
Automatic Verification of Simulatability in Security Protocols

Tadashi Araragi
NTT Communication Science Laboratories,

2-4 Hikaridai Seika-cho Soraku-gun,
Kyoto, Japan 619-0237

araragi@cslab.kecl.ntt.co.jp

Olivier Pereira∗

Université catholique de Louvain
Place du Levant, 3 B-1348

Louvain-la-Neuve, Belgium
olivier.pereira@uclouvain.be

Abstract

This paper investigates the problem of the automatic ver-
ification of the computational indistinguishability of sys-
tems in the simulation-based security setting, which allows
proving the composable security of cryptographic protocols
whose security relies on computational hardness assump-
tions. We use task-structured Probabilistic I/O Automata
(task-PIOA) as our modeling framework. In this context,
proofs of indistinguishability between real and ideal sys-
tems are typically divided into steps involving either proofs
of perfect indistinguishability or proofs of computational
indistinguishability. Our method automates the proof of
perfect indistinguishability for a class of simple protocols,
which is, by far, the most error-prone and time-consuming
part of those security proofs. We proceed by transforming
the targeted real and ideal probabilistic systems into non-
deterministic ones, and check the bisimulation between the
obtained systems by a partition refinement algorithm. We
prove the correctness of our transformation. Our method
has also been implemented in a symbolic way and we
showed its usefulness by applying it to a practical protocol
for oblivious transfer.

keywords: security protocols, formal verification, simula-
tion, computational security, task-PIOA

1 Introduction

The wide adoption of complex cryptographic protocols
in open environments stimulates the elaboration of more
and more sophisticated models for the security analysis of
such protocols [1, 5, 7, 13]. In turn, the complexity of the
security proofs obtained in these models has recently at-
tracted much effort to mechanize such proofs [2, 4, 11, 15].

In this paper, we outline a new technique for obtaining
tool-supported security proofs in the task-PIOA framework

∗O. Pereira is a Research Associate of the Belgian Fund for Scientific
Research – F.R.S.-FNRS.

of Canetti et al. [7] that permits the modeling of both prob-
abilistic and nondeterministic choices, resulting in security
notions incomparable to those obtained in pure probabilistic
models (as shown in [8]).

A central aspect of the security proofs in all of the above
models consists in proving the indistinguishability of two
systems by any (computationally-bounded) environment. In
the task-PIOA framework, this indistinguishability notion is
captured by a series of implementation relations, ≤0, ≤δ ,
and ≤neg,pt, that capture perfect, statistical, and computa-
tional indistinguishability, respectively, [7, 10].

To establish that two task-PIOAs, A and B, are ≤neg,pt-
related,1 proofs are split into several steps (as in game-based
proofs [3, 14]): to show that A ≤neg,pt B, one proves that
A1 ≤neg,pt · · · ≤neg,pt An, where A1 = A and An = B,
and exploits the transitivity of the implementation relation.
Families Ai and Ai+1 are defined so that they are either
perfectly indistinguishable (that is, they are ≤0-related) or
only differ by a small detail corresponding to a computa-
tional assumption. As observed in [7], for instance, the
proofs of the steps corresponding to perfect implementation
relation ≤0, based on establishing simulation relations, are
especially page consuming (around 30 pages for a simple
protocol in [6]) and error-prone. We propose here a tech-
nique that allows automation of these proof steps, based on
a partition refinement algorithm that is generally used for
showing bisimulation relations in process algebra (the other
steps typically require more imagination, but can be easily
managed by hand).

