm, L]

]
−
[
Bm, [Bn, L]

]
.
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Using (200) we obtain

∂

∂tm

( ∂L
∂tn

)
− ∂

∂tn

( ∂L
∂tm

)
=
[
[Bm, Bn], L

]
+
[
Bn, [Bm, L]

]
−
[
Bm, [Bn, L]

]
.

This is equal to zero due to the Jacobi identity. �

A consequence of the commutation of the flows of the vector fields defined in (199) is
that each equation in the KP hierarchy generates a symmetry for the other equations.

Example 5.3. We have

B2 = ∂2 + 2u1, B3 = ∂3 + 3u1∂ + 3(u′1 + u2),

where the prime stands for derivation with respect to the x-variable. Consequently
taking n = 3 and m = 2 in the Zakharov-Shabat equations (200) we obtain the
system {

2∂u1
∂t3
− 3 ∂2u1

∂t1∂t2
− 3∂u2

∂t2
+ ∂3u1

∂t31
+ 3∂

2u2
∂t21
− 6u1

∂u1
∂t1

= 0,

−3∂u1
∂t2

+ 3∂
2u1
∂t21

+ 6∂u2
∂t1

= 0.

Eliminating u2 in these equations, and remembering that t1 = x, we get

0 = 3
∂2u1

∂t22
− ∂

∂x

(
4
∂u1

∂t3
− ∂3u1

∂x3
− 12u1

∂u1

∂x

)
.

We define v = 2u1. This function then satisfies

0 = 3
∂2v

∂t22
− ∂

∂x

(
4
∂v

∂t3
− ∂3v

∂x3
− 6v

∂v

∂x

)
.

This is the classical form of the KP equation. It is related to the form (41) of the KP
equation through the identity

v = 2
∂2 log τn
∂t21

.

1.1.3. Wave function. The KP hierarchy (199), and its equivalent description in
the form of Zakharov-Shabat equations (200), appear as compatibility conditions of
the linear problem for n = 1, 2, . . .

Lψ = zψ,

∂ψ

∂tn
= Bnψ,

where ψ is an eigenfunction of the pseudo-differential operator L, and z is a spectral
parameter. We are interested in the time evolution of the eigenfunctions ψ. To
study this time evolution, we are going to compare the eigenfunctions ψ with the
eigenfunctions of the constant operator ∂.



134 Chapter 5. KP and multi-component KP hierarchy

It is convenient to represent the pseudo-differential operator L by

L = S ∂ S−1,

where S is a pseudo-differential operator of order 0

S =
∞∑
j=0

wj∂
−j ,

with w0 = 1. This representation is called the formal dressing of L, and S is called
the wave operator. The coefficients of S are determined inductively, using the relation

LS = S ∂.

One gets

ui = −w′i +Qi(w1, . . . , wi−1), i = 1, 2, . . .

where Qi are differential polynomials. Notice that S is not unique. Indeed, the dress-
ing operator S is determined up to multiplication on the right by a pseudo-differential
operator of order 0 with constant coefficients 1 +

∑∞
j=1 ci∂

−i. We have the following
proposition giving the time evolution of the wave operator.

Proposition 5.4. The KP vector fields on S are given by
∂S

∂tm
= −(Lm)−S.(203)

The flows commute.

PROOF. We check that the vector fields (203) induce the KP Lax equations on L.
We have

∂L

∂tm
=

∂

∂tm
(S ∂ S−1)

=
( ∂S
∂tm

)
∂ S−1 − S ∂ S−1

( ∂S
∂tm

)
S−1

= −(Lm)−S ∂ S−1 + S ∂ S−1 (Lm)− SS−1

= [L, (Lm)−]

= [(Lm)+, L].
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These flows commute. Indeed, we have
∂

∂tm

( ∂S
∂tn

)
= −

(∂Ln
∂tm

)
−
S − (Ln)−

∂S

∂tm
= −[Lm+ , L

n]−S + (Ln)−(Lm)−S

= [Lm− , L
n]−S + (Ln)−(Lm)−S

= [Lm− , L
n
−]S + [Lm− , L

n
+]−S + (Ln)−(Lm)−S

= Lm−L
n
−S − [Ln+, L

m]−S

=
∂

∂tn

( ∂S
∂tm

)
.

�

Pseudo-differential operators are not real operators. Indeed, their action on functions
is not defined unless they are purely differential. We define the action of the pseudo-
differential operators on the function exp ξ(t, z) = exp

(∑∞
k=1 tkz

k
)
, by

∂mξ(t, z) = zm,

∂m exp ξ(t, z) = zm exp ξ(t, z),

for all m ∈ Z. The wave function is then defined as

Ψ(t, z) = S exp ξ(t, z) =
[
1 +

∞∑
j=1

wj(t)z−j
]

exp ξ(t, z).

We define Ψ̂(t, z) = 1 +
∑∞
j=1 wj(t)z

−j , such that

Ψ(t, z) = Ψ̂(t, z) exp ξ(t, z).

We also define the adjoint wave funtion

Ψ∗(t, z) = (S∗)−1 exp
(
− ξ(t, z)

)
=
[
1 +

∞∑
j=1

w∗j (t)z−j
]

exp
(
− ξ(t, z)

)
.

We define Ψ̂∗(t, z) = 1 +
∑∞
j=1 w

∗
j (t)z−j , such that

Ψ∗(t, z) = Ψ̂∗(t, z) exp
(
− ξ(t, z)

)
.

It is then easy to prove that the wave and adjoint wave functions satisfy the following
equations

LΨ = zΨ,
∂

∂tm
Ψ = BmΨ,

L∗Ψ∗ = zΨ∗,
∂

∂tm
Ψ∗ = −(Lm)∗+Ψ∗.
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We consider two types of residues :

Res∂
∑

aj∂
j = a−1, Resz

∑
ajz

j = a−1.

It is then easy to check that if P,Q are two pseudo-differential operators, then

Resz
[(
Pexz

)
·
(
Qe−xz

)]
= Res∂

(
PQ∗

)
.(204)

Theorem 5.5. The wave and adjoint wave functions Ψ and Ψ∗ satisfy the following
bilinear identity

Resz

[(( ∂

∂t1

)j1( ∂

∂t2

)j2
. . .
( ∂

∂tm

)jm
Ψ(t, z)

)
Ψ∗(t, z)

]
= 0,

for any m ≥ 1 and multi-index (j1, j2, . . . , jm), or equivalently

Resz
[
Ψ(t′, z)Ψ∗(t, z)

]
= 0,

for any t, t′, where Ψ(t′, z) should be understood as a formal Taylor series expansion
around t.

PROOF. As ∂
∂tm

Ψ = BmΨ, we have

Resz

[(( ∂

∂t1

)j1( ∂

∂t2

)j2
. . .
( ∂

∂tm

)jm
Ψ(t, z)

)
Ψ∗(t, z)

]
= Resz

[(
RΨ(t, z)

)
Ψ∗(t, z)

]
,

where R is some purely differential operator, i.e. R− = 0. We then have

Resz

[(( ∂

∂t1

)j1( ∂

∂t2

)j2
. . .
( ∂

∂tm

)jm
Ψ(t, z)

)
Ψ∗(t, z)

]
= Resz

[(
RS exp ξ(t, z)

)
(S∗)−1 exp

(
− ξ(t, z)

)]
= Resz

[(
RSexz

)
(S∗)−1e−xz

]
.

By virtue of (204) this gives

Resz

[(( ∂

∂t1

)j1( ∂

∂t2

)j2
. . .
( ∂

∂tm

)jm
Ψ(t, z)

)
Ψ∗(t, z)

]
= Res∂

[
RSS−1

]
= Res∂ [R] = 0.

�

The inverse also holds true, i.e. the equations of the hierarchy are contained in these
bilinear identities. The proof can be found in [29].
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Theorem 5.6. Let

Ψ(t, z) =
∞∑
j=0

wj(t)z−j exp ξ(t, z),

Ψ∗(t, z) =
∞∑
j=0

w∗j (t)z−j exp
(
− ξ(t, z)

)
,

be formal power series, with w0(t) = w∗0(t) = 1, such that

Resz
[
Ψ(t′, z)Ψ∗(t, z)

]
= 0,

holds for any t, t′. Then Ψ(t, z) and Ψ∗(t, z) are wave and adjoint wave functions for
the KP hierarchy, i.e. there exists a pseudo-differential operator S of order 0, such
that

Ψ(t, z) = S exp ξ(t, z), Ψ∗(t, z) = (S∗)−1 exp
(
− ξ(t, z)

)
,

and L = S ∂ S−1 is a solution of the KP hierarchy.

A consequence of the bilinear identities is that the wave and adjoint wave functions
Ψ(t, z) and Ψ∗(t, z) of the KP hierarchy can be expressed in terms of one single
function τ(t), called tau function. A proof can be found in [29].

Theorem 5.7. If Ψ(t, z) and Ψ̂∗(t, z) are wave functions for the KP hierarchy, then
there exists a function τ(t) = τ(t1, t2, . . . ) such that

Ψ(t, z) =
τ(t− [z−1])

τ(t)
exp ξ(t, z),

Ψ∗(t, z) =
τ(t+ [z−1])

τ(t)
exp

(
− ξ(t, z)

)
,

where [z] =
(
z, z

2

2 ,
z3

3 , . . .
)
. The tau function is determined up to multiplication by

ce
∑∞
j=1 cjtj with c, c1, c2, . . . arbitrary constants.

It follows that all the coefficients of the wave operators, and of the solution L to the
KP hierarchy, can be expressed in terms of the tau function. The bilinear identities
can also be expressed in terms of the tau function:

Resz
[
τ(t′ − [z−1])τ(t+ [z−1]) exp ξ(t′ − t, z)

]
= 0.(205)

1.2. Time-dependent orthogonal polynomials. Let ρ(x) be a weight function
on R, decaying fast enough when x→ ±∞, and consider the following formal defor-
mation of the weight

ρt(x) := ρ(x)e
∑∞
j=1 tjx

j

.
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We define the symmetric inner product of two functions f, g by

〈f, g〉t =
∫

R
f(x)g(x)ρt(x)dx.

Associated with this inner product, we define the moments µk,l(t) =
〈
xk, xl

〉
t

with
k, l ≥ 0. Obviously, the moments µk,l(t) only depend on k+l. For simplicity, we shall
omit the explicit dependence on the time variables t and we shall write µk,l(t) = µk,l.
We also define the Hankel moment matrices

mn(t) = (µk,l)0≤k,l≤n−1.

Using an argument similar to that of section 2.2 of Chapter 1, we get the following
identity, expressing the determinants of these matrices as multiple integrals

τn(t) = detmn(t) =
1
n!

∫
Rn

∆2
n(x)

n∏
k=1

ρt(xk)dxk.

The aim of this section is to prove that these determinants are tau functions for the
KP hierarchy. We will show that these determinants satisfy the bilinear identities
(205). The proof of this fact is a consequence of the orthogonality conditions of the
orthogonal polynomials for the weight ρt(x). This subsection is based on [7], and
also [68]. The connexion between Sato’s theory of tau functions and the theory of
orthogonal polynomials was first established in [41].

Let pn(x) := pn(t;x), n ≥ 0, be the monic orthogonal polynomials on the real line
with respect to the weight ρt(x). By virtue of (93), they admit the following Heine
representation

pn(t;x) =
1

τn(t, s)
det


1

mn(t, s) x
...

µn,0(t, s) . . . µn,n−1(t, s) xn

 ,(206)

These polynomials can also be written using the determinants τn(t).

Proposition 5.8.

pn(t;x) = xn
τn(t− [x−1])

τn(t)
,(207)

with [x] =
(
x, x

2

2 ,
x3

3 , . . .
)
.

PROOF. Using the expansion 1− x = exp
(
−
∑∞
j=1

xj

j

)
, one can prove that

µk,l(t− [x−1]) = µk,l −
1
x
µk+1,l,
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and hence

τn(t− [x−1]) = det
(
µk,l −

1
x
µk+1,l

)
0≤k,l≤n−1

.(208)

We then have

xnτn(t− [x−1]) = det
(
xµk,l − µk+1,l

)
0≤k,l≤n−1

= det
(
x~µ0 − ~µ1, x~µ1 − ~µ2, . . . , x~µn−1 − ~µn

)
,

where ~µj = (µj,0, . . . , µj,n−1) ∈ Rn. By row operations, we get

xnτn(t− [x−1])

= det
( n−1∑
j=0

x~µj − ~µj+1

xj
,

n−2∑
j=0

x~µj+1 − ~µj+2

xj
, . . . , x~µn−1 − ~µn

)
,

which, after simplification of the expressions gives

xnτn(t− [x−1]) = det
(
x~µ0 −

~µn
xn−1

, x~µ1 −
~µn
xn−2

, . . . , x~µn−1 − ~µn
)
.

Adding one row and one column to this determinant gives

xnτn(t− [x−1]) =
1
xn

det


x~µ0 − ~µn

xn−1 0
x~µ1 − ~µn

xn−2 0
...

...
x~µn−1 − ~µn 0

~µn xn

 ,

which, making row operations, gives

xnτn(t− [x−1]) =
1
xn

det


x~µ0 x

x~µ1 x2

...
...

x~µn−1 xn

~µn xn

 = τn(t)pn(x).

�

Let qn(x) be the Cauchy-transforms of the polynomials pn(x) :

qn(x) = x

∫
R

pn(y)ρt(y)
x− y

dy.

These functions have also expressions in terms of the determinants τn(t).

Proposition 5.9.

qn(x) = x−n
τn+1(t+ [x−1])

τn(t)
.(209)
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PROOF. Using the expansion 1− x = exp
(
−
∑∞
j=1

xj

j

)
, one can prove that

µk,l(t+ [x−1]) =
∞∑
j=0

1
xj
µk,l+j ,

and hence

τn+1(t+ [x−1]) = det
( ∞∑
j=0

1
xj
µk,l+j

)
0≤k,l≤n

.(210)

We then have

x−nτn+1(t+ [x−1]) = x−n det
( ∞∑
j=0

~µTj
xj
,

∞∑
j=0

~µTj+1

xj
, . . . ,

∞∑
j=0

~µTj+n
xj

)
,

where ~µj = (µ0,j , . . . , µn,j) ∈ Rn+1. By column operations, we get

x−nτn+1(t+ [x−1]) = x−n det
(
~µT0 , ~µ

T
1 , . . . , ~µ

T
n−1,

∞∑
j=0

~µTj+n
xj

)
= det

(
~µT0 , ~µ

T
1 , . . . , ~µ

T
n−1,

∞∑
j=0

~µTj
xj

)
.

After substitution of the integral expression of the moments in the last column, we get

x−nτn+1(t+ [x−1])

= det



∫
R
∑∞
j=0

(
y
x

)j
ρt(y)dy∫

R
∑∞
j=0

(
y
x

)j
yρt(y)dy

~µT0 , ~µ
T
1 , . . . , ~µ

T
n−1

...∫
R
∑∞
j=0

(
y
x

)j
yn−1ρt(y)dy∫

R
∑∞
j=0

(
y
x

)j
ynρt(y)dy



=
∫

R

∞∑
j=0

(y
x

)j
ρt(y)dy det


1
y

~µT0 , ~µ
T
1 , . . . , ~µ

T
n−1

...
yn−1

yn

 .

Using the Heine representation of the monic orthogonal polynomials pn(x) we obtain

x−nτn+1(t+ [x−1]) = τn(t)
∫

R

∞∑
j=0

(y
x

)j
pn(y)ρt(y)dy

= xτn(t)
∫

R

pn(y)ρt(y)
x− y

dy.

�
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Before proving that the determinants τn(t) satisfy the bilinear identities of the KP
hierarchy, we need the following simple, formal residue identity.

Lemma 5.10. For holomorphic functions f(z) =
∑∞
j=0 ajz

j and g(z), we have∫
R
f(y)g(y)dy =

1
2πi

∮
z=∞

dzf(z)
∫

R

g(y)
z − y

dy.

PROOF. We have
1

2πi

∮
z=∞

dzf(z)
∫

R

g(y)
z − y

dy

= Resz=∞
[( ∞∑

j=0

ajz
j
)(1

z

∑
j≥0

z−j
∫

R
g(y)yjdy

)]
=
∑
j≥0

aj

∫
R
g(y)yjdy

=
∫

R
g(y)

∑
j≥0

ajy
jdy

=
∫

R
g(y)f(y)dy.

�

We are now able to state the next theorem.

Theorem 5.11. The functions τn(t, s) satisfy the following bilinear identity∮
z=∞

τn(t− [z−1])τm+1(t′ + [z−1])e
∑∞
j=1(tj−t′j)z

j

zn−m−1dz = 0,(211)

for all n ≥ m+ 1 and all t, t′ ∈ C∞.

PROOF. Using the representations (207) and (209) of pn and qm+1 in terms of
tau functions, we have

1
τn(t)τm(t′)

∮
z=∞

τn(t− [z−1])τm+1(t′ + [z−1])e
∑∞
j=1(tj−t′j)z

j

zn−m−1dz

=
∮
z=∞

pn(t; z)qm(t′; z)e
∑∞
j=1(tj−t′j)z

j dz

z
.
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But qm is the Cauchy-transform of the polynomial pm. Hence, we have by virtue of
Lemma 5.10

1
τn(t)τm(t′)

∮
z=∞

τn(t− [z−1])τm+1(t′ + [z−1])e
∑∞
j=1(tj−t′j)z

j

zn−m−1dz

=
∮
z=∞

pn(t; z)e
∑∞
j=1(tj−t′j)z

j dz

z

∫
R

pm(t′; y)
z − y

e
∑∞
k=1 t

′
ky
k

ρ(y)dy

= 2πi
∫

R
pn(t; z)pm(t′; z)e

∑∞
j=1 tjz

j

ρ(z)dz.

This is equal to 0 when n ≥ m+ 1. �

This bilinear identity includes the bilinear identity of the KP hierarchy, form+1 = n.

2. Multi-component KP hierarchy

The multi-component KP hierarchy is a matrix hierarchy. It is a generalization of the
KP hierarchy explained in the former section. This section is based on [67] and [30]
for the Sato theory of the multi-component KP hierarchy, and on [14] for the link with
time-dependent multiple orthogonal polynomials.

2.1. Sato theory.

2.1.1. Notations. A formal matrix pseudo-differential operator of order m is a
formal series

R =
m∑

j=−∞
uj∂

j ,

where ∂ is the derivation operator defined by

∂ =
r∑

α=1

∂x(α) ,

and ∂−1 is its formal inverse, such that

∂ · ∂−1 = ∂−1 · ∂ = 1,

and uj(x) ∈ Cr×r are some functions of the variables x = (x(1), . . . , x(r)). LetR(r)

be the set of r × r-matrix pseudo-differential operators of finite order. Addition and
multiplication of two elements of R(r) are defined as in the scalar case. This makes
the setR(r) of pseudo-differential operators into an associative ring.

We define the formal adjoint R∗ of R, by

R∗ =
m∑

j=−∞
(−∂)j · uj(x)T ,
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where uj(x)T is the transposed matrix of uj(x). For two pseudo-differential operators
R1 and R2, one has (R1R2)∗ = R∗2R

∗
1.

Finally, for a pseudo-differential operator R =
∑m
j=−∞ uj(x)∂j we define

R+ =
m∑
j=0

uj(x)∂j

the differential part, and

R− =
∑
j<0

uj(x)∂j

the integral (or Volterra) part of R.

2.1.2. Lax form of the multi-component KP hierarchy. Consider r families of
time variables t = (t(1), t(2), . . . , t(r)), with

t(α) = (t(α)
1 , t

(α)
2 , . . . ), α = 1, . . . , r.

We identify x(α) = t
(α)
1 , α = 1, . . . , r. Let L and Uα, α = 1, . . . , r, be matrix

pseudo-differential operators given by

L =
1∑

j=−∞
uj∂

j , Uα =
0∑

j=−∞
uj,α∂

j ,

where uj , uj,α are r× r matrix-valued functions of the variables x = (x(1), . . . , x(r))
and of the families of t-time variables given above, such that u1 = 1r is the r × r
identity matrix, u0 = 0, and u0,α = Eα, with

Eα = (δk,αδl,α)1≤k,l≤r =



0
. . .

0
1

0
. . .

0


.

We suppose the following conditions for α, β = 1, . . . , r

[L,Uα] = 0, [Uα, Uβ ] = 0,

and
r∑

α=1

Uα = 1r, UαUβ = δα,βUβ .
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Definition 5.12. The r-component KP hierarchy is defined by the equations in the Lax
form

∂L

∂t
(α)
n

= [B(α)
n , L],

∂Uβ

∂t
(α)
n

= [B(α)
n , Uβ ],(212)

where B(α)
n =

(
LnUα

)
+

, with α, β = 1, . . . , r and n = 1, 2, . . . .

The system of equations (212) is a compatible system. Indeed, we have the following
theorem, whose proof is similar to that of Proposition 5.2.

Proposition 5.13. The system of equations (212) is equivalent to the system of equa-
tions of Zakharov-Shabat type

∂B
(α)
m

∂t
(β)
n

− ∂B
(β)
n

∂t
(α)
m

+ [B(α)
m , B(β)

n ] = 0,(213)

with α, β = 1, . . . , r, and m,n = 1, 2, . . . . Consequently, the vector fields defined in
(212) commute.