2 Preliminaries

2.1 Task-PIOA

Task-PIOA is a framework of I/O automata that enables
sophisticated discussion on the composition of systems and

1Formally, this relation involves task-PIOA families, indexed by secu-
rity parameter k. We omit this distinction here.

the nondeterminism of the behavior. A probabilistic I/O au-
tomaton (PIOA) A is a tuple < Q, q, I, O, H,∆ >, where
(i) Q is a set of states, with start state q ∈ Q; (ii) I , O,
and H are sets of input, output, and internal actions,
respectively; (iii) ∆ ⊂ Q × (I ∪ O ∪ H) × Disc(Q) is a
transition relation, where Disc(Q) is the set of discrete
probabilistic distributions on Q. A transition 〈 q, a, µ 〉 ∈
∆ means that action a is enabled in state q and has a prob-
abilistic transition to the next states specified by µ. Actions
in I ∪O are called external actions and those in O∪H are
called locally controlled actions. We denote I ∪ O ∪ H
by Act(A).

The parallel composition of PIOAs is based on the syn-
chronization of shared actions. Two PIOAs, A1 = < Q1,
q1, I1, O1, H1, ∆1>, and A2 = < Q2, q2, I2, O2, H2, ∆2

>, are said to be compatible if Act(A1) ∩ H2 = Act(A2)
∩ H1 = O1 ∩ O2 = φ. In that case, we define composition
A1‖A2 as < Q1 × Q2, 〈 q1,q2 〉, (I1 ∪ I2) \ (O1 ∪ O2),
(O1 ∪ O2), (H1 ∪ H2), ∆ >, where ∆ is { 〈 〈 q1, q2〉, a,
µ1 × µ1 〉 | a ∈ A1 ∩ A2, 〈 q1, a, µ1 〉 ∈ ∆1, 〈 q2, a, µ2 〉
∈ ∆2 } ∪ { 〈 〈 q1, q2 〉, a, µ1 × δ(q1) 〉 | a ∈ A1 \ A2, 〈
q1, a, µ1 〉 ∈ ∆1 } ∪ { 〈 〈 q1, q2 〉, a, δ(q1) × µ2 〉 | a ∈ A2

\ A1, 〈 q2, a, µ2 〉 ∈ ∆2 }. δ(q) is the distribution where q
has probability 1.

To discuss the probabilistic properties of task-PIOAs,
a partition of the locally controlled actions of PIOAs into
tasks is introduced, those tasks serving as units of schedul-
ing for resolving the nondeterminism. Formally a task-
PIOA is a pair 〈P,R〉 where P is a PIOA and R is an equiv-
alence relation on the locally controlled actions of P . Each
equivalence class of R is called a task. We assume that task-
partitions satisfy the following condition: Action determin-
ism: for every state q and every task T of a task-PIOA, there
is at most one action a ∈ T enabled in q.

The composition of two task-PIOAs is given by the com-
position of their underlying PIOAs and by the union of their
task partitions.

The action determinism condition enables using task
schedulers to resolve the nondeterminism. A task sched-
uler ρ is a finite or infinite sequence of tasks T1T2T3· · ·.
This induces a probabilistic execution. Tasks T1T2T3· · ·
are applied from the start state q in this order, and we ob-
tain a series of probabilistic transitions called probabilistic
execution generated by ρ and denoted by εA,ρ or ερ. By
the action determinism, when each task Ti is applied, at
most one action in Ti is enabled in each possible current
state. If there is, we apply the action, and otherwise we
do nothing and move to the application of next task Ti+1.
In this way, the nondeterminism is resolved when a sched-
uler is given. When a probabilistic execution ε (= ερ) and a
scheduler ρ′ are given, apply(ε, ρ′) is defined as ερρ′ . A
probabilistic execution generated by a finite scheduler is
called finite. A finite probabilistic execution can be seen

as a distribution on finite executions. For a finite probabilis-
tic execution ε, let exec1 · · · execn be the executions with
non-zero probability by ε. Then lstate(ε) is the distribution
on the set of the last states of exec1 · · · execn that assigns
probability ε(execi) to the last state of execi for each i. A
trace distribution for a probabilistic execution ε, denoted
by tdist(ε), is the result of abstracting away internal actions
and each transient state in ε.