2.1.3. Wave function. Consider the formal dressing

L = Ŵ∂Ŵ−1,

Uα = ŴEαŴ
−1,

∂Ŵ

∂t
(α)
n

= B(α)
n Ŵ − ŴEα∂

n,

by a r × r matrix pseudo-differential operator

Ŵ =
∞∑
j=0

wj(t)∂−j ,

with w0 = 1r. As for the scalar case, the matrices wj(t) are determined recursively,
using the relation

LŴ = Ŵ∂.

We define the action of the matrix pseudo-differential operators on the function
exp

(∑r
α=1 ξ

(
t(α), z

)
Eα
)
, by

∂m exp
r∑

α=1

ξ
(
t(α), z

)
Eα = zm exp

r∑
α=1

ξ
(
t(α), z

)
Eα,

for all m ∈ Z. The wave function is then defined as

W (t, z) = Ŵ exp
r∑

α=1

ξ
(
t(α), z

)
Eα =

∞∑
j=0

wj(t)z−j exp
r∑

α=1

ξ
(
t(α), z

)
Eα.
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We also define the adjoint wave function

W ∗(t, z) = (Ŵ ∗)−1 exp
(
−

r∑
α=1

ξ
(
t(α), z

)
Eα

)
.

The wave and adjoint wave functions satisfy the following equations

LW = zW, UαW = WEα,
∂W

∂t
(α)
n

= B(α)
n W,

L∗W ∗ = zW ∗, U∗αW
∗ = W ∗Eα,

∂W ∗

∂t
(α)
n

= −
(
B(α)
n

)∗
W ∗.

The r-component KP hierarchy (212), and its equivalent formulation (213), arise as
compatibility conditions of this linear system.

Remark 5.14. Notice that the pseudo-differential operator Ŵ is defined up to mul-
tiplication on the right by a series

∑∞
j=0 cj∂

−j with constant diagonal matrices cj
and c0 = 1r. Correspondingly, the wave function is defined up to a multiplication by∑∞
j=0 cjz

−j .

As for the scalar case, the wave and adjoint wave function satisfy bilinear identities.
These identities completely determine the multi-component KP hierarchy. We first
prove an elementary lemma on residue pairing.

Lemma 5.15. If P,Q are r × r matrix pseudo-differential operators, then

Resz
[(
Pe
∑r
α=1 zt

(α)
1 Eα

)(
Qe−

∑r
α=1 zt

(α)
1 Eα

)T ]
= Res∂

[
PQ∗

]
.

PROOF. Let P =
∑
pj∂

j and Q =
∑
qj∂

j be r × r matrix pseudo-differential
operators. On the one hand we have

Resz
[(
Pe
∑r
α=1 zt

(α)
1 Eα

)(
Qe−

∑r
α=1 zt

(α)
1 Eα

)T ]
= Resz

[(∑
pjz

j
)(∑

qk(−z)k
)T ]

=
∑

j+k=−1

(−1)kpjqTk .

On the other hand, we have

Res∂
[
PQ∗

]
= Res∂

[(∑
pj∂

j
)(∑

(−∂)kqTk
)]

= Res∂
[∑
j,k

pj∂
j(−∂)kqTk

)]
=

∑
j+k=−1

(−1)kpjqTk .

�
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We then have the following theorem, whose proof is similar to the scalar case.

Theorem 5.16. The wave and adjoint wave functionsW andW ∗ satisfy the following
bilinear identity

Resz
[(
∂k1,α1 . . . ∂ks,αsW (t, z)

)(
W ∗(t, z)

)T ] = 0,

for any s ≥ 0, 1 ≤ αi ≤ r, ki = 1, 2, . . . , and where ∂ki,αi stands for the derivative
∂

∂t
(αi)
ki

. Equivalently, we have

Resz
[
W (z, t′)

(
W ∗(z, t)

)T ] = 0,(214)

for any t, t′, where W (z, t′) should be understood as a formal Taylor series ex-
pansion around t. Conversely, if there are two expressions of the form W (t, z) =∑∞
j=0 wj(t)z

−j exp
∑r
α=1 ξ

(
t(α), z

)
Eα and W ∗(t, z) =

∑∞
j=0 vj(t)z

−j exp
(
−∑r

α=1 ξ
(
t(α), z

)
Eα

)
with w0 = v0 = 1r such that (214) holds for them, then they

are wave and adjoint wave functions for the multi-component KP hierarchy.

These bilinear identities completely characterize the wave functions. A consequence
of these identities is that the wave and adjoint wave functions can be expressed in
terms of several tau-functions. The proof can be found in [30].

Theorem 5.17. If W (z, t) and W ∗(z, t) are wave and adjoint wave functions for the
r-component KP hierarchy, then there exists functions τ(t) and τα,β(t), 1 ≤ α, β ≤ r,
α 6= β, such that

W (z, t)α,β =


cα(z) τ(t(α)−[z−1]) exp ξ(t(α),z)

τ(t) , if α = β,

z−1cβ(z) τα,β(t(β)−[z−1]) exp ξ(t(β),z)
τ(t) , if α 6= β,

(215)

and

W ∗(z, t)α,β =


1

cα(z)

τ(t(α)+[z−1]) exp
(
−ξ(t(α),z)

)
τ(t) , if α = β,

−z−1 1
cβ(z)

τβ,α(t(β)+[z−1]) exp
(
−ξ(t(β),z)

)
τ(t) , if α 6= β,

(216)

where cβ(z) =
∑∞
j=0 cjβz

−j is a constant series (i.e. independent of t) with c0β = 1.

Remark 5.18. As a consequence of Remark 5.14, one can chose cβ(z) = 1, ∀β, in
the expressions (215) and (216).
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2.2. Time-dependent multiple orthogonal polynomials. Define two sets of
weights on R

ψ1(x), . . . , ψq(x), and ϕ1(y), . . . , ϕp(y), with x, y ∈ R,

and two multi-indices

~m = (m1, . . . ,mq), ~n = (n1, . . . , np), with |~m| = |~n|,

with |~m| =
∑q
i=1mi, |~n| =

∑p
j=1 nj , and consider a (not necessarily symmetric)

inner product 〈· | ·〉. Following [22] we introduce the notion of mixed multiple orthog-
onal polynomials (MOPS). Let A1(y), . . . , Ap(y) be polynomials in the variable y,
and set

Q(y) =
p∑
j=1

Aj(y)ϕj(y).

There are two possible normalizations :

• Fix α ∈ {1, . . . , q}. The polynomials A1, . . . , Ap are said to be Type I
normalized mixed multiple orthogonal polynomials with respect to ψα, if
deg(Aβ) ≤ nβ − 1, with β = 1, . . . , p, and we have the following orthogo-
nality conditions〈
xiψα′(x)

∣∣∣Q(y)
〉

= δα,α′δi,mα−1, i = 0, . . . ,mα′ − 1, 1 ≤ α′ ≤ q.

• Fix β ∈ {1, . . . , p}. The polynomials A1, . . . , Ap are said to be Type II
normalized mixed multiple orthogonal polynomials with respect to ϕβ , if
Aβ is monic of degree nβ and deg(Aβ′) ≤ nβ′ − 1 for 1 ≤ β′ ≤ p with
β′ 6= β, and we have the following orthogonality conditions〈
xiψα(x)

∣∣∣Q(y)
〉

= 0, i = 0, . . . ,mα − 1, 1 ≤ α ≤ q.

Similarly, let B1(x), . . . , Bq(x) be polynomials in the variable x, and set

P (x) =
q∑
j=1

Bj(x)ψj(x).

As in the former case, there are two possible normalizations : Type I normalization
with respect to ϕβ , for a fixed 1 ≤ β ≤ p, and Type II normalization with respect to
ψα, for a fixed 1 ≤ α ≤ q. These normalizations are obtained by interchanging the
role of ϕ↔ ψ and ~m↔ ~n, p↔ q, x↔ y in the above normalizations.

Consider now the deformed weights depending on time parameters s(α) =(
s

(α)
1 , s

(α)
2 , . . .

)
, 1 ≤ α ≤ q, and t(β) =

(
t
(β)
1 , t

(β)
2 , . . .

)
, 1 ≤ β ≤ p, denoted

by

ψ−sα (x) := ψα(x)e−
∑∞
k=1 s

(α)
k xk , and ϕtβ(y) := ϕβ(y)e

∑∞
k=1 t

(β)
k yk .
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For each set of integers

~m = (m1, . . . ,mq), ~n = (n1, . . . , np), with |~m| = |~n|,

consider the moment matrix T~m~n of size |~m| = |~n|, composed of pq blocks of sizes
minj

T~m~n =



(〈
xiψ−s1 (x) | yjϕt1(y)

〉 )
0≤i<m1
0≤j<n1

. . .
( 〈
xiψ−s1 (x) | yjϕtp(y)

〉 )
0≤i<m1
0≤j<np

.

.

.
.
.
.( 〈

xiψ−sq (x) | yjϕt1(y)
〉 )

0≤i<mq
0≤j<n1

. . .
( 〈
xiψ−sq (x) | yjϕtp(y)

〉 )
0≤i<mq
0≤j<np


,

where the moments are taken with regard to the inner product 〈· | ·〉. We define the
determinants

τ~m~n(s(1), . . . , s(q); t(1), . . . , t(p)) := detT~m~n.(217)

In the following proposition, it is shown that one can define mixed multiple orthogonal
polynomials and their Cauchy transforms using these determinants.

Proposition 5.19 (Adler, van Moerbeke, Vanhaecke [14]). Let ~e1 = (1, 0, 0 . . . ),
~e2 = (0, 1, 0, 0, . . . ), . . . and put

εα,α′(~n) =
{

(−1)nα′+1+nα′+2+···+nα+1, if α > α′,

(−1)nα+1+nα+2+···+nα′ , if α < α′,

and

εα,β(~m,~n) = (−1)m1+···+mα(−1)n1+···+nβ .

Writing explicitly only the shifted time variables, we have the following four state-
ments.

(1) For 1 ≤ β, β′ ≤ p, let

Q
(β,β′)
~m~n (z) = εβ,β′(~n)znβ′−1

τ~m,~n+~eβ−~eβ′
(t(β
′)−[z−1])

τ~m~n
, β′ 6= β,

Q
(β,β)
~m~n (z) = znβ τ~m~n(t(β)−[z−1])

τ~m~n
.

(218)

Then Q(β,1)
~m~n (y), . . . , Q(β,p)

~m~n (y) are Type II normalized mixed multiple or-
thogonal polynomials with respect to ϕtβ .

(2) For 1 ≤ α ≤ q and 1 ≤ β ≤ p, let

P
(α,β)
~m~n (z) = εα,β(~m,~n)znβ−1 τ~m−~eα,~n−~eβ (t(β) − [z−1])

τ~m~n
.(219)

Then P
(α,1)
~m~n (y), . . . , P (α,p)

~m~n (y) are Type I normalized mixed multiple or-
thogonal polynomials with respect to ψ−sα .
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(3) For 1 ≤ α ≤ q and 1 ≤ β ≤ p, the Cauchy transforms of

Q
(β)
~m~n(y) =

p∑
β′=1

Q
(β,β′)
~m~n (y)ϕtβ′(y),

with respect to ψ−sα , with Q(β,β′)
~m~n (y) defined in (218), can be expressed in

terms of the determinants τ~m~n as follows〈
ψ−sα (x)
z − x

∣∣∣Q(β)
~m~n(y)

〉
= εα,β(~m,~n)z−mα−1 τ~m+~eα,~n+~eβ (s(α) − [z−1])

τ~m~n
.(220)

(4) For 1 ≤ α, α′ ≤ q, the Cauchy transforms of

P
(α′)
~m~n (y) =

p∑
β=1

P
(α′,β)
~m~n (y)ϕtβ(y),

with respect to ψ−sα , with P (α,β)
~m~n (y) defined in (219), can be expressed in

terms of the determinants τ~m~n as follows〈
ψ−sα (x)
z−x

∣∣∣P (α′)
~m~n (y)

〉
= εα′,α(~m)z−mα−1 τ~m+~eα−~eα′ ,~n

(s(α)−[z−1])

τ~m~n
, α′ 6= α

〈
ψ−sα (x)
z−x

∣∣∣P (α′)
~m~n (y)

〉
= z−mα

τ~m,~n(s(α)−[z−1])
τ~m~n

.

(221)

And similarly.

Proposition 5.20 (Adler, van Moerbeke, Vanhaecke [14]). Writing explicitly only the
shifted time variables, we have the following four statements.

(1) For 1 ≤ α, α′ ≤ q, let

Q
∗(α,α′)
~n~m (z) = εα,α′(~m)zmα′−1 τ~m+~eα−~eα′ ,~n

(s(α
′)+[z−1])

τ~m~n
, α′ 6= α,

Q
∗(α,α)
~n~m (z) = zmα τ~m~n(s(α)+[z−1])

τ~m~n
.

(222)

Then Q∗(α,1)
~n~m (x), . . . , Q∗(α,q)~n~m (x) are Type II normalized mixed multiple or-

thogonal polynomials with respect to ψ−sα .
(2) For 1 ≤ α ≤ q and 1 ≤ β ≤ p, let

P
∗(β,α)
~n~m (z) = εβ,α(~n, ~m)zmα−1 τ~m−~eα,~n−~eβ (s(α) + [z−1])

τ~m~n
.(223)

Then P ∗(β,1)
~m~n (x), . . . , P ∗(β,p)~m~n (x) are Type I normalized mixed multiple or-

thogonal polynomials with respect to ϕtβ .
(3) For 1 ≤ α ≤ q and 1 ≤ β ≤ p, the Cauchy transforms of

Q
∗(α)
~n~m (x) =

q∑
α′=1

Q
∗(α,α′)
~n~m (x)ψ−sα′ (x),
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with respect to ϕtβ , with Q∗(α,α
′)

~n~m (y) defined in (222), can be expressed in
terms of the determinants τ~m~n as follows〈
Q
∗(α)
~n~m (x)

∣∣∣ ϕtβ(y)
z − y

〉
= εβ,α(~n, ~m)z−nβ−1 τ~m+~eα,~n+~eβ (t(β) + [z−1])

τ~m~n
.(224)

(4) For 1 ≤ β, β′ ≤ p, the Cauchy transforms of

P
∗(β)
~n~m (x) =

q∑
α=1

P
∗(β,α)
~n~m (x)ψ−sα (x),

with respect to ϕtβ , with P ∗(β,α)
~n~m (y) defined in (223), can be expressed in

terms of the determinants τ~m~n as follows〈
P
∗(β)
~n~m (x)

∣∣∣ ϕtβ′ (y)

z−y

〉
= εβ,β′(~n)z−nβ′−1

τ~m,~n+~e
β′−~eβ

(t(β
′)+[z−1])

τ~m~n
,

〈
P
∗(β)
~n~m (x)

∣∣∣ ϕtβ(y)

z−y

〉
= z−nβ

τ~m,~n(t(β)+[z−1])
τ~m~n

.

(225)

Define the (p+ q)× (p+ q) matrix

W~m~n(z; s, t)

:=


(
Q

(β,β′)
~m~n

)
1≤β≤p
1≤β′≤p

(〈
ψ−sα (x)
z−x

∣∣∣Q(β)
~m~n(y)

〉)
1≤β≤p
1≤α≤q(

P
(α,β)
~m~n

)
1≤α≤q
1≤β≤p

(〈
ψ−sα (x)
z−x

∣∣∣P (α′)
~m~n (y)

〉)
1≤α′≤q
1≤α≤q

 × ∆(z),

where

∆(z) = diag
(
eξ(t

(1),z), . . . , eξ(t
(p),z), eξ(s

(1),z), . . . , eξ(s
(q),z)

)
,

and the adjoint matrix

W ∗~m~n(z; s, t)

:=


(〈

P
∗(β′)
~n~m (x)

∣∣∣ ϕtβ(y)

z−y

〉)
1≤β′≤p
1≤β≤p

(
− P ∗(β,α)

~n~m

)
1≤β≤p
1≤α≤q

(
−
〈
Q
∗(α)
~n~m (x)

∣∣∣ ϕtβ(y)

z−y

〉)
1≤α≤q
1≤β≤p

(
Q
∗(α,α′)
~n~m

)
1≤α≤q
1≤α′≤q

 × ∆(z)−1.

In [14] it is proven that W~m~n,W
∗
~m~n satisfy bilinear identities. We state the result

without proof. It is essentially based on the orthogonality relations between the poly-
nomials, and follows the same ideas as used in Section 4.1 of Chapter 1.
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Theorem 5.21 (Adler, van Moerbeke, Vanhaecke [14]). The wave matrix W~m~n and
the adjoint wave matrix W ∗~m~n satisfy the following bilinear identities∮

z=∞
W~m~n(z; s, t)W ∗~m′~n′(z; s̃, t̃)

T dz = 0,(226)

for any t, t̃, s, s̃ ∈ C∞ and any multi-indices ~m = (m1, . . . ,mq), ~m′ =
(m′1, . . . ,m

′
q), ~n = (n1, . . . , np) and ~n′ = (n′1, . . . , n

′
p), with |~m| = |~n| and

|~m′| = |~n′|. This bilinear identity is equivalent to the following identity satisfied
by the determinants of the block matrices τ~m~n

p∑
β=1

∮
∞

(−1)σβ(~n)τ~m,~n−~eβ (t(β) − [z−1])τ~m′,~n′+~eβ (t̃(β) + [z−1])

e
∑∞
k=1(t

(β)
k −t̃

(β)
k )zkznβ−n

′
β−2dz

(227) =
q∑

α=1

∮
∞

(−1)σα(~m)τ~m+~eα,~n(s(α) − [z−1])τ~m′−~eα,~n′(s̃
(α) + [z−1])

e
∑∞
k=1(s

(α)
k −s̃

(α)
k )zkzm

′
α−mα−2dz,

for all ~m,~n, ~m′, ~n′ such that |~m′| = |~n′|+1 and |~m| = |~n|−1, and all s, t, s̃, t̃ ∈ C∞,
and where

σα(~m) =
α∑

α′=1

(mα′ −m′α′), and σβ(~n) =
β∑

β′=1

(nβ′ − n′β′).

Define the matrices

W̃~m~n(z; s, t) := W~m~n(z; s, t) × Ξ~m~n(z),

W̃ ∗~m~n(z; s, t) := W ∗~m~n(z; s, t) × Ξ~m~n(z)−1,

where

Ξ~m~n(z) := diag
(
z−n1 , . . . , z−np , zm1 , . . . , zmq

)
.

The matrices W̃~m~n(z; s, t), W̃ ∗~m~n(z; s, t) have exactly the same form as the wave
and adjoint wave functions of the multi-component KP hierarchy in (215) and (216).
Furthermore, they satisfy the bilinear identity (226) with ~m = ~m′ and ~n = ~n′,
characterizing the (p + q)-component KP hierarchy. Consequently, by virtue of
Theorem 5.16, they are wave and adjoint wave functions for the (p + q)-component
KP hierarchy.
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Define the Hirota symbol between functions f = f(t1, t2, . . . ) and g = g(t1, t2, . . . ),
given a polynomial p(t1, t2, . . . ), namely

p
( ∂

∂t1
,
∂

∂t2
, . . .

)
f ◦ g := p

( ∂

∂y1
,
∂

∂y2
, . . .

)
f(t+ y)g(t− y)

∣∣∣
y=0

.

This operation extends readily to the case where p(t1, t2, . . . ) is a Taylor series
in t1, t2, . . . . Remember the elementary Schur polynomials Sl are defined by
e
∑∞
k=1 tkz

k

:=
∑∞
k=0 Sk(t)zk, for l ≥ 0, and Sl(t) = 0 for l < 0. Moreover,

set

Sl(∂̃t) := Sl

( ∂

∂t1
,

1
2
∂

∂t2
,

1
3
∂

∂t3
, . . .

)
.

With these notations, computing the residues about z = ∞ in the contour integrals
(227), the functions τ~m~n, with |~m| = |~n|, are found to satisfy the following PDE’s :

τ2
~m~n

∂2

∂t
(β)
j+1∂t

(β′)
1

log τ~m~n = Sj+2δββ′ (∂̃t(β))τ~m,~n+~eβ−~eβ′ ◦ τ~m,~n−~eβ+~eβ′ ,

τ2
~m~n

∂2

∂s
(α)
j+1∂s

(α′)
1

log τ~m~n = Sj+2δαα′ (∂̃s(α))τ~m−~eα+~eα′ ,~n ◦ τ~m+~eα−~eα′ ,~n,

τ2
~m~n

∂2

∂s
(α)
1 ∂t

(β)
j+1

log τ~m~n = −Sj(∂̃t(β))τ~m+~eα,~n+~eβ ◦ τ~m−~eα,~n−~eβ ,

τ2
~m~n

∂2

∂t
(β)
1 ∂s

(α)
j+1

log τ~m~n = −Sj(∂̃s(α))τ~m−~eα,~n−~eβ ◦ τ~m+~eα,~n+~eβ .(228)

As a consequence, we have the following corollary.