2.2 Implementation relations

The indistinguishablity of two systems of task-PIOAs
is formulated as follows. We denote the set of trace dis-
tributions generated from task-PIOA A by tdists(A). An
environment E for A is defined as a task-PIOA compati-
ble with A such that A ‖ E has no input action and E has
a special output action accept. Task-PIOAs A1 and A2 are
said to be comparable when they have the same external
actions. The statement that any environment cannot distin-
guish two comparable task-PIOAs A1 and A2 is formulated
as follows. For any environment E for A1 and A2, tdists(
A1 ‖ E) ⊂ tdists(A1 ‖ E). In other words, for any
environment E for A1 and A2, for any task scheduler ρ1

of A1 ‖ E, there is a task scheduler ρ2 of A2 ‖ E such
that tdist(εA1‖E,ρ1) = tdist(εA2‖E,ρ2). In this case, we say
that A1 implements A2, and this relation is denoted by
A1 ≤0 A2.

An approximate implementation relation is also intro-
duced in the task-PIOA framework in order to describe
computational indistinguishability. This relation is written
as A1≤neg,ptA2 and informally means that any environ-
ment with only polynomial time computational power has
a negligible chance to distinguish a trace distribution of A1

from those of A2. We do not define the ≤neg,pt in more de-
tails here as it is only instrumental in this paper, a detailed
discussion is available in [7].

2.3 Known results

We list some known results related to our method. In the
following, A1, A2, and A3 are task-PIOAs.

Theorem 1 [7] (1) If A1≤neg,ptA2 and A2≤neg,ptA3,
then A1≤neg,ptA3.
(2) If A1≤neg,ptA2 and A3 is compatible with A1 and A2

respectively, then A1 ‖ A3≤neg,ptA2 ‖ A3.

With this result, when we prove a security requirement
Real≤neg,ptIdeal in a task-PIOA framework for a real sys-
tem Real and an ideal system Ideal, we decompose this
implementation relation in an alternative sequence of imple-
mentations by introducing intermediate task-PIOAs Inti:
Real ≤0Int1 ≤neg,pt Int2 · · · ≤neg,pt · · · Intk ≤0 Ideal,

where ≤neg,pt parts correspond to the computational as-
sumptions used in the Real protocols. Then we prove these
implementation relations individually.

In order to establish the ≤0 relation between two task-
PIOAs A1 and A2 a simulation relation has been proposed,
which enables our automatic verification. Let R be a rela-
tion on probabilistic executions. Then the expansion of R,
denoted by E(R), is defined as follows. ε′1 E(R) ε′2 if and
only if there are probabilistic executions {εi

1}, {εi
2}, distri-

butions {pi
1}, {pj

1}, that is, pi
k>0 and

∑
ip

i
k = 1, a class

of positive values {wi,j} such that (i) ε′1 =
∑

ip
i
1ε

i
1, ε′2 =∑

ip
i
2ε

i
2 (ii) if εi

1Rεj
2 then wi,j > 0, otherwise, wi,j = 0

(iii) pi
1 =

∑
jwi,j and pj

2 =
∑

iwi,j . Now, we define the
simulation relation between two task-PIOAs. Let A1 and
A2 be task-PIOAs and R be a relation on the probabilistic
executions of A1 and A2. R is a simulation from A1 to A2

if the following conditions are satisfied. Let ε1 and ε2 be the
probabilistic executions of A1 and A2, respectively: (1) if
ε1Rε2, then tdist(ε1) = tdist(ε2); (2) there exists mapping c:
R∗

1×R1 → R∗
2 exists such that (i) Start condition: δ(q1)R

δ(q2); (ii) Step condition: if ε1Rε2, ε1 = ερ1 , and T is a task
of A1, then apply(ε1, T) E(R) apply(ε2, c(ρ1, T)).