Corollary 5.22. The function τ~m,~n(s, t) satisfies the following identities for |~m| = |~n|
and 1 ≤ k, k′ ≤ q, 1 ≤ l, l′ ≤ p, k 6= k′, l 6= l′,

∂

∂t
(l)
1

ln
τ~m,~n+~el−~el′

τ~m,~n−~el+~el′
=

∂2

∂t
(l)
2 ∂t

(l′)
1

ln τ~m,~n
∂2

∂t
(l)
1 ∂t

(l′)
1

ln τ~m,~n
,

∂

∂t
(l)
1

ln
τ~m+~ek,~n+~el

τ~m−~ek,~n−~el
=

∂2

∂t
(l)
2 ∂s

(k)
1

ln τ~m,~n
∂2

∂t
(l)
1 ∂s

(k)
1

ln τ~m,~n
,

∂

∂s
(k)
1

ln
τ~m−~ek+~ek′ ,~n

τ~m+~ek−~ek′ ,~n
=

∂2

∂s
(k)
2 ∂s

(k′)
1

ln τ~m,~n
∂2

∂s
(k)
1 ∂s

(k′)
1

ln τ~m,~n
,

∂

∂s
(k)
1

ln
τ~m−~ek,~n−~el
τ~m+~ek,~n+~el

=

∂2

∂s
(k)
2 ∂t

(l)
1

ln τ~m,~n
∂2

∂s
(k)
1 ∂t

(l)
1

ln τ~m,~n
.
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PROOF. We shall only give the proof of the first identity. The two first elementary
Schur polynomials are given by

S0(x1, x2, . . . ) = 1, S1(x1, x2, . . . ) = x1.

Consequently, the first equation in (228) with j = 0 and l 6= l′ gives

τ2
~m~n

∂2

∂t
(l)
1 ∂t

(l′)
1

log τ~m~n = S0(∂̃t(l))τ~m,~n+~el−~el′ ◦ τ~m,~n−~el+~el′

= τ~m,~n+~el−~el′ τ~m,~n−~el+~el′ ,(229)

while for j = 1 and l 6= l′ it gives

τ2
~m~n

∂2

∂t
(l)
2 ∂t

(l′)
1

log τ~m~n = S1(∂̃t(l))τ~m,~n+~el−~el′ ◦ τ~m,~n−~el+~el′

= τ~m,~n−~el+~el′
∂

∂t
(l)
1

τ~m,~n+~el−~el′ − τ~m,~n+~el−~el′
∂

∂t
(l)
1

τ~m,~n−~el+~el′ .(230)

Taking the ratio of (230) and (229) yields the first formula of Corollary 6.3. The other
identities are obtained in a similar way. �





Chapter6
Non-intersecting Brownian
motions leaving from and going
to several points

This Chapter is mainly based on [13]

1. Non-intersecting Brownian motions : the Karlin-McGregor formula

Let x(t) be the path of a Brownian particle on R, starting at time t = 0 in α, and with
Gaussian transition probability density given by

p(t, x, y) =
1√
πt
e
−(x−y)2

t .(231)

It is a stationary Markov process. We will use the notation

p(t, x, E) =
∫
E

p(t, x, y)dy,

for the probability to find the Brownian particle in E ⊂ R at time t > 0, knowing it
was in x at time t = 0. Consider now N Brownian particles x1(t), x2(t), . . . , xN (t)
in R, leaving from distinct points α1 < α2 < · · · < αN , executing simultaneously
and independently the process described above. As the N processes are independent,

155
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we have

P~α
(
~x(t) ∈ ~E

)
:= P

(
~x(t) ∈ E1 × · · · × EN

∣∣ ~x(0) = ~α
)

=
N∏
i=1

p(t, αi, Ei),

where Ei ⊂ R, 1 ≤ i ≤ N , ~x(t) =
(
x1(t), . . . , xN (t)

)
and ~α = (α1, . . . , αN ).

We are interested in the probability density that N Brownian particles starting at
prescribed positions at time t = 0, end up at prescribed positions at a time t > 0,
without two of them ever having been coincident during the time interval [0, t]. It is a
well-known result due to Karlin and McGregor [49] that this probability is given by a
determinant expressed in terms of the transition probability density p(t, x, y). In this
section, we give the proof of this formula.

We define the set F ⊂ RN of coincident states

F =
{

(x1, . . . , xN ) ∈ RN
∣∣∃i < j : xi = xj

}
.

A permutation λ ∈ SN is called a transposition if there exist 1 ≤ i < j ≤ N such that

λ(i) = j, λ(j) = i, λ(k) = k if k 6= i, j.

We use the notation λ = (i, j). A coincident state ~x = (x1, . . . , xN ) ∈ F is said
to belong to the transposition (i, j) with i < j, if x1, . . . , xj−1 are all different but
xi = xj . Consequently, every coincident state belongs to a unique transposition. For
a transposition λ, the set of all coincident states belonging to λ will be denoted F (λ).
The set of all transpositions of 1, . . . , N will be denoted Λ. We have of course F =
∪λ∈ΛF (λ), and the sets F (λ) are disjoint. Let T (~x) be the time of first coincidence
(the time of first hitting F ), i.e.

T (~x) = inf{t > 0 | ∃1 ≤ i < j ≤ N : xi(t) = xj(t)}.

As the Brownian particles have continuous path functions xi(t), and transition proba-
bilities p(t;x, y) continuous in t and x, we have the following identity

P ~α
(
~x(t) ∈ ~E

)
= P ~α

(
~x(t) ∈ ~E, T (~x) > t

)
+
∫ t

0

ds

∫
F

d~y P ~α
(
~x(s) = ~y, T (~x) = s

)
P ~y
(
~x(t− s) ∈ ~E

)
.(232)

See for instance [49] for a proof.

Theorem 6.1 (Karlin-McGregor [49]). The transition probability density to find the
Brownian particles in γ1 < γ2 < · · · < γN at a time 0 < t, without two of them ever
having been coincident during the time interval [0, t], is given by the determinant

P ~α
(
~x(t) = ~γ, T (~x) > t

)
= det

[
p(t, αi, γj)

]
1≤i,j≤N .
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PROOF. On the one hand we have∑
σ∈SN

(−1)σP ~α
(
~x(t) = ~γσ

)
=
∑
σ∈SN

(−1)σ
N∏
i=1

p(t, αi, γσ(i))

= det
[
p(t, αi, γj)

]
1≤i,j≤N ,(233)

where ~γσ = (γσ(1), . . . , γσ(N)). On the other hand, by virtue of (232) we have for
σ ∈ SN

P ~α
(
~x(t) = ~γσ

)
= P ~α

(
~x(t) = ~γσ, T (~x) > t

)
+
∫ t

0

ds

∫
F

d~y P ~α
(
~x(s) = ~y, T (~x) = s

)
P ~y
(
~x(t− s) = ~γσ

)
.

Consequently∑
σ∈SN

(−1)σ
(
P ~α
(
~x(t) = ~γσ

)
− P ~α

(
~x(t) = ~γσ, T (~x) > t

))
=
∑
σ∈SN

(−1)σ
∫ t

0

ds

∫
F

d~y P ~α
(
~x(s) = ~y, T (~x) = s

)
P ~y
(
~x(t− s) = ~γσ

)
=
∑
σ∈SN

∑
λ∈Λ

(−1)σ
∫ t

0

ds

∫
F (λ)

d~y P ~α
(
~x(s) = ~y, T (~x) = s

)
× P ~y

(
~x(t− s) = ~γσ

)
= −

∑
σ∈SN

∑
λ∈Λ

(−1)σ◦λ
∫ t

0

ds

∫
F (λ)

d~y P ~α
(
~x(s) = ~y, T (~x) = s

)
× P ~y

(
~x(t− s) = ~γσ◦λ

)
.

For a fixed λ ∈ Λ define σ̃ = σ ◦ λ, σ ∈ SN . When σ runs over SN , then so does
σ̃ = σ ◦ λ. So we get∑

σ∈SN

(−1)σ
(
P ~α
(
~x(t) = ~γσ

)
− P ~α

(
~x(t) = ~γσ, T (~x) > t

))
= −

∑
λ∈Λ

∑
σ̃∈SN

(−1)σ̃
∫ t

0

ds

∫
F (λ)

d~y P ~α
(
~x(s) = ~y, T (~x) = s

)
× P ~y

(
~x(t− s) = ~γσ̃

)
= −

∑
σ̃∈SN

(−1)σ̃
(
P ~α
(
~x(t) = ~γσ̃

)
− P ~α

(
~x(t) = ~γσ̃, T (~x) > t

))
.
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Consequently we have∑
σ∈SN

(−1)σ
(
P ~α
(
~x(t) = ~γσ

)
− P ~α

(
~x(t) = ~γσ, T (~x) > t

))
= 0,

and thus ∑
σ∈SN

(−1)σP ~α
(
~x(t) = ~γσ

)
=
∑
σ∈SN

(−1)σP ~α
(
~x(t) = ~γσ, T (~x) > t

)
.

As γ1 < γ2 < · · · < γN , all the terms except one are equal to zero in the right-hand
side of this relation. We get∑

σ∈SN

(−1)σP ~α
(
~x(t) = ~γσ

)
= P ~α

(
~x(t) = ~γ, T (~x) > t

)
.

Comparing this with (233) concludes the proof. �

This Theorem enables us to compute the probability density to find the Brownian
particles in positions β1 < β2 < · · · < βN at time t = 1 and in positions γ1 < γ2 <

· · · < γN at an intermediate time 0 < t < 1, without two of them ever having been
coincident during the time interval [0, 1]. We have

P ~α
(
~x(t) = ~γ, ~x(1) = ~β, T (~x) > 1

)
= det

[
p(t, αi, γj)

]
1≤i,j≤N det

[
p(1− t, γi, βj)

]
1≤i,j≤N ,

and we have

P ~α
(
~x(1) = ~β, T (~x) > 1

)
=
∫
y1<y2<···<yN

det
[
p(t, αi, yj)

]
1≤i,j≤N

× det
[
p(1− t, yi, βj)

]
1≤i,j≤Nd~y

=
1
N !

∫
RN

det
[
p(t, αi, yj)

]
1≤i,j≤N det

[
p(1− t, yi, βj)

]
1≤i,j≤Nd~y.

Consequently, the conditional probability to find the Brownian particles in a set E at
an intermediate time 0 < t < 1, provided the particles are in β at time t = 1, without
two of them ever having been coincident during the time interval [0, 1], is given by

P ~α
(
~x(t) ∈ EN | ~x(1) = ~β, T (~x) > 1

)
=
P ~α
(
~x(t) ∈ EN , ~x(1) = ~β, T (~x) > 1

)
P ~α
(
~x(1) = ~β, T (~x) > 1

)
=

∫
EN

det
[
p(t, αi, yj)

]
1≤i,j≤N det

[
p(1− t, yi, βj)

]
1≤i,j≤Nd~y∫

RN det
[
p(t, αi, yj)

]
1≤i,j≤N det

[
p(1− t, yi, βj)

]
1≤i,j≤Nd~y

=: P~α~β
(
~x(t) ∈ EN

)
.(234)
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2. Non-intersecting Brownian motions with q starting points and p ending
points

Consider N Brownian motions x1(t), x2(t), . . . , xN (t) in R, conditioned to leave
from distinct points α1 < α2 < · · · < αN at time t = 0 and to end up at distinct points
β1 < β2 < · · · < βN at time t = 1, without two of them ever having been coincident
during the time interval [0, 1]. By virtue of (234), the conditional probability that all
xi(t) belong to a set E ⊂ R at a given time 0 < t < 1 is

P~α~β
(
~x(t) ∈ EN

)
=

1
ZN

∫
EN

det
[
p(t, αi, xj)

]
1≤i,j≤N det

[
p(1− t, xi, βj)

]
1≤i,j≤N

N∏
i=1

dxi

=
1
Z̃N

∫
EN

det
[
e

2αixj
t

]
1≤i,j≤N det

[
e

2βixj
1−t

]
1≤i,j≤N

N∏
i=1

e
−x2i
t(1−t) dxi,

where ZN and Z̃N are normalizing factors. In particular, if

(α1, . . . , αN ) =
(
a1, a1, . . . , a1︸ ︷︷ ︸

m1

, a2, a2, . . . , a2︸ ︷︷ ︸
m2

, . . . , aq, aq, . . . , aq︸ ︷︷ ︸
mq

)
,

a1 < a2 < · · · < aq,

(β1, . . . , βN ) =
(
b1, b1, . . . , b1︸ ︷︷ ︸

n1

, b2, b2, . . . , b2︸ ︷︷ ︸
n2

, . . . , bp, bp, . . . , bp︸ ︷︷ ︸
np

)
,

b1 < b2 < · · · < bp,

with
∑q
i=1 ai =

∑p
i=1 bi = 0 and

∑q
i=1mi =

∑p
i=1 ni = N , then we have

Pa1,...,aq
b1,...,bp

(
~x(t) ∈ EN

)

:= P

~x(t) ∈ EN
∣∣∣∣∣
(
x1(0), . . . , xN (0)

)
=
(
a1, . . . , a1︸ ︷︷ ︸

m1

, . . . , aq, . . . , aq︸ ︷︷ ︸
mq

)
(
x1(1), . . . , xN (1)

)
=
(
b1, . . . , b1︸ ︷︷ ︸

n1

, . . . , bp, . . . , bp︸ ︷︷ ︸
np

)


= lim
α1,...,αm1→a1

...
αm1+···+mq−1+1,...,αm1+···+mq→aq

β1,...,βn1→b1...
βn1+···+np−1+1,...,βn1+···+np→bp

P~α~β
(
~x(t) ∈ EN

)
.
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Consequently, we obtain

Pa1,...,aq
b1,...,bp

(
~x(t) ∈ EN

)
=

1
ẐN

∫
EN

N∏
i=1

e
−x2i
t(1−t) dxi

× det



(
xije

2a1xj
t

)
0≤i≤m1−1

1≤j≤N

...(
xije

2aqxj
t

)
0≤i≤mq−1

1≤j≤N


. det



(
xije

2b1xj
1−t

)
0≤i≤n1−1

1≤j≤N

...

(
xije

2bpxj
1−t

)
0≤i≤np−1

1≤j≤N


.

We have, using the change of variables xi =
√

t(1−t)
2 yi, 1 ≤ i ≤ N ,

Pa1,...,aq
b1,...,bp

(
~x(t) ∈ EN

)
= Pp,q

(√ 2
t(1− t)

E;

√
2(1− t)

t
a,

√
2t

1− t
b
)
,(235)

with the normalized problem being

Pp,q(E; a, b) :=
1
Zp,q

∫
EN

( N∏
i=1

e
−x2i

2 dxi

)
det
[
ψ̃i(xj)

]
1≤i,j≤N det

[
ϕ̃i(xj)

]
1≤i,j≤N ,(236)

where Zp,q is a normalizing factor, and where we have introduced the following nota-
tion (

ψ̃1(x), . . . , ψ̃N (x)
)

:=
(
ea1x, xea1x, . . . , xm1−1ea1x, ea2x, xea2x, . . . ,

xm2−1ea2x, . . . , eaqx, xeaqx, . . . , xmq−1eaqx
)
,(

ϕ̃1(x), . . . , ϕ̃N (x)
)

:=
(
eb1x, xeb1x, . . . , xn1−1eb1x, eb2x, xeb2x, . . . ,

xn2−1eb2x, . . . , ebpx, xebpx, . . . , xnp−1ebpx
)
.

In the following proposition, we consider a general situation, of which (236) is a
special case by setting V (x) = x2

2 , ψi(x) = eaix, 1 ≤ i ≤ q, and ϕi(x) = ebix, 1 ≤
i ≤ p.

Proposition 6.2 (Adler-van Moerbeke-Vanderstichelen [13]). Given an arbitrary po-
tential V (x) and arbitrary functions ψ1(x), . . . , ψq(x) and ϕ1(x), . . . , ϕp(x), define
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(N = m1 + · · ·+mq = n1 + . . . np)(
ψ̃1(x), . . . , ψ̃N (x)

)
:=
(
ψ1(x), xψ1(x), . . . , xm1−1ψ1(x), ψ2(x),

xψ2(x), . . . , xm2−1ψ2(x), . . . , ψq(x), xψq(x), . . . , xmq−1ψq(x)
)
,(

ϕ̃1(x), . . . , ϕ̃N (x)
)

:=
(
ϕ1(x), xϕ1(x), . . . , xn1−1ϕ1(x), ϕ2(x),

xϕ2(x), . . . , xn2−1ϕ2(x), . . . , ϕp(x), xϕp(x), . . . , xnp−1ϕp(x)
)
.

We have

N !
∫
EN

( N∏
i=1

e−V (xi) dxi

)
det
[
ψ̃i(xj)

]
1≤i,j≤N det

[
ϕ̃i(xj)

]
1≤i,j≤N

= (N !)2 det

[∫
E

ψ̃i(x)ϕ̃j(x)e−V (x)dx

]
1≤i,j≤N

=
(

N

m1,m2, . . . ,mq

)(
N

n1, n2, . . . , np

)∫
EN

( N∏
i=1

e−V (xi) dxi

)
×
(

∆m1(x(1))
m1∏
i=1

ψ1(xi)
)
× . . . ×

(
∆mq (x

(q))
mq∏
i=1

ψq(xm1+···+mq−1+i)
)

×
∑
σ∈SN

(−1)σ
[(

∆n1(xσ(1), . . . , xσ(n1))
n1∏
i=1

ϕ1(xσ(i))
)

× · · · ×
(

∆np(xσ(n1+···+np−1+1), . . . , xσ(n1+···+np))

×
np∏
i=1

ϕp(xσ(n1+···+np−1+i))
)]
,(237)

where x(1) = (x1, x2, . . . , xm1), . . . , x(q) = (xm1+···+mq−1+1, . . . , xm1+···+mq ),
and ∆n(x1, . . . , xn) = det[xi−1

j ]1≤i,j≤n is the Vandermonde determinant.

PROOF. Let P̃ (E; p, q) be left hand side in (237)

P̃ (E; p, q) := N !
∫
EN

( N∏
i=1

e−V (xi) dxi

)
× det

[
ψ̃i(xj)

]
1≤i,j≤N det

[
ϕ̃i(xj)

]
1≤i,j≤N .

The first identity in (237) is a consequence of applying the following standard identity

det[aij ]1≤i,j≤N det[bij ]1≤i,j≤N =
∑
σ∈SN

det
[
ai,σ(j)bj,σ(j)

]
1≤i,j≤N ,

and distributing the integration over the different columns.
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We prove now the second identity in (237). Working out the determinant
det
[
ψ̃i(xj)

]
1≤i,j≤N we obtain

P̃ (E; p, q) = N !
∑
σ∈SN

(−1)σ
∫
EN

( N∏
i=1

e−V (xi) dxi

)

×
( N∏
i=1

ψ̃i(xσ(i))
)

det
[
ϕ̃i(xj)

]
1≤i,j≤N .

In each term of this summation, we make the change of variables xi = yσ−1(i), 1 ≤
i ≤ N . We have

P̃ (E; p, q) = (N !)2

∫
EN

( N∏
i=1

e−V (yi) dyi

)
×
( N∏
i=1

ψ̃i(yi)
)

det
[
ϕ̃i(yj)

]
1≤i,j≤N ,

since det
[
ϕ̃i(yj)

]
1≤i,j≤N = (−1)σ det

[
ϕ̃i(xj)

]
1≤i,j≤N . Now take σ1 ∈ Sm1 , σ2 ∈

Sm2 , . . . , σq ∈ Smq arbitrarily and define the permutation σ := σ1×σ2× · · ·×σq ∈
SN . Consider the following change of variables y → z defined by σ:

(y1, . . . , ym1 ) = (zσ1(1), . . . , zσ1(m1)),

(ym1+1, . . . , ym1+m2 ) = (zm1+σ2(1), . . . , zm1+σ2(m2)),

.

.

.

(ym1+···+mq−1+1, . . . , ym1+···+mq ) = (zm1+···+mq−1+σq(1), . . . , zm1+···+mq−1+σq(mq)).

This change of variables leaves the integral unchanged. Consequently, if we sum
over all the permutations σ1 × σ2 × · · · × σq ∈ Sm1 × · · · × Smq and divide by
m1!m2! . . .mq!, we have by the definition of ψ̃i and ∆n(z)

P̃ (E; p, q)

= N !
(

N

m1,m2, . . . ,mq

)∫
EN

( N∏
i=1

e−V (zi) dzi

)(
∆m1(z(1))

m1∏
i=1

ψ1(zi)
)

×
(

∆m2(z(2))
m2∏
i=1

ψ2(zm1+i)
)
× · · ·×

×
(

∆mq (z
(q))

mq∏
i=1

ψq(zm1+···+mq−1+i)
)

det
[
ϕ̃i(zj)

]
1≤i,j≤N .(238)
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We develop the determinant det
[
ϕ̃i(zj)

]
1≤i,j≤N in this expression

det
[
ϕ̃i(zj)

]
1≤i,j≤N =

∑
σ∈SN

(−1)σ
N∏
i=1

ϕ̃i
(
zσ(i)

)
=
∑
σ∈SN

(−1)σ
( n1∏
i=1

ϕ1

(
zσ(i)

)
zi−1
σ(i)

)( n2∏
i=1

ϕ2

(
zσ(n1+i)

)
zi−1
σ(n1+i)

)

× · · · ×
( np∏
i=1

ϕp
(
zσ(n1+···+np−1+i)

)
zi−1
σ(n1+···+np−1+i)

)
.

Fix σ̃1 ∈ Sn1 , . . . , σ̃p ∈ Snp and, for a given permutation σ ∈ SN , let σ̃ ∈ SN be
such that σ = σ̃ ◦ (σ̃1 × σ̃2 × · · · × σ̃p), but when σ̃ runs over SN , then so does σ.
Consequently we have

det
[
ϕ̃i(zj)

]
1≤i,j≤N

=
∑
σ̃∈SN

(−1)σ̃(−1)σ̃1 . . . (−1)σ̃p
( n1∏
i=1

ϕ1

(
zσ̃◦σ̃1(i)

)
zi−1
σ̃◦σ̃1(i)

)
× . . .

×
( np∏
i=1

ϕp
(
zσ̃(n1+···+np−1+σ̃p(i))

)
zi−1
σ̃(n1+···+np−1+σ̃p(i))

)
.

We substitute this expression in equation (238). For each σ̃ ∈ SN we further sum over
σ̃1 ∈ Sn1 , σ̃2 ∈ Sn2 , . . . , σ̃p ∈ Snp and so must divide by n1!n2! . . . np! as we have
overcounted. We then obtain the second equality in (237). This ends the proof. �

As a consequence, setting V (x) = x2

2 , ψi(x) = eaix, 1 ≤ i ≤ q, and ϕi(x) =
ebix, 1 ≤ i ≤ p, in (237), we have for the normalized problem

Pp,q(E; a, b) =
1
Z

∫
EN

( N∏
i=1

e−
xi
2 dxi

)(
∆m1(x(1))

m1∏
i=1

ea1xi
)
× . . .

×
(

∆mq (x
(q))

mq∏
i=1

eaqxm1+···+mq−1+i
)

×
∑
σ∈SN

(−1)σ
[(

∆n1(xσ(1), . . . , xσ(n1))
n1∏
i=1

eb1xσ(i)

)
× . . .

×
(

∆np(xσ(n1+···+np−1+1), . . . , xσ(n1+···+np))
np∏
i=1

ebpxσ(n1+···+np−1+i)
)]
,(239)

where Z is a normalizing constant.

Suppose p = q = 1. Then we have αi = βi = 0, 1 ≤ i ≤ N , and all the Brownian
particles start at t = 0 in x = 0, and end up at t = 1 in x = 0. Then the sum in the
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normalized problem (239) reduces to

P1,1(E; 0, 0) =
1
Z

∫
EN

∆N (x)2
( N∏
i=1

e−
xi
2 dxi

)
.

Remembering (27), we notice that this is nothing but the probability that a randomly
chosen N ×N Hermitian matrix from the GUE ensemble has all its eigenvalues in E.
Through transformation (235), we have thus an interpretation of the GUE ensemble
in terms of non-intersecting Brownian motions leaving at time t = 0 from and ending
up at time t = 1 in the origin.

Suppose now q = 1. Then we have αi = 0, 1 ≤ i ≤ N , and all the Brownian particles
start at t = 0 in x = 0, and n1 end up in b1, n2 end up in b2, . . . , np end up in bp at
time t = 1. All the terms in the normalized problem (239) are equal, and we get

Pp,1(E; 0, b) =
1
Z

∫
EN

∆N (x)
(

∆n1(x(1))
n1∏
i=1

eb1xi
)

× · · · ×
(

∆np(x(p))
np∏
i=1

ebpxn1+···+np−1+i
)( N∏

i=1

e−
xi
2 dxi

)
.

Comparing this relation with (30), we notice that this is nothing but the probability
that a N ×N Hermitian matrix from the Gaussian ensemble with external source

A = diag
(
b1, . . . , b1︸ ︷︷ ︸

n1

, . . . , bp, . . . , bp︸ ︷︷ ︸
np

)
,

has all its eigenvalues in E. Through transformation (235), we have thus an inter-
pretation of the Gaussian ensemble with external source in terms of non-intersecting
Brownian motions leaving at time t = 0 from the origin and ending up at time t = 1
in p different points b1 < · · · < bp.

The two special cases we have treated here (p = 1 and/or q = 1) and their interpreta-
tion in terms of joint eigenvalue probabilities of matrix ensembles have been studied
and are very well understood. We refer to [8, 11, 22, 23, 63, 64] and references herein,
and to [15] for the interpretation in terms of matrix ensembles. The case when both
p 6= 1 and q 6= 1 differs from these two particular cases as no interpretation of the
Brownian motion model in terms of matrix ensembles is known.

3. An integrable deformation of the joint probability density function

The connection of the problem of non-intersecting brownian motions on R with the
multi-component KP hierarchy is explained in [14]. The main ideas are being sketched
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in this section. We will deform Pp,q(E; a, b) defined in (236) by adding extra time
variables

t(1) =
(
t
(1)
1 , t

(1)
2 , . . .

)
, . . . , t(p) =

(
t
(p)
1 , t

(p)
2 , . . .

)
,

s(1) =
(
s

(1)
1 , s

(1)
2 , . . .

)
, . . . , s(q) =

(
s

(q)
1 , s

(q)
2 , . . .

)
,

and auxiliary variables

(α1, . . . , αq), (β1, . . . , βp),

such that
∑q
i=1 αi =

∑p
j=1 βj = 0. First set

ψ−si (x) := eaix+αix
2−
∑∞
j=1 s

(i)
j xj , 1 ≤ i ≤ q,

ϕti(x) := ebix+βix
2+
∑∞
j=1 t

(i)
j xj , 1 ≤ i ≤ p.

We define

Pp,q
(
E; a, b; (t, s), (α, β)

)
=
τE~m,~n(t, s;α, β; a, b)

τR
~m,~n(t, s;α, β; a, b)

,(240)

with

τE~m,~n(t, s;α, β; a, b) :=
1
N !

∫
EN

( N∏
i=1

e
−x2i

2 dxi

)
× det

[
ψ̃−si (xj)

]
1≤i,j≤N det

[
ϕ̃ti(xj)

]
1≤i,j≤N ,(241)

where

(t, s) =
(
t(1), . . . , t(p); s(1), . . . , s(q)

)
,

(α, β) = (α1, . . . , αq−1;β1, . . . , βp−1),

(a, b) = (a1, . . . , aq−1; b1, . . . , bp−1),

and (
ψ̃−s1 (x), . . . , ψ̃−sN (x)

)
:=
(
ψ−s1 (x), xψ−s1 (x), . . . , xm1−1ψ−s1 (x), . . . ,

ψ−sq (x), xψ−sq (x), . . . , xmq−1ψ−sq (x)
)
,(

ϕ̃t1(x), . . . , ϕ̃tN (x)
)

:=
(
ϕt1(x), xϕt1(x), . . . , xn1−1ϕt1(x), . . . ,

ϕtp(x), xϕtp(x), . . . , xnp−1ϕtp(x)
)
.
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Observe that Pp,q(E; a, b) = Pp,q
(
E; a, b; (t, s), (α, β)

)∣∣
L, where L = {(t, s) =

(0, 0), α = β = 0}. By virtue of proposition 6.2 we have

τ
E
~m,~n(t, s;α, β; a, b) = det

[ ∫
E
ψ̃
−s
i (x)ϕ̃

t
j(x)e

−x2
2 dx

]
1≤i,j≤N

= det



( ∫
E x

i+jψ−s1 ϕt1e
− x

2
2 dx

)
0≤i<m1
0≤j<n1

. . .
( ∫
E x

i+jψ−s1 ϕtpe
− x

2
2 dx

)
0≤i<m1
0≤j<np

.

.

.
.
.
.

( ∫
E x

i+jψ−sq ϕt1e
− x

2
2 dx

)
0≤i<mq
0≤j<n1

. . .
( ∫
E x

i+jψ−sq ϕtpe
− x

2
2 dx

)
0≤i<mq
0≤j<np


,(242)

where for simplicity we have left out the dependence of ϕ−si and ψtj on x. We have
also

τE~m,~n(t, s;α, β; a, b)

=
1∏q

i=1mi!
∏p
j=1 nj !

∫
EN

(
∆m1(x(1))

m1∏
i=1

ψ−s1 (xi)e
−x2i

2 dxi

)
× . . . ×

(
∆mq (x

(q))
m1+···+mq∏

i=m1+···+mq−1+1

ψ−sq (xi)e
−x2i

2 dxi

)

×
∑
σ∈SN

(−1)σ
[(

∆n1(xσ(1), . . . , xσ(n1))
n1∏
i=1

ϕt1(xσ(i))
)
× · · ·×

(
∆np(xσ(n1+···+np−1+1), . . . , xσ(n1+···+np))

n1+···+np∏
i=n1+···+np−1+1

ϕtp(xσ(i))
)]
.(243)

The determinant of the moment matrix (217) with regard to the inner product 〈f, g〉 =∫
E
f(z)g(z)e−z

2/2dz, with

ψi(x) := eaix+αix
2
, 1 ≤ i ≤ q, ϕj(x) := ebjx+βjx

2
, 1 ≤ j ≤ p,

is the same as the determinant (242). Therefore, by virtue of Theorem 5.21,
τE~m,~n(t, s;α, β; a, b) satisfies the (p + q)-component KP hierarchy. A direct conse-
quence of Corollary 5.22 is :

Corollary 6.3. The function τE~m,~n(t, s;α, β; a, b) satisfies the following identities, 1 ≤
k, k′ ≤ q, 1 ≤ l, l′ ≤ p, k 6= k′, l 6= l′,

∂

∂t
(l)
1

ln
τE~m,~n+~el−~el′

τE~m,~n−~el+~el′
=

∂2

∂t
(l)
2 ∂t

(l′)
1

ln τE~m,~n
∂2

∂t
(l)
1 ∂t

(l′)
1

ln τE~m,~n
,

∂

∂t
(l)
1

ln
τE~m+~ek,~n+~el

τE~m−~ek,~n−~el
=

∂2

∂t
(l)
2 ∂s

(k)
1

ln τE~m,~n
∂2

∂t
(l)
1 ∂s

(k)
1

ln τE~m,~n
,
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∂

∂s
(k)
1

ln
τE~m−~ek+~ek′ ,~n

τE~m+~ek−~ek′ ,~n
=

∂2

∂s
(k)
2 ∂s

(k′)
1

ln τE~m,~n
∂2

∂s
(k)
1 ∂s

(k′)
1

ln τE~m,~n
,

∂

∂s
(k)
1

ln
τE~m−~ek,~n−~el
τE~m+~ek,~n+~el

=

∂2

∂s
(k)
2 ∂t

(l)
1

ln τE~m,~n
∂2

∂s
(k)
1 ∂t

(l)
1

ln τE~m,~n
.(244)

4. Virasoro constraints

Let us introduce the following differential operators

J(1)
m,k(t) =

∂

∂tm
+ (−m)t−m + k δ0,m,

J(2)
m,k(t) =

1
2

( ∑
i+j=m

∂2

∂ti∂tj
+ 2

∑
i≥1

iti
∂

∂ti+m
+

∑
i+j=−m

itijtj

)
+
(
k +

m+ 1
2

)( ∂

∂tm
+ (−m)t−m

)
+
k(k + 1)

2
δm,0.

Those operators satisfy the Heisenberg and Virasoro algebra respectively[
J(1)
k,n(t), J(1)

l,n(t)
]

= k δk,−l,[
J(2)
k,n(t), J(2)

l,n(t)
]

= (k − l)J(2)
k+l,n −

(k3 − k
6

)
δk,−l,

and interact as follows[
J(2)
k,n(t), J(1)

l,n(t)
]

= −l J(1)
k+l,n(t) +

k(k + 1)
2

δk,−l.

We have the following lemma, proven by Adler and van Moerbeke [10].

Lemma 6.4 (Adler-van Moerbeke [10]). Given ρ(z) = e−V (z), with

−ρ
′(z)
ρ(z)

= V ′(z) =
g(z)
f(z)

=
∑∞
i=0 νiz

i∑∞
i=0 µiz

i
,

the integrand

dIN (z; t) := ∆N (z)
N∏
k=1

(
e
∑∞
i=1 tiz

i
kρ(zk)dzk

)
satisfies the variational formula

d

dε
dIN

(
zi 7→ zi + εf(zi)zk+1

i ; t
)∣∣∣
ε=0

=
∞∑
l=0

(
µl J(2)

k+l,N (t)− νl J(1)
k+l+1,N (t)

)
dIN (z; t),
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for each k ≥ −1. The contribution of the factor
∏N
i=1 dzi in this equation is

∞∑
l=0

µl (l + k + 1) J(1)
k+l,N dIN (z; t).

We define, for a given permutation σ ∈ Sn, the integrands

dIσ~m,~n
(
x; (t, s)

)
=
(

∆m1(x(1))
m1∏
i=1

ψ−s
(1)

1 (xi)e
−x2i

2 dxi

)
× . . . ×

(
∆mq (x

(q))
m1+···+mq∏

i=m1+···+mq−1+1

ψ−s
(q)

q (xi)e
−x2i

2 dxi

)

×
(

∆n1(xσ(1), . . . , xσ(n1))
n1∏
i=1

ϕt
(1)

1 (xσ(i))
)
× · · ·×

(
∆np(xσ(n1+···+np−1+1), . . . , xσ(n1+···+np))

n1+···+np∏
i=n1+···+np−1+1

ϕt
(p)

p (xσ(i))
)
.(245)

We are looking for a variational equation for

dIσ~m,~n

(
xi 7→ xi + εxk+1

i ; (t, s)
)
.

We have the following lemma.

Lemma 6.5 (Adler-van Moerbeke-Vanderstichelen [13]). The integrand
dIσ~m,~n

(
x; (t, s)

)
as defined in (245), satisfies the following variational equation

for each σ ∈ SN and k ≥ −1
d

dε
dIσ~m,~n

(
xi 7→ xi + εxk+1

i ; (t, s)
)∣∣∣
ε=0

= V~m,~n
k

(
dIσ~m,~n

)
,

with

V~m,~n
k

:=
q∑
i=1

[
J(2)
k,mi

(−s(i)) + ai J(1)
k+1,mi

(−s(i))−
(
1− 2αi

)
J(1)
k+2,mi

(−s(i))
]

+
p∑
i=1

[
J(2)
k,ni

(t(i)) + bi J(1)
k+1,ni

(t(i)) + 2βi J(1)
k+2,ni

(t(i))

− (k + 1) J(1)
k,ni

(t(i))
]
.(246)

PROOF. By the Leibniz rule, applying Lemma 6.4 to each factor in (245) and
adding all these contributions yields (246). �
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As the variational formula in Lemma 6.4 is independent of the labeling of the variables
in the integrand, it is a trivial but very important fact that the operator V~m,~n

k as defined
in (246) is independent of the choice of σ ∈ Sn. As a consequence, we have the
following theorem.

Theorem 6.6 (Adler-van Moerbeke-Vanderstichelen [13]). The function τE~m,~n(t, s) as
defined in (241) satisfies the following Virasoro constraints

Bk τE~m,~n = V~m,~n
k τE~m,~n, k ≥ −1,(247)

with

Bk =
2r∑
i=1

ck+1
i

∂

∂ci
,

for E = ∪ri=1[c2i−1, c2i] ⊂ R.

PROOF. By virtue of formula (243) expressing τE~m,~n(t, s;α, β; a, b) as a N -uple
integral over E, we have

τE~m,~n(t, s;α, β; a, b) =
1∏q

i=1mi!
∏p
j=1 nj !

∑
σ∈SN

(−1)στE,σ~m,~n(t, s;α, β; a, b),

where τE,σ~m,~n(t, s;α, β; a, b) is defined by

τE,σ~m,~n(t, s;α, β; a, b) :=
∫
EN

dIσ~m,~n(x; (t, s)),

with dIσ~m,~n(x; (t, s)) as in (245). For a fixed permutation σ ∈ SN and k ≥ −1, we
apply the change of variables xi 7→ xi + εxk+1

i , 1 ≤ i ≤ N , given in lemma 6.5, in
the integral defining τE,σ~m,~n(t, s;α, β; a, b). This change of variables leaves the integral
invariant, but induces a change of limits of integration, given by the inverse map

ci 7→ ci − εck+1
i +O(ε2), 1 ≤ i ≤ 2r,

for ε small enough. Consequently, differentiating the result with respect to ε and
evaluating it at ε = 0, using the fundamental theorem of integral calculus together
with Lemma 6.5, we obtain

Bk τE,σ~m,~n = V~m,~n
k τE,σ~m,~n, k ≥ −1,(248)

with

Bk =
2r∑
i=1

ck+1
i

∂

∂ci
.

As noticed earlier, the operator V~m,~n
k does not depend on σ ∈ SN . Consequently,

summing (248) over σ ∈ SN and dividing by
∏q
i=1mi!

∏p
j=1 nj !, we obtain

Bk τE~m,~n = V~m,~n
k τE~m,~n, k ≥ −1.

This concludes the proof. �
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When specializing the differential equations (247) to k = −1 and k = 0, we find that
the tau-function τE~m,~n satisfies respectively

B−1 τ =
∑
i≥2

(
q∑
l=1

is
(l)
i

∂

∂s
(l)
i−1

+
p∑
l=1

it
(l)
i

∂

∂t
(l)
i−1

)
τ +

q∑
l=1

(1− 2αl)
∂τ

∂s
(l)
1

+ 2
p∑
l=1

βl
∂τ

∂t
(l)
1

+
( p∑
l=1

nlt
(l)
1 −

q∑
l=1

mls
(l)
1

)
τ

+
( q∑
l=1

alml +
p∑
l=1

blnl

)
τ,

B0 τ =
∑
i≥1

(
q∑
l=1

is
(l)
i

∂

∂s
(l)
i

+
p∑
l=1

it
(l)
i

∂

∂t
(l)
i

)
τ −

q∑
l=1

al
∂τ

∂s
(l)
1

+
p∑
l=1

bl
∂τ

∂t
(l)
1

+
q∑
l=1

(1− 2αl)
∂τ

∂s
(l)
2

+ 2
p∑
l=1

βl
∂τ

∂t
(l)
2

+
1
2

( q∑
l=1

m2
l +

p∑
l=1

n2
l

)
τ.(249)

The Virasoro constraints (247) play a very crucial role in finding a PDE for the
function log Pa1,...,aq

b1,...,bp

(
all xi(t) ∈ E

)
in the variables a1, . . . , aq , b1, . . . , bp and

the endpoints of the set E. In the next section, we will prove the existence of a
PDE for the logarithm of the normalized problem Pp,q(E; a, b) defined in (236).
The normalized problem is related to the function τE~m,~n(t, s;α, β; a, b) on the locus
L = {(t, s) = 0, (α, β) = 0} through formula (240). As we have seen, this function
is a tau-function of the (p + q)-component KP hierarchy and thus satisfies the PDE’s
(230). As the Virasoro constraints involve derivatives with respect to the endpoints of
the set E, as well as derivatives with respect to the time variables (t, s), we will prove
that they can be used to eliminate all the derivatives with respect to the time variables
in (230) on the locus L. The proof proceeds in two main steps. In the first step,
the Virasoro constraints, together with the linear conditions imposed on ai, αi, bj , βj ,
1 ≤ i ≤ q and 1 ≤ j ≤ p

q∑
i=1

ai =
p∑
i=1

bi =
q∑
i=1

αi =
p∑
i=1

βi = 0,(250)

are used to express on the locusK = {(t, s) = 0} all the derivatives with respect to the
time variables in (230) in terms of derivatives with respect to the auxiliary variables
α1, . . . , αq and β1, . . . , βp. In the second step, using a combinatorial argument, it will
be shown that, on the locus L, all these derivatives with respect to α1, . . . , αq and
β1, . . . , βp can be eliminated. Both steps will be performed in the next section. We
end this section with some consequences of Theorem 6.6.
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From the linear conditions (250) it follows that the function τE~m,~n(t, s;α, β; a, b) as
defined in (241) satisfies the following equations

q∑
l=1

∂τ

∂s
(l)
i

+
p∑
l=1

∂τ

∂t
(l)
i

= 0, i ≥ 1,(251)

and
∂τ

∂ai
= − ∂τ

∂s
(i)
1

+
∂τ

∂s
(q)
1

, 1 ≤ i ≤ q − 1,(252)

∂τ

∂bi
=

∂τ

∂t
(i)
1

− ∂τ

∂t
(p)
1

, 1 ≤ i ≤ p− 1,(253)

∂τ

∂αi
= − ∂τ

∂s
(i)
2

+
∂τ

∂s
(q)
2

, 1 ≤ i ≤ q − 1,(254)

∂τ

∂βi
=

∂τ

∂t
(i)
2

− ∂τ

∂t
(p)
2

, 1 ≤ i ≤ p− 1.(255)

From these equations, we deduce two families of identities. Let f :=
log τE~m,~n(t, s;α, β; a, b). Firstly, using equation (252) we have

q∑
l=1

al
∂f

∂s
(l)
1

= −
q−1∑
l=1

al
∂f

∂al
,(256)

since
∑q
l=1 al = 0, and similarly

q∑
l=1

αl
∂f

∂s
(l)
1

= −
q−1∑
l=1

αl
∂f

∂al
,

p∑
l=1

bl
∂f

∂t
(l)
1

=
p−1∑
l=1

bl
∂f

∂bl
,

p∑
l=1

βl
∂f

∂t
(l)
1

=
p−1∑
l=1

βl
∂f

∂bl
,

q∑
l=1

αl
∂f

∂s
(l)
2

= −
q−1∑
l=1

αl
∂f

∂αl
,

p∑
l=1

βl
∂f

∂t
(l)
2

=
p−1∑
l=1

βl
∂f

∂βl
.(257)

Secondly, using equation (252) we have
q∑
i=1

∂f

∂s
(i)
1

= −
q−1∑
i=1

∂f

∂al
+ q

∂f

∂s
(q)
1

,

and thus

∂f

∂s
(q)
1

=
1
q

q∑
i=1

∂f

∂s
(i)
1

+
1
q

q−1∑
i=1

∂f

∂al
.(258)

Using again equation (252), we obtain

∂f

∂s
(j)
1

=
1
q

q∑
i=1

∂f

∂s
(i)
1

+
1
q

q−1∑
i=1

∂f

∂al
− ∂f

∂aj
, 1 ≤ j ≤ q − 1.(259)



172 Chapter 6. Non-intersecting Brownian motions

Equations (258) and (259) can be summarized as follows

∂f

∂s
(j)
1

=
1
q

q∑
i=1

∂f

∂s
(i)
1

+
1
q

q−1∑
i=1

∂f

∂al
− (1− δjq)

∂f

∂aj
, 1 ≤ j ≤ q.(260)

Similarly, we have

∂f

∂t
(j)
1

=
1
p

p∑
i=1

∂f

∂t
(i)
1

− 1
p

p−1∑
i=1

∂f

∂bl
+ (1− δjp)

∂f

∂bj
, 1 ≤ j ≤ p,

∂f

∂s
(j)
2

=
1
q

q∑
i=1

∂f

∂s
(i)
2

+
1
q

q−1∑
i=1

∂f

∂αl
− (1− δjq)

∂f

∂αj
, 1 ≤ j ≤ q,(261)

∂f

∂t
(j)
2

=
1
p

p∑
i=1

∂f

∂t
(i)
2

− 1
p

p−1∑
i=1

∂f

∂βl
+ (1− δjp)

∂f

∂βj
, 1 ≤ j ≤ p.

Substituting relations (256),(257), (260), (261) in the Virasoro constraints (249), we
get

Ajf =
∂f

∂s
(j)
1

+
1
q

∑
i≥2

(
q∑
l=1

is
(l)
i

∂

∂s
(l)
i−1

+
p∑
l=1

it
(l)
i

∂

∂t
(l)
i−1

)
f

+
1
q

( p∑
l=1

nlt
(l)
1 −

q∑
l=1

mls
(l)
1

)
+

1
q

( q∑
l=1

alml +
p∑
l=1

blnl

)
,

1 ≤ j ≤ q,

Bjf = − ∂f

∂t
(j)
1

+
1
p

∑
i≥2

(
q∑
l=1

is
(l)
i

∂

∂s
(l)
i−1

+
p∑
l=1

it
(l)
i

∂

∂t
(l)
i−1

)
f

+
1
p

( p∑
l=1

nlt
(l)
1 −

q∑
l=1

mls
(l)
1

)
+

1
p

( q∑
l=1

alml +
p∑
l=1

blnl

)
,

1 ≤ j ≤ p,(262)
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and

Âjf =
∂f

∂s
(j)
2

+
1
q

∑
i≥1

(
q∑
l=1

is
(l)
i

∂

∂s
(l)
i

+
p∑
l=1

it
(l)
i

∂

∂t
(l)
i

)
f +

K

q
,

1 ≤ j ≤ q,

B̂jf = − ∂f

∂t
(j)
2

+
1
p

∑
i≥1

(
q∑
l=1

is
(l)
i

∂

∂s
(l)
i

+
p∑
l=1

it
(l)
i

∂

∂t
(l)
i

)
f +

K

p
,

1 ≤ j ≤ p,(263)

where

K :=
1
2
( q∑
l=1

m2
l +

p∑
l=1

n2
l

)
,

and

Aj = −(1−δjq)
∂

∂aj
+

1
q

(
B−1 +

q−1∑
l=1

∂

∂al
−2
( q−1∑
l=1

αl
∂

∂al
+
p−1∑
l=1

βl
∂

∂bl

))
,

1 ≤ j ≤ q,

Bj = −(1−δjp)
∂

∂bj
+

1
p

(
B−1 +

p−1∑
l=1

∂

∂bl
−2
( q−1∑
l=1

αl
∂

∂al
+
p−1∑
l=1

βl
∂

∂bl

))
,

1 ≤ j ≤ p,

Âj = −(1− δjq)
∂

∂αj
+

1
q

(
B0 −

( q−1∑
l=1

al
∂

∂al
+
p−1∑
l=1

bl
∂

∂bl

)

+
q−1∑
l=1

∂

∂αl
− 2
( q−1∑
l=1

αl
∂

∂αl
+
p−1∑
l=1

βl
∂

∂βl

))
, 1 ≤ j ≤ q,

B̂j = −(1− δjp)
∂

∂βj
+

1
p

(
B0 −

( q−1∑
l=1

al
∂

∂al
+
p−1∑
l=1

bl
∂

∂bl

)

+
p−1∑
l=1

∂

∂βl
− 2
( q−1∑
l=1

αl
∂

∂αl
+
p−1∑
l=1

βl
∂

∂βl

))
, 1 ≤ j ≤ p.

Observe that the operators Aj , 1 ≤ j ≤ q, and Bj , 1 ≤ j ≤ p, all commute.
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Lemma 6.7 (Adler-van Moerbeke-Vanderstichelen [13]). On the locusK = {(t, s) =
0}, the function f := log τE~m,~n(t, s;α, β; a, b) satisfies the Virasoro constraints

∂2f

∂s
(j)
1 ∂s

(k)
1

= AjAkf +
mj

q
+
mk

q
− N

q2
+

2
q2

(
〈α,m〉+ 〈β, n〉

)
,

∂2f

∂t
(j)
1 ∂t

(k)
1

= BjBkf +
nj
p

+
nk
p
− N

p2
+

2
p2

(
〈α,m〉+ 〈β, n〉

)
,

∂2f

∂s
(j)
1 ∂t

(k)
1

= −AjBkf −
mj

p
− nk

q
+
N

pq
− 2
pq

(
〈α,m〉+ 〈β, n〉

)
,

∂2f

∂s
(k)
1 ∂s

(j)
2

=
(
Âj −

1
q

)
Akf +

2
q2

(
〈a,m〉+ 〈b, n〉

)
,

∂2f

∂t
(k)
1 ∂t

(j)
2

=
(
B̂j −

1
p

)
Bkf +

2
p2

(
〈a,m〉+ 〈b, n〉

)
,

∂2f

∂s
(k)
1 ∂t

(j)
2

= −
(
B̂j −

1
p

)
Akf −

2
pq

(
〈a,m〉+ 〈b, n〉

)
,

∂2f

∂s
(j)
2 ∂t

(k)
1

= −
(
Âj −

1
q

)
Bkf −

2
pq

(
〈a,m〉+ 〈b, n〉

)
,

where 〈α,m〉 =
∑q
i=1 αimi and 〈β, n〉 =

∑p
i=1 βini.

PROOF. We compute on the locus K, using (262) and (263) that

AjAkf
∣∣
K

= Aj

[
∂f

∂s
(k)
1

+
1
q

∑
i≥2

(
q∑
l=1

is
(l)
i

∂

∂s
(l)
i−1

+
p∑
l=1

it
(l)
i

∂

∂t
(l)
i−1

)
f

+
1
q

( p∑
l=1

nlt
(l)
1 −

q∑
l=1

mls
(l)
1

)
+

1
q

( q∑
l=1

alml +
p∑
l=1

blnl

)]∣∣∣∣∣
K

=

[
∂

∂s
(k)
1

+
1
q

∑
i≥2

(
q∑
l=1

is
(l)
i

∂

∂s
(l)
i−1

+
p∑
l=1

it
(l)
i

∂

∂t
(l)
i−1

)]
Ajf

∣∣
K

+
1
q
Aj

( q∑
l=1

alml +
p∑
l=1

blnl

)∣∣∣
K
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=
∂

∂s
(k)
1

[
∂f

∂s
(j)
1

+
1
q

∑
i≥2

(
q∑
l=1

is
(l)
i

∂

∂s
(l)
i−1

+
p∑
l=1

it
(l)
i

∂

∂t
(l)
i−1

)
f

+
1
q

( p∑
l=1

nlt
(l)
1 −

q∑
l=1

mls
(l)
1

)
+

1
q

( q∑
l=1

alml +
p∑
l=1

blnl

)]∣∣∣∣∣
K

+
1
q

[
− (1− δj,q)

∂

∂aj

+
1
q

(
B−1 +

q−1∑
l=1

∂

∂al
− 2
( q−1∑
l=1

αl
∂

∂al
+
p−1∑
l=1

βl
∂

∂bl

))]

×
( q∑
l=1

alml +
p∑
l=1

blnl

)∣∣∣
K

=
∂2f

∂s
(j)
1 ∂s

(k)
1

− mk

q
+

1
q2

(
− q(mj −mq)(1− δj,q) +

q−1∑
l=1

(ml −mq)

− 2
q−1∑
l=1

αl(ml −mq)− 2
p−1∑
l=1

βl(nl − np)
)
.

Since
∑q−1
l=1 (ml−mq) = N−qmq ,

∑q−1
l=1 αl(ml−mq) = 〈α,m〉 and

∑p−1
l=1 βl(nl−

np) = 〈β, n〉, we obtain

AjAkf
∣∣
K =

∂2f

∂s
(j)
1 ∂s

(k)
1

− mj

q
− mk

q
+
N

q2
− 2
q2

(
〈α,m〉+ 〈β, n〉

)
.

The proof of the other relations is analogous. �

5. Existence of a PDE for logPp,q(E; a, b)

In this section we prove that, under the assumptions a1 + · · · + aq = 0 and
b1 + · · · + bp = 0, the function logPp,q(E; a, b), with Pp,q(E; a, b) as defined
in (236), satisfies a nonlinear PDE, the variables being a1, . . . , aq−1, b1, . . . , bp−1

and the coordinates of the endpoints of the set E, i.e. c1, . . . , c2r. To perform
this, we first show that the function f := log τE~m,~n(t, s;α, β; a, b) satisfies a system
of 1

2 (p + q)(p + q − 1) equations on the locus L, containing partial derivatives
with respect to a1, . . . , aq−1, b1, . . . , bp−1, α1, . . . , αq−1, β1, . . . , βp−1 and the
coordinates of the endpoints of the set E.
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We define the operators

ALj = −(1− δjq)
∂

∂aj
+

1
q

(
B−1 +

q−1∑
l=1

∂

∂al

)
, 1 ≤ j ≤ q,

BLj = −(1− δjp)
∂

∂bj
+

1
p

(
B−1 +

p−1∑
l=1

∂

∂bl

)
, 1 ≤ j ≤ p,(264)

B̂0 = B0 −
( q−1∑
l=1

al
∂

∂al
+
p−1∑
l=1

bl
∂

∂bl

)
.

We then have

Aj = ALj −
2
q

( q−1∑
l=1

αl
∂

∂al
+
p−1∑
l=1

βl
∂

∂bl

)
, 1 ≤ j ≤ q,

Bj = BLj −
2
p

( q−1∑
l=1

αl
∂

∂al
+
p−1∑
l=1

βl
∂

∂bl

)
, 1 ≤ j ≤ p,

Âj =
1
q
B̂0 − (1− δjq)

∂

∂αj
− 2
q

( q−1∑
l=1

αl
∂

∂αl
+
p−1∑
l=1

βl
∂

∂βl

)
+

1
q

q−1∑
l=1

∂

∂αl
,(265)

1 ≤ j ≤ q,

B̂j =
1
p
B̂0 − (1− δjp)

∂

∂βj
− 2
p

( q−1∑
l=1

αl
∂

∂αl
+
p−1∑
l=1

βl
∂

∂βl

)
+

1
p

p−1∑
l=1

∂

∂βl
,

1 ≤ j ≤ p.

We also introduce the following notation

− ∂βj +
1
p
∂β = −(1− δjp)

∂

∂βj
+

1
p

p−1∑
l=1

∂

∂βl
,

− ∂bj +
1
p
∂b = −(1− δjp)

∂

∂bj
+

1
p

p−1∑
l=1

∂

∂bl
,

− ∂αk +
1
q
∂α = −(1− δkq)

∂

∂αk
+

1
q

q−1∑
l=1

∂

∂αl
,

− ∂ak +
1
q
∂a = −(1− δkq)

∂

∂ak
+

1
q

q−1∑
l=1

∂

∂al
,(266)
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with 1 ≤ j ≤ p and 1 ≤ k ≤ q. Note the two sets of operators on the first two rows
respectively sum to zero as we sum j from 1 to p, and similarly for the operators on the
last two rows, as we sum k from 1 to q. With these notations we have the following.

Theorem 6.8 (Adler-van Moerbeke-Vanderstichelen [13]). The function f :=
log τE~m,~n(t, s;α, β; a, b) satisfies the following 1

2 (p + q)(p + q − 1) equations1 on
the locus L{

ALj (
1
p
∂β − ∂βk)f,ALj B

L
k f +

mj

p
+
nk
q
− N

pq

}
ALj

−
{
BLk (

1
q
∂α − ∂αj )f,ALj BLk f +

mj

p
+
nk
q
− N

pq

}
BLk

= GABjk ,

1 ≤ j ≤ q, 1 ≤ k ≤ p,

(267)
{
ALk (

1
q
∂α − ∂αj )f,ALj ALk f +

mj

q
+
mk

q
− N

q2

}
ALk

+
{
ALj (

1
q
∂α − ∂αk)f,ALj A

L
k f +

mj

q
+
mk

q
− N

q2

}
ALj

= GAjk,

1 ≤ j < k ≤ q,

{
BLk (

1
p
∂β − ∂βj )f,BLj BLk f +

nj
p

+
nk
p
− N

p2

}
BLk

+
{
BLj (

1
p
∂β − ∂βk)f,BLj B

L
k f +

nj
p

+
nk
p
− N

p2

}
BLj

= GBjk,

1 ≤ j < k ≤ p,

where GAjk, GBjk and GABjk only depend on f , its derivatives with respect to
a1, . . . , aq−1, b1, . . . , bp−1, and its differentials up to the third order with respect to
the operators ALj , BLj and B̂0, evaluated on the locus L.

PROOF. Using equations (262) and (263) we obtain on the locus K

∂

∂s
(j)
1

log
τE~m−~ej+ ~ek,~n

τE~m+~ej− ~ek,~n

∣∣∣∣∣
K

= Aj log
τE~m−~ej+ ~ek,~n

τE~m+~ej− ~ek,~n
+

2
q

(aj − ak),

∂

∂s
(j)
1

log
τE~m−~ej ,~n− ~ek
τE~m+~ej ,~n+ ~ek

∣∣∣∣∣
K

= Aj log
τE~m−~ej ,~n− ~ek
τE~m+~ej ,~n+ ~ek

+
2
q

(aj + bk),

∂

∂t
(j)
1

log
τE~m,~n+~ej− ~ek
τE~m,~n−~ej+ ~ek

∣∣∣∣∣
K

= −Bj log
τE~m,~n+~ej− ~ek
τE~m,~n−~ej+ ~ek

+
2
p

(bj − bk),

∂

∂t
(j)
1

log
τE~m+ ~ek,~n+~ej

τE~m− ~ek,~n−~ej

∣∣∣∣∣
K

= −Bj log
τE~m+ ~ek,~n+~ej

τE~m− ~ek,~n−~ej
+

2
p

(ak + bj).(268)

1{f, g}X = g X(f)− f X(g)
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Substituting the first equation in (268) into the third equation in (244) and using lemma
6.7, we have on the locus K

(269) Aj log
τE~m−~ej+ ~ek,~n

τE~m+~ej− ~ek,~n

=

(
Âj − 1

q

)
Akf + 2

q2

(
〈a,m〉+ 〈b, n〉

)
AjAkf + mj

q + mk
q −

N
q2 + 2

q2

(
〈α,m〉+ 〈β, n〉

) − 2
q

(aj − ak).

Similarly, we have

(270) Bj ln
τE~m,~n−~ej+ ~ek

τE~m,~n+~ej− ~ek

=

(
B̂j − 1

p

)
Bkf + 2

p2

(
〈a,m〉+ 〈b, n〉

)
BjBkf + nj

p + nk
p −

N
p2 + 2

p2

(
〈α,m〉+ 〈β, n〉

) − 2
p

(bj − bk),

(271) Bj ln
τE~m− ~ek,~n−~ej
τE~m+ ~ek,~n+~ej

=
−
(
B̂j − 1

p

)
Akf − 2

pq

(
〈a,m〉+ 〈b, n〉

)
−AkBjf − mk

p −
nj
q + N

pq −
2
pq

(
〈α,m〉+ 〈β, n〉

) − 2
p

(ak + bj),

(272) Aj ln
τE~m−~ej ,~n− ~ek
τE~m+~ej ,~n+ ~ek

=
−
(
Âj − 1

q

)
Bkf − 2

pq

(
〈a,m〉+ 〈b, n〉

)
−AjBkf − mj

p −
nk
q + N

pq −
2
pq

(
〈α,m〉+ 〈β, n〉

) − 2
q

(aj + bk).

Let us denote equations (269)-(272), with indices chosen as above, by (269)jk,
(270)jk, (271)jk and (272)jk. We compute Aj(271)kj −Bk(272)jk, and we obtain

0 = Aj

( −
(
B̂k − 1

p

)
Ajf − 2

pq

(
〈a,m〉+ 〈b, n〉

)
−AjBkf − mj

p −
nk
q + N

pq −
2
pq

(
〈α,m〉+ 〈β, n〉

)−2
p

(aj+bk)

)

−Bk

( −
(
Âj − 1

q

)
Bkf − 2

pq

(
〈a,m〉+ 〈b, n〉

)
−AjBkf − mj

p −
nk
q + N

pq −
2
pq

(
〈α,m〉+ 〈β, n〉

)−2
q

(aj+bk)

)
,
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since [Aj , Bk] = 0. Define σ(a, b) = 〈a,m〉 + 〈b, n〉. As Aj and Bk are first order
differential operators, we have

(273) 0 =

{(
B̂k − 1

p

)
Ajf + 2σ(a,b)

pq , AjBkf + mj
p + nk

q −
N
pq + 2σ(α,β)

pq

}
Aj(

−AjBkf − mj
p −

nk
q + N

pq −
2σ(α,β)
pq

)2

−

{(
Âj − 1

q

)
Bkf + 2σ(a,b)

pq , AjBkf + mj
p + nk

q −
N
pq + 2σ(α,β)

pq

}
Bk(

−AjBkf − mj
p −

nk
q + N

pq −
2σ(α,β)
pq

)2

− 2
p
Aj(aj + bk) +

2
q
Bk(aj + bk).

Similarly, we compute, for j 6= k, Ak(269)jk + Aj(269)kj and Bk(270)jk +
Bj(270)kj , and we obtain

(274) 0 =

{(
Âj − 1

q

)
Akf + 2σ(a,b)

q2 , AjAkf + mj
q + mk

q −
N
q2 + 2σ(α,β)

q2

}
Ak(

AjAkf + mj
q + mk

q −
N
q2 + 2σ(α,β)

q2

)2

+

{(
Âk − 1

q

)
Ajf + 2σ(a,b)

q2 , AkAjf + mk
q + mj

q −
N
q2 + 2σ(α,β)

q2

}
Aj(

AjAkf + mj
q + mk

q −
N
q2 + 2σ(α,β)

q2

)2 −4
q
,

and

(275) 0 =

{(
B̂j − 1

p

)
Bkf + 2σ(a,b)

p2 , BjBkf + nj
p + nk

p −
N
p2 + 2σ(α,β)

p2

}
Bk(

BjBkf + nj
p + nk

p −
N
p2 + 2σ(α,β)

p2

)2

+

{(
B̂k − 1

p

)
Bjf + 2σ(a,b)

p2 , BkBjf + nk
p + nj

p −
N
p2 + 2σ(α,β)

p2

}
Bj(

BkBjf + nk
p + nj

p −
N
p2 + 2σ(α,β)

p2

)2 −4
p
.

Using (265) we compute

AjAkf =

(
ALj −

2
q

( q−1∑
l=1

αl
∂

∂al
+
p−1∑
l=1

βl
∂

∂bl

))

×

(
ALk −

2
q

( q−1∑
l=1

αl
∂

∂al
+
p−1∑
l=1

βl
∂

∂bl

)))
f

= ALj A
L
k f +O(α, β).

Similarly we have

AjBkf = ALj B
L
k f +O(α, β), BjBkf = BLj B

L
k f +O(α, β),
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and (
Âj −

1
q

)
Akf =

(1
q
B̂0 − (∂αj −

1
q
∂α)− 1

q

)
ALk f

+
2
q

(∂aj −
1
q
∂a)f + O(α, β),

(
Âj −

1
q

)
Bkf =

(1
q
B̂0 − (∂αj −

1
q
∂α)− 1

q

)
BLk f

+
2
p

(∂aj −
1
q
∂a)f + O(α, β),

(
B̂j −

1
p

)
Akf =

(1
p
B̂0 − (∂βj −

1
p
∂β)− 1

p

)
ALk f

+
2
q

(∂bj −
1
p
∂b)f + O(α, β),

(
B̂j −

1
p

)
Bkf =

(1
p
B̂0 − (∂βj −

1
p
∂β)− 1

p

)
BLk f

+
2
p

(∂bj −
1
p
∂b)f + O(α, β).

Consequently, on the locus L the equation (273) can be written

0 =

{(
1
p
B̂0 − (∂βk

− 1
p
∂β)− 1

p

)
ALj f + 2

q
(∂bk

− 1
p
∂b)f +

2σ(a,b)
pq

, ALj B
L
k f +

mj
p

+
nk
q
− N
pq

}
AL
j(

− ALj B
L
k
f −

mj
p
− nk

q
+ N
pq

)2

−

{(
1
q
B̂0 − (∂αj −

1
q
∂α)− 1

q

)
BLk f + 2

p
(∂aj −

1
q
∂a)f +

2σ(a,b)
pq

, ALj B
L
k f +

mj
p

+
nk
q
− N
pq

}
BL
k(

− ALj B
L
k
f −

mj
p
− nk

q
+ N
pq

)2
+

2

p
−

2

q
.

Putting all the terms which do not contain derivatives of f with respect to αi’s or βj’s
in the left hand side, we obtain

GABjk =
{

(
1
p
∂β − ∂βk)ALj f,A

L
j B
L
k f +

mj

p
+
nk
q
− N

pq

}
ALj

−
{

(
1
q
∂α − ∂αj )BLk f,ALj BLk f +

mj

p
+
nk
q
− N

pq

}
BLk

,

where

GABjk :=
(2

q
−

2

p

)(
−ALj BLk f −

mj

p
−
nk

q
+
N

pq

)2

−
{(1

p
B̂0 −

1

p

)
ALj f +

2

q
(∂bk −

1

p
∂b)f +

2σ(a, b)

pq
,ALj B

L
k f +

mj

p
+
nk

q
−
N

pq

}
ALj

+
{(1

q
B̂0 −

1

q

)
BLk f +

2

p
(∂aj −

1

q
∂a)f +

2σ(a, b)

pq
,ALj B

L
k f +

mj

p
+
nk

q
−
N

pq

}
BL
k

.
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Similarly, on the locus L, the equations (274) and (275) can be written

GAjk =
{

(
1
q
∂α − ∂αj )ALk f,ALj ALk f +

mj

q
+
mk

q
− N

q2

}
ALk

+
{

(
1
q
∂α − ∂αk)ALj f,A

L
j A
L
k f +

mj

q
+
mk

q
− N

q2

}
ALj

,

GBjk =
{

(
1
p
∂β − ∂βj )BLk f,BLj BLk f +

nj
p

+
nk
p
− N

p2

}
BLk

+
{

(
1
p
∂β − ∂βk)BLj f,B

L
j B
L
k f +

nj
p

+
nk
p
− N

p2

}
BLj

,

where

GAjk :=
4

q

(
ALj A

L
k f +

mj

q
+
mk

q
−
N

q2

)2

−
{(1

q
B̂0 −

1

q

)
ALk f +

2

q
(∂aj −

1

q
∂a)f +

2σ(a, b)

q2
, ALj A

L
k f +

mj

q
+
mk

q
−
N

q2

}
AL
k

−
{(1

q
B̂0 −

1

q

)
ALj f +

2

q
(∂ak −

1

q
∂a)f +

2σ(a, b)

q2
, ALj A

L
k f +

mj

q
+
mk

q
−
N

q2

}
ALj

,

GBjk :=
4

p

(
BLj B

L
k f +

nj

p
+
nk

p
−
N

p2

)2

−
{(1

p
B̂0 −

1

p

)
BLk f +

2

p
(∂bj −

1

p
∂b)f +

2σ(a, b)

p2
, BLj B

L
k f +

nj

p
+
nk

p
−
N

p2

}
BL
k

−
{(1

p
B̂0 −

1

p

)
BLj f +

2

p
(∂bk −

1

p
∂b)f +

2σ(a, b)

p2
, BLj B

L
k f +

nj

p
+
nk

p
−
N

p2

}
BLj

.

�

In order to obtain a PDE for f = log τE~m,~n(0; a, b) or for logPp,q(E, a, b), we need to
eliminate the partial derivatives of f with respect to α1, . . . , αq−1, β1, . . . , βp−1 from
the equations (267) in Theorem 6.8. Define

Xi = (
1
q
∂α − ∂αi)f

∣∣
L, 1 ≤ i ≤ q,

Yi = (
1
p
∂β − ∂βi)f

∣∣
L, 1 ≤ i ≤ p.

Note that we have
∑q
i=1Xi =

∑p
i=1 Yi = 0, and

∑q
i=1A

L
i =

∑p
i=1B

L
i = B−1.

Consequently, there are among ALi , 1 ≤ i ≤ q, and BLj , 1 ≤ j ≤ p, only
p+ q− 1 linearly independent differential operators. Set ALq = B−1−

∑q−1
i=1 A

L
i and

BLp = B−1 −
∑p−1
i=1 B

L
i .
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With these notations, the equations (267) can be written{
ALj Yk, A

L
j B
L
k f +

mj

p
+
nk
q
− N

pq

}
ALj

−
{
BLkXj , A

L
j B
L
k f+

mj

p
+
nk
q
−N
pq

}
BLk

= GABjk , 1 ≤ j ≤ q, 1 ≤ k ≤ p,

{
ALkXj , A

L
j A
L
k f +

mj

q
+
mk

q
− N

q2

}
ALk

+
{
ALj Xk, A

L
j A
L
k f +

mj

q
+
mk

q
− N

q2

}
ALj

= GAjk, 1 ≤ j < k ≤ q,

{
BLk Yj , B

L
j B
L
k f +

nj
p

+
nk
p
− N

p2

}
BLk

+
{
BLj Yk, B

L
j B
L
k f +

nj
p

+
nk
p
− N

p2

}
BLj

= GBjk, 1 ≤ j < k ≤ p,

or (
ALj
)2
Yk −

(
BLk
)2
Xj −

( 1
cABjk

ALj c
AB
jk

)
ALj Yk

+
( 1
cABjk

BLk c
AB
jk

)
BLkXj = gABjk , 1 ≤ j ≤ q, 1 ≤ k ≤ p,

(276)
(
ALj )2Xk +

(
ALk
)2
Xj −

( 1
cAjk

ALj c
A
jk

)
ALj Xk

−
( 1
cAjk

ALk c
A
jk

)
ALkXj = gAjk, 1 ≤ j < k ≤ q,

(
BLj
)2
Yk +

(
BLk
)2
Yj −

( 1
cBjk

BLj c
B
jk

)
BLj Yk

−
( 1
cBjk

BLk c
B
jk

)
BLk Yj = gBjk, 1 ≤ j < k ≤ p,

where

cABjk := ALj B
L
k f +

mj

p
+
nk
q
− N

pq
,

cAjk := ALj A
L
k f +

mj

q
+
mk

q
− N

q2
,(277)

cBjk := BLj B
L
k f +

nj
p

+
nk
p
− N

p2
,
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and

gABjk :=
GABjk
cABjk

, gAjk :=
GAjk
cAjk

, gBjk :=
GBjk
cBjk

.(278)

We have thus a system of M = 1
2 (p + q)(p + q − 1) linear equations in the p +

q − 2 unknown functions X1, . . . , Xq−1 and Y1, . . . , Yp−1 and at most all their first
and second order derivatives with respect to the independent commuting differential
operators ALi , 1 ≤ i ≤ q − 1, BLj , 1 ≤ j ≤ p − 1, and B−1. We think at all these
quantities as unknowns. At this point, we have a system with a smaller number of
linear equations then unknowns. The general strategy is to keep differentiating the
equations and show that at some point we must reach a balance between the number
of equations and the number of unknowns, leading to the vanishing of a determinant
at the first point this occurs, which must yield a nontrivial relation. Let ZM be the set
of linear equations (276), and define

ZKM := [1 + B−1 +AL1 + · · ·+ALq−1 +BL1 + · · ·+BLp−1]KZM ,

the set of equations obtained by taking the equations of ZM and all their
derivatives up to the Kth order with respect to the differential operators
B−1, A

L
1 , . . . , A

L
q−1, B

L
1 , . . . , B

L
p−1. The number of equations in ZKM is simply M

times the number of monomials of degree K chosen from a set of p+ q variables, i.e.

M

(
p+ q +K − 1

K

)
=

1
2

(p+ q)
(K + p+ q − 1)(K + p+ q − 2) . . . (K + 1)

(p+ q − 2)!
.

The set of equations ZKM is a set of linear equations in the p+q−2 unknown functions
X1, . . . , Xq−1 and Y1, . . . , Yp−1 and at most all their first, second, . . . , (K + 2)th

order derivatives with respect to the differential operators ALi , 1 ≤ i ≤ q − 1, BLj ,
1 ≤ j ≤ p− 1, and B−1. Let L be the number of unknowns in these equations. Then

L ≤ (p+ q − 2)
(
p+ q +K + 2− 1

K + 2

)
= (p+ q − 2)

(K + p+ q + 1)(K + p+ q) . . . (K + 3)
(p+ q − 1)!

.

From these considerations, it is clear that a sufficient condition to have Card(ZKM ) >
L is

1
2

(p+ q)
(K + p+ q − 1)!
K!(p+ q − 2)!

> (p+ q − 2)
(K + p+ q + 1)!

(K + 2)!(p+ q − 1)!
,

or, simplifying this expression,

(x2 − 3x+ 4)K2 + (−x2 + 3x+ 4)K − 2x(x2 − 2x− 1) > 0,



184 Chapter 6. Non-intersecting Brownian motions

where we have noted x = p+q. We observe that, with p and q fixed, forK sufficiently
large, this inequality is satisfied, since x2 − 3x+ 4 > 0. Let K∗ be the smallest value
ofK such that this inequality is satisfied, and note k∗ the number of equations in ZK

∗

M ,
i.e.

k∗ =
1
2

(p+ q)(p+ q − 1)
(
p+ q +K∗ − 1

K∗

)
,

and L∗ the number of unknowns in the set of linear equations ZK
∗

M . Let us note these
unknowns x1, . . . , xL∗ . Then the system of k∗ linear equations that we have obtained
can be written

[
aij(f)

]
1≤i≤k∗

1≤j≤L∗+1


1
x1

...
xL∗

 = 0.

As k∗ > L∗, we can select the L∗ + 1 first equations in this system and construct the
following system

[
aij(f)

]
1≤i≤L∗+1
1≤j≤L∗+1


1
x1

...
xL∗

 = 0.

But then, necessarily, we have

det
[
aij(f)

]
1≤i≤L∗+1
1≤j≤L∗+1

= 0.

This is a PDE of order (K∗ + 3) for the function f , with variables a1, . . . , aq−1,
b1, . . . , bp−1 and c1, . . . , c2r. Since f = log τE~m,~n(0; a, b) = logPp,q(E; a, b) +
log τR

~m,~n(0; a, b), this yields a nonlinear PDE of order K∗ + 3 in the variables
a1, . . . , aq−1, b1, . . . , bp−1 and the endpoints of E for logPp,q(E; a, b), and thus
throuhg formula (235) for log Pa1,...,aq

b1,...,bp

(
all xi(t) ∈ E

)
, in terms of the input

log τR
~m,~n(0; a, b), which we think of as known2. We thus have proven the following

theorem.

Theorem 6.9 (Adler-van Moerbeke-Vanderstichelen [13]). For each value of the pa-
rameters p ≥ 1 and q ≥ 1, let K∗ be the smallest positive integer such that

(x2 − 3x+ 4)(K∗)2 + (−x2 + 3x+ 4)K∗ − 2x(x2 − 2x− 1) > 0,

with x = p + q. Let E be a finite union of intervals. Under the assumptions a1 +
· · ·+ aq = 0 and b1 + · · ·+ bp = 0, the function log Pa1,...,aq

b1,...,bp

(
all xi(t) ∈ E

)
satisfies

a nonlinear PDE of order K∗ + 3 or less, the variables being the coordinates of the
endpoints of the set E, and the coordinates of a1, . . . , aq and b1, . . . , bp.

2See Appendix D for a discussion of this problem.
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For example, for 4 ≤ x ≤ 8, the value of K∗ in this theorem is given in the following
table :

x 4 5 6 7 8
K∗ 3 4 5 5 5

6. Non-intersecting Brownian motions with two starting points and two ending
points

In this section we consider a particular situation of the problem studied in the preced-
ing sections. Consider N non-intersecting Brownian motions x1(t), x2(t), . . . , xN (t)
in R, conditionned to start at time t = 0 at two different points and to end up at t = 1
in two different points, with the coordinates of the starting points and the coordinates
of the ending points both satisfying a linear condition. In this particular case, all the
results of the preceding sections hold with p = q = 2. Consequently, by virtue of
Theorem 6.9, we know that the probability to find all the particles in a certain set
E =

⋃r
i=1[c2i−1, c2i] ⊂ R at a given time 0 < t < 1, satisfies a nonlinear PDE of

order 6, the variables being the coordinates of the starting and ending points, and the
endpoints of the set E. The aim of this section is to improve the result of Theorem 6.9
in the particular case when p = q = 2 and to describe this PDE more precisely.

For the sake of clarity, we first recall some notations. Consider N non-intersecting
Brownian motions x1(t), x2(t), . . . , xN (t) in R, withm1 particles leaving from a and
m2 particles leaving from −a, and n1 particles ending in b and n2 particles ending in
−b. We denote

P+a,−a
+b,−b

(
all xi(t) ∈ E

)
:= P

all xi(t) ∈ E

∣∣∣∣∣
(
x1(0), . . . , xN (0)

)
=
(
a, . . . , a︸ ︷︷ ︸

m1

,−a, . . . ,−a︸ ︷︷ ︸
m2

)
(
x1(1), . . . , xN (1)

)
=
(
b, . . . , b︸ ︷︷ ︸

n1

,−b, . . . ,−b︸ ︷︷ ︸
n2

)
 ,

the probability to find all the particles in a set E ⊂ R, at a given time 0 < t < 1. We
have

Pa,−ab,−b
(
all xi(t) ∈ E

)
= P2,2

(√ 2
t(1− t)

E;

√
2(1− t)

t
a,

√
2t

1− t
b
)
,

with the normalized problem defined in (236). We deform P2,2(E; a, b) by adding
four families of extra time variables

t(1) =
(
t
(1)
1 , t

(1)
2 , . . .

)
, t(2) =

(
t
(2)
1 , t

(2)
2 , . . .

)
,

s(1) =
(
s

(1)
1 , s

(1)
2 , . . .

)
, s(2) =

(
s

(2)
1 , s

(2)
2 , . . .

)
,
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and the two parameters α, β ∈ C. We have

P2,2

(
E; a, b; (t, s), (α, β)

)
=
τEm1m2;n1,n2

(t, s;α, β; a, b)
τR
m1m2;n1,n2

(t, s;α, β; a, b)
,(279)

with τEm1m2;n1,n2
(t, s;α, β; a, b) defined in (241), and where (t, s) =(

t(1), t(2); s(1), s(2)
)
. The function P2,2(E; a, b) is then simply given by

P2,2

(
E; a, b; (t, s), (α, β)

)
evaluated along the locus L = {(t, s) = (0, 0), α = β =

0}. We define the function f := log τEm1,m2;n1,n2
(t, s;α, β; a, b). The following

particular version of Theorem 6.8 holds.

Theorem 6.10 (Adler-van Moerbeke-Vanderstichelen [13]). Put X = − 1
2
∂f
∂α

∣∣
L and

Y = − 1
2
∂f
∂β

∣∣
L. The function f = log τEm1,m2;n1,n2

(t, s;α, β; a, b) satisfies the follow-
ing 6 equations on the locus L

(280)
{
AL1 Y,A

L
1B
L
1 f +

m1

2
+
n1

2
− N

4

}
AL1

−
{
BL1 X,A

L
1B
L
1 f +

m1

2
+
n1

2
− N

4

}
BL1

= GAB11 ,

(281) −
{
AL1 Y,A

L
1B
L
2 f +

m1

2
+
n2

2
− N

4

}
AL1

−
{
BL2 X,A

L
1B
L
2 f +

m1

2
+
n2

2
− N

4

}
BL2

= GAB12 ,

(282)
{
AL2 Y,A

L
2B
L
1 f +

m2

2
+
n1

2
− N

4

}
AL2

+
{
BL1 X,A

L
2B
L
1 f +

m2

2
+
n1

2
− N

4

}
BL1

= GAB21 ,

(283) −
{
AL2 Y,A

L
2B
L
2 f +

m2

2
+
n2

2
− N

4

}
AL2

+
{
BL2 X,A

L
2B
L
2 f +

m2

2
+
n2

2
− N

4

}
BL2

= GAB22 ,

(284)
{
AL2X,A

L
1A
L
2 f +

N

4

}
AL2

−
{
AL1X,A

L
1A
L
2 f +

N

4

}
AL1

= GA12,

(285)
{
BL2 Y,B

L
1 B
L
2 f +

N

4

}
BL2

−
{
BL1 Y,B

L
1 B
L
2 f +

N

4

}
BL1

= GB12,

where

Aj = ALj −
(
α
∂

∂a
+ β

∂

∂b

)
, Bj = BLj −

(
α
∂

∂a
+ β

∂

∂b

)
, 1 ≤ j ≤ 2,
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ALj =
1
2

(
B−1 + (−1)j

∂

∂a

)
, BLj =

1
2

(
B−1 + (−1)j

∂

∂b

)
, 1 ≤ j ≤ 2,

and where GAjk, GBjk and GABjk only depend on f , its derivatives with respect to
a1, . . . , aq−1, b1, . . . , bp−1, and its differentials up to the third order with respect to
the operators ALj , BLj and B̂0, evaluated on the locus L.

The equations in Theorem 6.10 can be written(
AL2 )2X −

(
AL1
)2
X −

(
AL2 log cA12

)
AL2X +

(
AL1 log cA12

)
AL1X = gA12,(

BL2 )2Y −
(
BL1
)2
Y −

(
BL2 log cB12

)
BL2 Y +

(
BL1 log cB12

)
BL1 Y = gB12,(

AL1
)2
Y −

(
BL1
)2
X −

(
AL1 log cAB11

)
AL1 Y +

(
BL1 log cAB11

)
BL1 X = gAB11 ,(286) (

AL2
)2
Y +

(
BL1
)2
X −

(
AL2 log cAB21

)
AL2 Y −

(
BL1 log cAB21

)
BL1 X = gAB21 ,

−
(
AL1
)2
Y −

(
BL2
)2
X +

(
AL1 log cAB12

)
AL1 Y +

(
BL2 log cAB12

)
BL2 X = gAB12 ,

−
(
AL2
)2
Y +

(
BL2
)2
X +

(
AL2 log cAB22

)
AL2 Y −

(
BL2 log cAB22

)
BL2 X = gAB22 ,

where the cij’s and the gij’s are defined in (277) and (278) with p = q = 2.

The four differential operators AL1 , A
L
2 , B

L
1 , B

L
2 are not linearly independent. Indeed,

we have

AL1 +AL2 = BL1 +BL2 = B−1, AL2 −AL1 =
∂

∂a
, BL2 −BL1 =

∂

∂b
.

Consequently, we will rewrite the six equations (286) in terms of the three indepen-
dent, commuting differential operators ∂

∂a , ∂
∂b and B−1. Before performing this, let us

introduce some notations. First, we will write
∂F

∂a
= Fa,

∂F

∂b
= Fb, B−1 = Fc,

for a function F . Next, we put

G1 := gA12, G2 := gB12, G3 := −gAB11 + gAB21 − gAB12 + gAB22 ,

G4 := gAB11 + gAB21 − gAB12 − gAB22 , G5 :=
1
2
(
gAB11 − gAB21 − gAB12 + gAB22

)
,

G6 := −1
2
(
gAB11 + gAB21 + gAB12 + gAB22

)
,

and

∆1 := log cA12, ∆2 := log cB12, ∆3 := log
cAB11 cAB21

cAB12 cAB22

,

∆4 := log
cAB11 cAB12

cAB21 cAB22

, ∆5 := log
cAB21 cAB12

cAB11 cAB22

,

∆6 := log
(
cAB11 cAB21 cAB12 cAB22

)
.
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We then define

α :=
1
4

(−∆3c + ∆6b), β :=
1
4

(∆6c −∆3b),

γ :=
1
4

(∆4c + ∆5b), δ :=
1
4

(∆5c + ∆4b),

and

α̂ :=
1
4

(−∆4c + ∆6a), β̂ :=
1
4

(∆6c −∆4a),

γ̂ :=
1
4

(∆3c + ∆5a), δ̂ :=
1
4

(∆5c + ∆3a).

Taking adequate linear combinations of the equations (286), and using all these nota-
tions, we obtain the following equivalent system

Xac = G1 +
1
2

∆1aXc +
1
2

∆1cXa,

Ybc = G2 +
1
2

∆2bYc +
1
2

∆2cYb,

Xcc +Xbb = G3 + βXc + αXb + δ̂Yc + γ̂Ya,

Ycc + Yaa = G4 + δXc + γXb + β̂Yc + α̂Ya,(287)

Xbc − Yac = G5 +
α

2
Xc +

β

2
Xb −

α̂

2
Yc −

β̂

2
Ya,

0 = G6 +
γ

2
Xc +

δ

2
Xb −

γ̂

2
Yc −

δ̂

2
Ya.

This is a system of linear equations in the variables

Xa, Xb, Xc, Xac, Xbc, Xbb, Xcc, Ya, Yb, Yc, Yac, Ybc, Yaa, Ycc.

The coefficients of this linear system depend on log τEm1,m2;n1,n2
(0; a, b) and its par-

tial derivatives up to the third order with respect to a, b and the endpoints of E. They
are highly related. Indeed, there are only twelve non zero independent coefficients
α, β, γ, δ, α̂, β̂, γ̂, δ̂,∆1b,∆1c,∆2a,∆2c. We will now generate new linear equations
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by applying successively the derivatives ∂
∂a , ∂

∂b and B−1 = ∂
∂c to this system. Con-

sider the following system of 37 equations
(287.1), (287.2), (287.3), (287.4), (287.5), (287.6), (287.6)a, (287.6)b, (287.6)c,

(287.1)a, (287.1)b, (287.1)c, (287.2)a, (287.2)b, (287.2)c,

(287.3)a, (287.3)b, (287.3)c, (287.4)a, (287.4)b, (287.4)c,

(287.5)a, (287.5)b, (287.5)c, (287.6)aa, (287.6)ab, (287.6)ac, (287.6)bb, (287.6)bc, (287.6)cc,

(287.1)bb − (287.2)aa − (287.5)ab,

(287.1)bb + (287.1)cc − (287.3)ac,

(287.2)aa + (287.2)cc − (287.4)bc,

(287.5)aa + (287.5)bb + (287.5)cc + (287.2)ab − (287.1)ab + (287.4)ac − (287.3)bc,

(287.6)abc −
δ

2
× (287.1)bb −

γ

2
× (287.1)bc +

δ̂

2
× (287.2)aa +

γ̂

2
× (287.2)ac,

(287.6)aac −
δ

2
× (287.1)ab −

γ

2
× (287.1)ac +

δ̂

2
×
(
(287.1)ab − (287.5)aa

)
+
γ̂

2
×
(
(287.1)bc − (287.5)ac

)
,

(287.6)bbc −
δ

2
×
(
(287.5)bb + (287.2)ab

)
−
γ

2
×
(
(287.5)bc + (287.2)ac

)
+
δ̂

2
× (287.2)ab

+
γ̂

2
× (287.2)bc.

These are linear equations, the variables being all the first, second and third order
derivatives in a, b, c of X and Y , except Xaaa and Ybbb. Consequently, there are
36 variables. Constructing the vector ~x := (1, Xa, Xb, Xc, Ya, Yb, Yc, . . . )T ∈ C37

(the first component being one, followed by the 36 variables), this system of linear
equations can be written[

aij(f)
]
1≤i,j≤37

.~x = 0,

where aij are differential operators of order less or equal then 6. But then we have
necessarily that

det
[
aij(f)

]
1≤i,j≤37

= 0.

This is a PDE for f = logP2,2(E; a, b) + log τR
m1,m2;n1,n2

(0; 0; a, b). Thus using
the structure of the 6 equations in Theorem 6.10, we have obtained a much better
result than the one in Theorem 6.9. Indeed, performing in detail the general method
described in the proof of Theorem 6.9, one obtains in the case when p = q = 2 a
PDE given by a determinant of a 107 × 107 matrix that is equal to zero. Thus in any
particular case, one can do much better than the general case in Theorem 6.9.





AppendixA
The Virasoro algebra and the
oscillator representation

We briefly discuss the Heisenberg and the Virasoro algebras, and also their oscillator
representation. Our discussion is based on [48].

1. The Heisenberg algebra

The Heisenberg algebra is the complex Lie algebra A, with basis {~, aj |j ∈ Z}, and
defining commutation relations

[~, aj ] = 0, [aj , ak] = jδj,−k~.

The central elements of A are ~ and a0. This algebra admits a representation in the
Fock space B of formal power series in infinitely many variables t1, t2, . . . , the so-
called oscillator representation of the Heisenberg algebra. This representation of A in
B is defined in the following way

aj =
∂

∂tj
, a−j = j~tj , a0 = µ1, ~ = ~1,

where j > 0, and µ, ~ ∈ C. If ~ 6= 0, then this representation of A in B is irreducible.

2. The Virasoro algebra

Let us consider the Lie algebra V ect S1 of real vector fields on the unit circle S1. As
a manifold, S1 is diffeomorphic to R/2πZ, and thus, any real vector field on S1 is of

191
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the form

f(θ)
d

dθ
,

where f(θ) is a smooth real-valued, 2π-periodic function. The Lie bracket of vector
fields is

[f(θ)
d

dθ
, g(θ)

d

dθ
] =

(
f(θ)g′(θ)− f ′(θ)g(θ)

) d
dθ
.

A basis for V ect S1 is given by the vector fields
d

dθ
, cos(nθ)

d

dθ
, sin(nθ)

d

dθ
, n = 1, 2, . . .

The complexification of V ect S1 defines a complex Lie algebra d, with basis

dn = i einθ
d

dθ
= −zn+1 d

dz
,

where n ∈ Z, z = eiθ. The commutation relations are

[dm, dn] = (m− n)dm+n,

for m,n ∈ Z.

Let us now consider the central extension d̂ of d by a one-dimensional center cC

d̂ = d ⊕ cC,

together with the commutation relations

[dm, dn] = (m− n)dm+n + a(m,n)c,

[dm, c] = 0,

where m,n ∈ Z, and a(m,n) ∈ C. The anticommutativity of the Lie bracket and the
Jacobi identity imposes the function a(m,n) to be of the form

a(m,n) = (αm+ βm3)δm,−n,

with α, β ∈ C. For β = 0, the Lie algebra d̂ is a direct sum of Lie algebras d and
cC. A non-trivial central extension of the Lie algebra d is given by the Virasoro
algebra with central charge c, corresponding to the choice α = −β = −1/12. It is
the complex Lie algebra with basis {dm, m ∈ Z; c}, and the defining commutation
relations

[dm, c] = 0,

[dm, dn] = (m− n)dm+n + δm,−n
m3 −m

12
c.

Every non-trivial central extension of the Lie algebra d by a one-dimensional center is
isomorphic to the Virasoro algebra.
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3. The oscillator representation of the Virasoro algebra

The oscillator representation of the Virasoro algebra is a representation of this algebra
in the Fock space B. We introduce the operators

A
(n)
k =

1
2

∑
j∈Z

: a−jaj+k :,

where k ∈ Z, aj as in (76) with µ = n, and where the colons indicate normal ordering,
defined by

: ajak :=
{
ajak if j ≤ k,
akaj if j > k.

As shown in [48], these operators satisfy the following commutation relations

[ak, A
(n)
l ] = kak+l,(288)

and

[A(n)
k , A

(n)
l ] = (k − l)A(n)

k+l + δk,−l
k3 − k

12
,(289)

for k, l ∈ Z. As a consequence, we have obtained a representation of the Virasoro
algebra with central charge c = 1 in the Fock space B.





AppendixB
Saturation of the Virasoro
constraints for the CUE

In this appendix, we give the details of the proof of Theorem 1.9. Put for a fixed n

f(t, s; η, θ) = log τn(t, s; η, θ).

Remembering the definition of L(n)
0 in (55), the Virasoro constraint in (69) for k = 0,

evaluated along the locus t = s = 0, gives

∂f

∂θ

∣∣∣∣∣
t=s=0

+
∂f

∂η

∣∣∣∣∣
t=s=0

= 0.

We also have

∂f

∂θ

∣∣∣∣∣t=s=0
η=−θ

− ∂f

∂η

∣∣∣∣∣t=s=0
η=−θ

=
d
dθ
f(t, s;−θ, θ)

∣∣∣∣∣
t=s=0

.

Consequently we have

∂f

∂θ

∣∣∣∣∣t=s=0
η=−θ

=
1
2

d
dθ
f(t, s;−θ, θ)

∣∣∣∣∣
t=s=0

,

∂f

∂η

∣∣∣∣∣t=s=0
η=−θ

= −1
2

d
dθ
f(t, s;−θ, θ)

∣∣∣∣∣
t=s=0

,
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and more generally

∂n1+n2f

∂ηn1∂θn2

∣∣∣∣∣t=s=0
η=−θ

= (−1)n1

(1
2

)n1+n2 dn1+n2

dθn1+n2
f(t, s;−θ, θ)

∣∣∣∣∣
t=s=0

.(290)

We define the function

R(θ) = −1
2

d
dθ
f(t, s;−θ, θ)

∣∣∣∣∣
t=s=0

.(291)

Remembering the definition of L(n)
k in (54), the constraints in (69) for k = 1, 2,

evaluated at s = (s1, s2, s3, . . . ) = (0, 0, 0, . . . ), can be written

B1(η, θ)f
∣∣∣
s=0

=
∑
j≥1

jtj
∂f

∂tj+1

∣∣∣∣∣
s=0

+ n
∂f

∂t1

∣∣∣∣∣
s=0

,(292)

B2(η, θ)f
∣∣∣
s=0

=
∑
j≥1

jtj
∂f

∂tj+2

∣∣∣∣∣
s=0

+
∂2f

∂t21

∣∣∣∣∣
s=0

+
( ∂f
∂t1

)2
∣∣∣∣∣
s=0

+ n
∂f

∂t2

∣∣∣∣∣
s=0

.(293)

The constraint (292) evaluated along the locus t = s = 0 gives

(294)
∂f

∂t1

∣∣∣∣∣
t=s=0

=
1
n

B1f
∣∣
t=s=0

,

for n 6= 0. Next, we call
∂nf

∂tj1∂tj2 . . . ∂tjn
,

a t derivative of weighted degree |j| = j1 + j2 + · · · + jn. Then, for k ≥ 1, we
compute the system formed by

(295)

{
all t-derivatives of weighted degree k of (292),

all t-derivatives of weighted degree k − 1 of (293),

evaluated at t = s = 0. For k = 1, (295) reduces to

B1(η, θ)
( ∂f
∂t1

∣∣∣
t=s=0

)
=
∂f

∂t2

∣∣∣∣∣
t=s=0

+ n
∂2f

∂t21

∣∣∣∣∣
t=s=0

,

B2(η, θ)f
∣∣∣
t=s=0

=
∂2f

∂t21

∣∣∣∣∣
t=s=0

+ n
∂f

∂t2

∣∣∣∣∣
t=s=0

+

(
∂f

∂t1

∣∣∣∣∣
t=s=0

)2

.
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This is, for n 6= 1, a rank two linear system for the "unknowns" ∂2f
∂t21

∣∣∣
t=s=0

and
∂f
∂t2

∣∣∣
t=s=0

. After substitution of (294), this system of equations can be solved for
∂2f
∂t21

∣∣∣
t=s=0

and ∂f
∂t2

∣∣∣
t=s=0

in terms of B2f and B2
1f , whenever n ≥ 2. We obtain

∂f

∂t2

∣∣∣∣∣
t=s=0

=
1

n(1− n2)

[
B2

1f − n2B2f +
(
B1f

)2]∣∣∣
t=s=0

,(296)

∂2f

∂t21

∣∣∣∣∣
t=s=0

=
1

1− n2

[
− B2

1f + B2f −
1
n2

(
B1f

)2]∣∣∣
t=s=0

.(297)

For k = 2, (295) reduces to

B1
∂2f

∂t21

∣∣∣∣∣
t=s=0

= 2
∂2f

∂t1∂t2

∣∣∣∣∣
t=s=0

+ n
∂3f

∂t31

∣∣∣∣∣
t=s=0

,

B1
∂f

∂t2

∣∣∣∣∣
t=s=0

= 2
∂f

∂t3

∣∣∣∣∣
t=s=0

+ n
∂2f

∂t1∂t2

∣∣∣∣∣
t=s=0

,

B2
∂f

∂t1

∣∣∣∣∣
t=s=0

=
∂f

∂t3

∣∣∣∣∣
t=s=0

+
∂3f

∂t31

∣∣∣∣∣
t=s=0

+ 2
∂f

∂t1

∣∣∣∣∣
t=s=0

∂2f

∂t21

∣∣∣∣∣
t=s=0

+ n
∂2f

∂t1∂t2

∣∣∣∣∣
t=s=0

.

This is, for n 6= 2, a rank three linear system for the "unknowns"

∂2f

∂t1∂t2

∣∣∣∣∣
t=s=0

,
∂f

∂t3

∣∣∣∣∣
t=s=0

,
∂3f

∂t31

∣∣∣∣∣
t=s=0

,

and solving it we obtain

(298)
∂2f

∂t1∂t2

∣∣∣∣∣
t=s=0

=
1

4− n2

[
2B1

∂2f

∂t21
+ nB1

∂f

∂t2
− 2nB2

∂f

∂t1
+ 4n

∂f

∂t1

∂2f

∂t21

]∣∣∣∣∣
t=s=0

,

(299)
∂3f

∂t31

∣∣∣∣∣
t=s=0

=
1

4− n2

[
− nB1

∂2f

∂t21
− 2B1

∂f

∂t2
+ 4B2

∂f

∂t1
− 8

∂f

∂t1

∂2f

∂t21

]∣∣∣∣∣
t=s=0

,
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(300)
∂f

∂t3

∣∣∣∣∣
t=s=0

=
1

4− n2

[
−nB1

∂2f

∂t21
+
(
2−n2

)
B1

∂f

∂t2
+n2B2

∂f

∂t1
−2n2 ∂f

∂t1

∂2f

∂t21

]∣∣∣∣∣
t=s=0

.

For k = 3, (295) reduces to

B1
∂3f

∂t31

∣∣∣∣∣
t=s=0

= 3
∂3f

∂t21∂t2

∣∣∣∣∣
t=s=0

+ n
∂4f

∂t41

∣∣∣∣∣
t=s=0

,

B1
∂2f

∂t1∂t2

∣∣∣∣∣
t=s=0

= 2
∂2f

∂t1∂t3

∣∣∣∣∣
t=s=0

+
∂2f

∂t22

∣∣∣∣∣
t=s=0

+ n
∂3f

∂t21∂t2

∣∣∣∣∣
t=s=0

,

B1
∂f

∂t3

∣∣∣∣∣
t=s=0

= 3
∂f

∂t4

∣∣∣∣∣
t=s=0

+ n
∂2f

∂t1∂t3

∣∣∣∣∣
t=s=0

,

B2
∂2f

∂t21

∣∣∣∣∣
t=s=0

= 2
∂2f

∂t1∂t3

∣∣∣∣∣
t=s=0

+
∂4f

∂t41

∣∣∣∣∣
t=s=0

+ 2
(∂2f

∂t21

)2
∣∣∣∣∣
t=s=0

+ 2
∂f

∂t1

∂3f

∂t31

∣∣∣∣∣
t=s=0

+ n
∂3f

∂t21∂t2

∣∣∣∣∣
t=s=0

,

B2
∂f

∂t2

∣∣∣∣∣
t=s=0

= 2
∂f

∂t4

∣∣∣∣∣
t=s=0

+
∂3f

∂t21∂t2

∣∣∣∣∣
t=s=0

+ 2
∂f

∂t1

∂2f

∂t1∂t2

∣∣∣∣∣
t=s=0

+ n
∂2f

∂t22

∣∣∣∣∣
t=s=0

.

This is, for n 6= 3, a rank four linear system for the "unknowns"

∂3f

∂t21∂t2

∣∣∣∣∣
t=s=0

,
∂4f

∂t41

∣∣∣∣∣
t=s=0

,
∂2f

∂t1∂t3

∣∣∣∣∣
t=s=0

,(301)

∂2f

∂t22

∣∣∣∣∣
t=s=0

,
∂f

∂t4

∣∣∣∣∣
t=s=0

,

and solving it we obtain

(302)
∂3f

∂t21∂t2

∣∣∣∣∣
t=s=0

=

1
9− n2

[
4B1

∂3f

∂t31
+ 3nB1

∂2f

∂t1∂t2
+ 2B1

∂f

∂t3
− 4nB2

∂2f

∂t21
+ 8n

(∂2f

∂t21

)2

+ 8n
∂f

∂t1

∂3f

∂t31
− 3B2

∂f

∂t2
+ 6

∂f

∂t1

∂2f

∂t1∂t2

]∣∣∣∣∣
t=s=0

,
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(303)
∂4f

∂t41

∣∣∣∣∣
t=s=0

=

1
n(9− n2)

[
− (3 + n2)B1

∂3f

∂t31
− 9nB1

∂2f

∂t1∂t2
− 6B1

∂f

∂t3
+ 12nB2

∂2f

∂t21

− 24n
(∂2f

∂t21

)2

− 24n
∂f

∂t1

∂3f

∂t31
+ 9B2

∂f

∂t2
− 18

∂f

∂t1

∂2f

∂t1∂t2

]∣∣∣∣∣
t=s=0

,

(304)
∂2f

∂t1∂t3

∣∣∣∣∣
t=s=0

=

1
2n(9− n2)

[
3(1− n2)B1

∂3f

∂t31
+ 3n(3− n2)B1

∂2f

∂t1∂t2
+ 2(3− n2)B1

∂f

∂t3

− 3n(1− n2)B2
∂2f

∂t21
+ 6n(1− n2)

(∂2f

∂t21

)2

+ 6n(1− n2)
∂f

∂t1

∂3f

∂t31

− 3(3− n2)B2
∂f

∂t2
+ 6(3− n2)

∂f

∂t1

∂2f

∂t1∂t2

]∣∣∣∣∣
t=s=0

,

(305)
∂2f

∂t22

∣∣∣∣∣
t=s=0

=

1
n(9− n2)

[
−(3+n2)B1

∂3f

∂t31
−n3B1

∂2f

∂t1∂t2
−6B1

∂f

∂t3
+n(3+n2)B2

∂2f

∂t21

−2n(3+n2)
(∂2f

∂t21

)2

−2n(3+n2)
∂f

∂t1

∂3f

∂t31
+9B2

∂f

∂t2
−18

∂f

∂t1

∂2f

∂t1∂t2

]∣∣∣∣∣
t=s=0

,

(306)
∂f

∂t4

∣∣∣∣∣
t=s=0

=

1
2(9− n2)

[
− (1− n2)B1

∂3f

∂t31
− n(3− n2)B1

∂2f

∂t1∂t2
+ 4B1

∂f

∂t3

+ n(1− n2)B2
∂2f

∂t21
− 2n(1− n2)

(∂2f

∂t21

)2

− 2n(1− n2)
∂f

∂t1

∂3f

∂t31

+ (3− n2)B2
∂f

∂t2
− 2(3− n2)

∂f

∂t1

∂2f

∂t1∂t2

]∣∣∣∣∣
t=s=0

.
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Suppose now n ≥ 4. Substituting (303), (304) and (305) into the KP equation (41),
which contains t-derivatives of f of weighted degree less or equal to 4, we obtain

0 = B1

[
2
∂3f

∂t31
+ 3n

∂2f

∂t1∂t2
+ 4

∂f

∂t3

]
+ B2

[
− 3n

∂2f

∂t21
− 6

∂f

∂t2

]

+
∂f

∂t1

[
6n
∂3f

∂t31
+ 12

∂2f

∂t1∂t2

]∣∣∣∣∣
t=s=0

.

After substitution of (298), (299) and (300) into this equation we obtain

0 = B1

[
B1

∂f

∂t2
+ 2B2

∂f

∂t1
− 4

∂f

∂t1

∂2f

∂t21

]

+ B2

[
− 3n

∂2f

∂t21
− 6

∂f

∂t2

]
+ 6

∂f

∂t1
B1
∂2f

∂t21

∣∣∣∣∣
t=s=0

,

which, after substitution of (294), (296) and (297), multiplying by n(1−n2) and using
the commutation relation [Bk,Bl] = (l − k)Bk+l in the second equality, gives

0 = B2
1

[
B2

1f − n2B2f + (B1f)2
]

+ 2(1− n2)B1B2B1f

− 4(B2
1f)
[
B2f − B2

1f −
1
n2

(B1f)2
]

+ 3B2

[
(n2 − 2)B2

1f + n2B2f − (B1f)2
]

+ 2(B1f)B1

[
B2f − B2

1f −
1
n2

(B1f)2
]∣∣∣
t=s=0

= B4
1f − 4B2B2

1f + 2(1− 2n2)B3B1f − 2n2B4f + 6
(
B2

1f
)2

− 4
(
B2

1f
)(
B2f

)
+ 3n2B2

2f − 4
(
B1f

)(
B2B1f

)
+ 2
(
B1f

)(
B3f

)
.

Evaluating this equation on the locus η = −θ and using relation (290), we obtain

0 =2 sin2 θ
[
4R(θ)2 − 2

(
n2 + (1− n2) cos 2θ

)
R′(θ) + 8 sin 2θR(θ)R′(θ)

− 2 sin 2θR′′(θ) + sin2 θ
(
12R′(θ)2 −R′′′(θ)

)]
,

or equivalently

0 =4R(θ)2 − 2
(
n2 + (1− n2) cos 2θ

)
R′(θ) + 8 sin 2θR(θ)R′(θ)

− 2 sin 2θR′′(θ) + sin2 θ
(
12R′(θ)2 −R′′′(θ)

)
.



AppendixC
Bi-orhogonal polynomials :
Proof of Theorem 2.16

Working out the recurrence relations (103) and (104), we find

p
(1)
0 (z) = 1, p

(1)
n+1(z) = zp(1)

n (z) +
n∑
k=0

hn
hk
xn+1ykp

(1)
k (z), n ≥ 0

and

p
(2)
0 (z) = 1, p

(2)
n+1(z) = zp(2)

n (z) +
n∑
k=0

hn
hk
xkyn+1p

(2)
k (z), n ≥ 0.

By virtue of theorem 2.11, there exist a unique quasi-definite bi-moment functional L
for which the two sequences of polynomials {p(1)

n (z)}n≥0 and {p(2)
n (z)}n≥0 satisfy

the bi-orthogonality conditions

L[p(1)
n (z), p(2)

m (z)] = hnδn,m.

It remains to show that the bi-moment matrix is a Toeplitz matrix, i.e. µi,j = µk,l
whenever i− j = k − l.

We first show that

L[zp(1)
m (z), zp(2)

n (z)] = L[p(1)
m (z), p(2)

n (z)].(307)
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On the one hand, using the recurrence relations we have

hn+1δm,n = L[p(1)
m+1(z), p(2)

n+1(z)]

= L[zp(1)
m (z) +

m∑
k=0

hm
hk

xm+1ykp
(1)
k (z), p(2)

n+1(z)]

= L[zp(1)
m (z), p(2)

n+1(z)] +
m∑
k=0

hm
hk

xm+1ykL[p(1)
k (z), p(2)

n+1(z)]

= L[zp(1)
m (z), p(2)

n+1(z)] +
m∑
k=0

hmxm+1ykδk,n+1

= L[zp(1)
m (z), zp(2)

n (z) +
n∑
j=0

hn
hj
xjyn+1p

(2)
j (z)]

+
m∑
k=0

hmxm+1ykδk,n+1

= L[zp(1)
m (z), zp(2)

n (z)] +
n∑
j=0

hn
hj
xjyn+1L[zp(1)

m (z), p(2)
j (z)]

+
m∑
k=0

hmxm+1ykδk,n+1.

Consequently we have

(308) L[zp(1)
m (z), zp(2)

n (z)] = hn+1δm,n

−
n∑
j=0

hn
hj
xjyn+1L[zp(1)

m (z), p(2)
j (z)]−

m∑
k=0

hmxm+1ykδk,n+1.

On the other hand, we have

hjδm+1,j = L[p(1)
m+1(z), p(2)

j (z)]

= L[zp(1)
m (z) +

m∑
k=0

hm
hk

xm+1ykp
(1)
k (z), p(2)

j (z)]

= L[zp(1)
m (z), p(2)

j (z)] +
m∑
k=0

hmxm+1yjδk,j ,

and thus

L[zp(1)
m (z), p(2)

j (z)] = hjδm+1,j −
m∑
k=0

hmxm+1yjδk,j .(309)
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Combining equations (308) and (309) we obtain

L[zp(1)
m (z), zp(2)

n (z)]

= hn+1δm,n +
n∑
j=0

hn
hj
xjyn+1

m∑
k=0

hmxm+1yjδk,j

−
n∑
j=0

hnxjyn+1δm+1,j −
m∑
k=0

hmxm+1ykδk,n+1

= hn+1δm,n + hnhmxm+1yn+1

n∑
j=0

m∑
k=0

1
hj
xjyjδk,j

−
n∑
j=0

hnxjyn+1δm+1,j −
m∑
k=0

hmxm+1ykδk,n+1

= hn+1δm,n + hnhmxm+1yn+1

n∑
j=1

m∑
k=1

1
hj
xjyjδk,j

+
hnhm
h0

xm+1yn+1 −
n∑
j=0

hnxjyn+1δm+1,j −
m∑
k=0

hmxm+1ykδk,n+1

= hn+1δm,n + hnhmxm+1yn+1

n∑
j=1

m∑
k=1

1
hj

(
1− hj

hj−1

)
δk,j

+
hnhm
h0

xm+1yn+1 −
n∑
j=0

hnxjyn+1δm+1,j −
m∑
k=0

hmxm+1ykδk,n+1

= hn+1δm,n + hnhmxm+1yn+1

n∑
j=1

m∑
k=1

( 1
hj
− 1
hj−1

)
δk,j

+
hnhm
h0

xm+1yn+1 −
n∑
j=0

hnxjyn+1δm+1,j −
m∑
k=0

hmxm+1ykδk,n+1.

(a) We first consider the case m > n. Then we have

L[xp(1)
m (x), yp(2)

n (y)]

= hnhmxm+1yn+1

n∑
j=1

( 1
hj
− 1
hj−1

)
+
hnhm
h0

xm+1yn+1

− hmxm+1yn+1

= hnhmxm+1yn+1

( 1
hn
− 1
h0

)
+
hnhm
h0

xm+1yn+1 − hmxm+1yn+1

= 0,
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and as L[p(1)
m (x), p(2)

n (y)] = 0 for m > n, we get

L[xp(1)
m (x), yp(2)

n (y)] = L[p(1)
m (x), p(2)

n (y)].

(b) We now consider the case m < n. We have

L[xp(1)
m (x), yp(2)

n (y)]

= hnhmxm+1yn+1

m∑
k=1

( 1
hk
− 1
hk−1

)
+
hnhm
h0

xm+1yn+1

− hnxm+1yn+1

= hnhmxm+1yn+1

( 1
hm
− 1
h0

)
+
hnhm
h0

xm+1yn+1 − hnxm+1yn+1

= 0.

As L[p(1)
m (x), p(2)

n (y)] = 0 when m < n, we get

L[xp(1)
m (x), yp(2)

n (y)] = L[p(1)
m (x), p(2)

n (y)].

(c) Finally, if m = n, then we have

L[xp(1)
n (x), yp(2)

n (y)]

= hn+1 + h2
nxn+1yn+1

n∑
j=1

( 1
hj
− 1
hj−1

)
+
h2
n

h0
xn+1yn+1

= hn+1 + h2
nxn+1yn+1

( 1
hn
− 1
h0

)
+
h2
n

h0
xn+1yn+1

= hn+1 + h2
nxn+1yn+1

1
hn

= hn

(hn+1

hn
+ xn+1yn+1

)
= hn.

We also have

L[p(1)
n (x), p(2)

n (y)] = hn.

Consequently, we have

L[xp(1)
n (x), yp(2)

n (y)] = L[p(1)
n (x), p(2)

n (y)].

This proves (307) for all m,n ≥ 0.

Consider now the bi-moment µm+1,n+1. The monomial zm (resp. zn) can
be written as a linear combination of the polynomials p(1)

0 (z), . . . , p(1)
m (z) (resp.
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p
(2)
0 (z), . . . , p(2)

n (z)):

zm = p(1)
m (z) +

m−1∑
i=0

aip
(1)
i (z),

zn = p(2)
n (z) +

n−1∑
j=0

bjp
(2)
j (z).

We thus have

µm+1,n+1 = L[zm+1, zn+1]

= L
[
z
(
p(1)
m (z) +

m−1∑
i=0

aip
(1)
i (z)

)
, z
(
p(2)
n (z) +

n−1∑
j=0

bjp
(2)
j (z)

)]

= L[zp(1)
m (z), zp(2)

n (z)] +
m−1∑
i=0

aiL[zp(1)
i (z), zp(2)

n (z)]

+
n−1∑
j=0

bjL[zp(1)
m (z), zp(2)

j (z)] +
∑

0≤i≤m−1
0≤j≤n−1

aibjL[zp(1)
i (z), zp(2)

j (z)].

Using (307), we obtain

µm+1,n+1

= L[p(1)
m (z), p(2)

n (z)] +
m−1∑
i=0

aiL[p(1)
i (z), p(2)

n (z)]

+
n−1∑
j=0

bjL[p(1)
m (z), p(2)

j (z)] +
∑

0≤i≤m−1
0≤j≤n−1

aibjL[p(1)
i (z), p(2)

j (z)]

= L
[
p(1)
m (z) +

m−1∑
i=0

aip
(1)
i (z), p(2)

n (z) +
n−1∑
j=0

bjp
(2)
j (z)

]
= L[zm, zn].

Consequently, we have µm+1,n+1 = µm,n, for arbitrary m,n. This implies µi,j =
µk,l whenever i− j = k − l, and thus the bi-moment matrix is Toeplitz.





AppendixD
Brownian motions : The integral
over the full range

In section 5 of Chapter 6 we have shown that the function f = log τE~m,~n(0; a, b) =
logPp,q(E; a, b) + log τR

~m,~n(0; a, b) satisfies a nonlinear PDE, and in section 6 of
the same chapter we have described this PDE when p = q = 2. To obtain a PDE
for logPp,q(E; a, b) it is necessary to evaluate log τR

~m,~n(0; a, b). This has been done
in the particular case when p = 1 (see the appendix in [8]), but it seems harder to
evaluate this function when p, q ≥ 2. In this appendix, we conjecture some results
about the evaluation of log τR

~m,~n(0; a, b) when p = q = 2.

Consider N non-intersecting Brownian motions x1(t), x2(t), . . . , xN (t) in R, with
m1 particles leaving from a andm2 particles leaving from−a, and n1 particles ending
in b and n2 particles ending in −b. We suppose m1 = n1 and m2 = n2. We denote

P+a,−a
+b,−b

(
all xi(t) ∈ E

)
:= P

all xi(t) ∈ E

∣∣∣∣∣
(
x1(0), . . . , xN (0)

)
=
(
a, . . . , a︸ ︷︷ ︸

m1

,−a, . . . ,−a︸ ︷︷ ︸
m2

)
(
x1(1), . . . , xN (1)

)
=
(
b, . . . , b︸ ︷︷ ︸
m1

,−b, . . . ,−b︸ ︷︷ ︸
m2

)
 ,

the probability to find all the particles in a set E ⊂ R, at a given time 0 < t < 1. We
have

Pa,−ab,−b
(
all xi(t) ∈ E

)
= P2,2

(
Ẽ; ã, b̃

)
,
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with the normalized problem defined in (236), and where

ã :=

√
2(1− t)

t
a, b̃ :=

√
2t

1− t
b, Ẽ :=

√
2

t(1− t)
E.

Notice that ãb̃ = 2ab. As shown in (240), we have

P2,2

(
Ẽ; ã, b̃

)
=
τE~m,~n(0; ã, b̃)

τR
~m,~n(0; ã, b̃)

,

with τE~m,~n(0; ã, b̃) defined in (241). We try to evaluate the function

τ
R
~m,~n(0; ã, b̃)

= det


( ∫

R x
i+je(ã+b̃)xe

− x
2
2 dx

)
0≤i<m1
0≤j<m1

( ∫
R x

i+je(ã−b̃)xe−
x2
2 dx

)
0≤i<m1
0≤j<m2( ∫

R x
i+je(−ã+b̃)xe−

x2
2 dx

)
0≤i<m2
0≤j<m1

( ∫
R x

i+je(−ã−b̃)xe−
x2
2 dx

)
0≤i<m2
0≤j<m2

 .

Define

µi+j(c) =
∫

R
xi+je−

x2
2 +cxdx.

We have

µ0(c) =
√

2πe
c2
2 , and µi+j(c) =

( d
dc

)i+j
µ0(c).

Define also the polynomials (Hermite polynomials up to a slight change of variables)

pj(x) = e−
x2
2

( d
dx

)j
e
x2
2 .

We then have

τR
~m,~n(0; ã, b̃)

= det

 (
µi+j(ã+ b̃)

)
0≤i≤m1−1
0≤j≤m1−1

(
µi+j(ã− b̃)

)
0≤i≤m1−1
0≤j≤m2−1(

µi+j(−ã+ b̃)
)

0≤i≤m2−1
0≤j≤m1−1

(
µi+j(−ã− b̃)

)
0≤i≤m2−1
0≤j≤m2−1


= (2π)

m1+m2
2 e

m1+m2
2 (ã+b̃)2e−4m1ãb̃

× det

 (
e4ãb̃pi+j(ã+ b̃)

)
0≤i≤m1−1
0≤j≤m1−1

(
pi+j(ã− b̃)

)
0≤i≤m1−1
0≤j≤m2−1(

pi+j(−ã+ b̃)
)

0≤i≤m2−1
0≤j≤m1−1

(
pi+j(−ã− b̃)

)
0≤i≤m2−1
0≤j≤m2−1

 .

We will use the following lemma.

Lemma D.1. Consider the block matrix(
A B

C D

)
,
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with A,D square matrices, and D invertible. Then

det
(
A B

C D

)
= detD × det

(
A−BD−1C

)
.

PROOF. Doing row and column operations, we have

det
(
A B

C D

)
= det

(
I 0
0 D

)
× det

(
A B

D−1C I

)
= detD × det

(
A−BD−1C 0

D−1C I

)
= detD × det

(
A−BD−1C

)
.

�

Using this lemma, we have

τR
~m,~n(0; ã, b̃) = (2π)

m1+m2
2 e

m1+m2
2 (ã+b̃)2e−4m1ãb̃ detD

× det
(
A − BD−1C

)
,

where

A =
(
e4ãb̃pi+j(ã+ b̃)

)
0≤i≤m1−1
0≤j≤m1−1

, B =
(
pi+j(ã− b̃)

)
0≤i≤m1−1
0≤j≤m2−1

,

C =
(
pi+j(−ã+ b̃)

)
0≤i≤m2−1
0≤j≤m1−1

, D =
(
pi+j(−ã− b̃)

)
0≤i≤m2−1
0≤j≤m2−1

,(310)

and it is well-known that detD =
∏m2−1
i=0 i !. Let us note

X = e4ãb̃ −
m2−1∑
j=0

(4ãb̃)j

j !
= (4ãb̃)m2

1
2πi

∮
Γ0,4ãb̃

ez dz

zm2(z − 4ãb̃)

= (8ab)m2
1

2πi

∮
Γ0,8ab

ez dz

zm2(z − 8ab)
,(311)

where Γ0,4ãb̃ denotes a closed contour containing 0 and 4ãb̃ in the complex plane.
Computer observations point out that for A,B,C,D as in (310) we have

det
(
A−BD−1C

)
= det

(
pi+j(ã+ b̃)X + Pi,j(ã, b̃)

)
0≤i≤m1−1
0≤j≤m1−1

,(312)

where Pi,j(ã, b̃) is a polynomial in ã, b̃ such that Pi,j(ã, b̃) = Pj,i(b̃, ã),
P0,0(ã, b̃) = 0, and the order of Pi,j(ã, b̃) is 2(m1 − 1) + i + j when i + j > 0. We
will develop (312) in the large m2-limit.

Let us consider the large m2-limit, keeping m1 fixed, see Figure 1. If m1 = 0, for
large m2 the mean density of brownian particles at any time 0 < t < 1 is supported
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FIGURE 1. Non-intersecting Brownian motions in the large m2-
limit, with m1 fixed

by an interval with endpoints given by ±
√

2m2t(1− t)− a(1− t)− bt. When m1 is
fixed but not necessarily zero, the non-intersecting nature of the cloud of m2 particles
implies that the largest one will again reach a height of about

√
m2
2 −

a+b
2 at t = 1

2 .
We will consider the following scaling given in [4] for the starting and the target points

a =
1
2

√
m2

2

(
1 +

A

m
1/3
2

)
, and b =

1
2

√
m2

2

(
1− B

m
1/3
2

)
.(313)

With this scaling, the m1 wanderers will interact with the bulk of m2 particles (m2

very large), upon considering regions close to x =
√

m2
2 −

a+b
2 and t = 1

2 , namely at
space-time positions (x, t) which scale like

t =
1
2

+
1
2

τ

m
1/3
2

,

x =
1
2

√
m2

2
+

ξ − τ2

2
√

2m1/6
2

+
1

4
√

2
m

1/6
2 (B −A) +

1
4
√

2
(A+B)τ

m
1/6
2

.

We suppose A < B. Under this scaling, the quantity

8ab = m2

(
1 +

A−B
m

1/3
2

− AB

m
2/3
2

)
,

is strictly less than m2, for m2 large enough. Consequently, by Cauchy’s theorem, the
contour Γ0,8ab in (311) can be taken to be a circle centered at the origin and of radius
m2. We will follow [4] to obtain an assymptotic expansion for X . Making the change
of variable z = um2 in the integral defining X we have

X = (8ab)m2
m−m2

2

2πi

∮
|u|=1

em2F (u)

u− 1− (A−B)m−1/3
2 +ABm

−2/3
2

du,(314)

where

F (u) := u− lnu = 1 +
1
2

(u− 1)2 +O
(
(u− 1)3

)
,
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with

<
(
F (u)

)
= <(u)− ln(|u|).(315)

The stationary points of the function F (u) are solution of the equation F ′(u) = 0,
and thus there is one stationary point at u = 1. We can deform the path |u| = 1 into
γδ = {1+ iy|−δ ≤ y ≤ δ} plus a circle segment γ′ centered at the origin and joining
the extremities of γδ . It follows from (315) that γδ is tangent to the steep descent path
through u = 1. We choose δ = m

−2/5
2 . Then the contribution to the integral coming

from γδ is given by∫
γδ

em2F (u)

u− 1− (A−B)m−1/3
2 +ABm

−2/3
2

du

=
−m1/3

2 em2

(A−B)

∫ 1+im
−2/5
2

1−im−2/5
2

e
m2
2 (u−1)2du

(
1 +O(m−1/5

2 )
)
.

Making the change of variable ω = −i
√

m2
2 (u− 1), we obtain∫

γδ

em2F (u)

u− 1− (A−B)m−1/3
2 +ABm

−2/3
2

du

=
−i
√

2m−1/6
2 em2

(A−B)

∫ 1√
2
m

1/10
2

− 1√
2
m

1/10
2

e−ω
2
dω
(
1 +O(m−1/5

2 )
)
.

As ∫ +∞

1√
2
m

1/10
2

e−ω
2
dω = o

(
m
−1/5
2

)
,

we have ∫
γδ

em2F (u)

u− 1− (A−B)m−1/3
2 +ABm

−2/3
2

du

=
−i
√

2πm−1/6
2 em2

(A−B)
(
1 +O(m−1/5

2 )
)
.

Let us now evaluate the contribution to the integral coming from γ′. Along γ′, we
have u =

√
1 + δ2eiθ with cos θ ≤ 1√

1+δ2
and δ = m

−2/5
2 , and thus∣∣em2F (u)

∣∣ = em2<(F (u)) = em2

(√
1+δ2 cos θ− 1

2 ln(1+δ2)
)

≤ em2e−
m2
2 ln(1+δ2).

It follows that

e−m2
∣∣em2F (u)

∣∣ = O
(
e−

1
2m

1/5
2

)
.
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Along γ′, we also have∣∣∣ 1

u− 1− (A−B)m−1/3
2 +ABm

−2/3
2

∣∣∣
≤ 1∣∣√1 + δ2 − 1− |A−B|m−1/3

2 − |AB|m−2/3
2

∣∣ ,
and thus ∣∣∣ 1

u− 1− (A−B)m−1/3
2 +ABm

−2/3
2

∣∣∣ ≤ −m1/3
2

A−B
(
1 +O(m−1/3

2 )
)
.

It follows that the contribution to the integral in (314) from γ′ is of order O(e−cm
1/5
2 )

smaller then the main contribution coming from γδ , for some 0 < c < 1
2 . Conse-

quently we have∮
Γ0,4ãb̃

ez dz

zm2(z − 4ãb̃)

= −
√

2πim−1/6
2

( e

m2

)m2 1
(A−B)

(
1 +O(m−1/5

2 )
)
.

It follows that in the large m2-limit

X =
−m−1/6

2√
2π(A−B)

× exp
(
m2 + (A−B)m2/3

2 − 1
2

(A2 +B2)m1/3
2 +

1
3

(A3 −B3)
)

×
(
1 + O(m−1/5

2 )
)
.

Consequently, in the large m2-limit, for m1 fixed, τR
~m,~n(ã, b̃) is expected to behave

like

τR
~m,~n(ã, b̃)

≈ (2π)
m1+m2

2 e
m1+m2

2 (ã+b̃)2e−4m2ãb̃
(m1−1∏

i=0

i !
)(m2−1∏

j=0

j !
)
Xm2 .
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