Lemma 1 ([6]) Let R be a simulation relation from A1 to
A2. If ε1E(R)ε2, ε1 = ερ1 and T is a task of A1, then
apply(ε1, T) E(R) apply(ε2, c(ρ1, T))

Note that the premise is not ε1Rε2 but ε1E(R)ε2. This
lemma is used for the proof of our correctness theorem in
Section 3.4. The existence of a simulation relation of the
type defined above is a sufficient condition for the ≤0 rela-
tion.

Theorem 2 ([7]) Let A1 and A2 be two comparable task-
PIOA. Suppose that, for any environment E for A1 and A2,
there is a simulation relation R from A1‖E to A2‖E. Then
A1≤0A2.

Besides, the existence of a simulation relation be-
tween two task-PIOAs is also a sufficient condition for the
≤neg,pt-relation, as soon as there exists a task mapping c
that satisfies condition (2) of the simulation relation defini-
tion and never maps any task and sequence of tasks on more
than a constant number of tasks.

Theorem 3 ([7]) Let A1 and A2 be two comparable task-
PIOA. Suppose that, for any environment E for A1 and A2,
there is a simulation relation from A1‖E to A2‖E using
task mapping c, and c(ρ1, T) is b-bounded for every ρ1 and
T for some b ∈ N. Then A1 ≤neg,pt A2.

3 Verification Procedure

3.1 Basic idea of verification

The ≤0-relation of two task-PIOAs is typically proved
by a exhibiting simulation relation R that relates the
two compared automata. However, verifying the simula-
tion of probabilistic systems is generally difficult and in-
tractable [9].

To cope with this difficulty, we make some assumptions
about the systems we expect to compare based on obser-
vations from previous analyzes. The most central point is
that all sophisticated computational behaviors are isolated
in the proof steps in which computational assumptions are
exploited. As a result, the steps where the ≤0 relation must
be proved only relate variables that are distributed based
on very simple distributions: they are either uniformly dis-
tributed in some set or fixed to some value that corresponds
to the Dirac distribution.

Based on this assumption, we introduce units of actions
as a sequence of invisible actions followed by a single ob-
servable action. Then to verify the coincidence of trace dis-
tributions, we check the simulation of the units of actions
based not only on observable actions but also on the set of
internally executed random value generation actions in each
unit by a verification method for nondeterministic bisimu-
lation. The uniformity of the randomness guarantees the
soundness of this procedure.

3.2 Verification setting

Class of targeting protocols: Our method of proving re-
lation ≤0 is currently restricted to some class of protocols
defined as follows. Each protocol has a finite number of
variables called state variables to specify its state. There
are four kinds of actions: sending a message, receiving a
message, random value generation, and calculation. The
precondition of each action is a logical conjunction of pred-
icates of the form xi =⊥ or xi 6=⊥, where xi is a state
variable. xi =⊥ means that xi has no value. The postcon-
dition of each action is a parallel substitution of the values
to state variables. We assume that the state variable initially
has no value and is instantiated once during the protocol ex-
ecution. It is simply achieved by including x 6=⊥ in the
precondition, when the action includes the substitution of
x in its postcondition. The random value generation gen-
erates a uniformly distributed value, and the calculation is
nondeterministic action. Therefore , only the probabilis-
tic behavior of the protocol is uniform, except the actions
of the composed environment. We call the protocols that
satisfy the above conditions value independent protocols.
We believe some security protocols satisfy these assump-
tions.

Tasks: Sending and receiving actions have a form
send(msg id, dest id, xi1 , xi2 , · · ·), where msg id is a
message id distinguished from other type of messages and
dest id is a destination id. If msg id is its own id, then the
action is a receiving one, and otherwise it is sending. xj is a
state variable and its current value appears at the occurrence
in the action. In the task-PIOA presentation, sending actions
with the same msg id constitute one task as well as receiv-
ing actions. Each random value generation and calculation
individually constitutes a task. Sending messages from/to
an environment or an adversary are called external tasks,
and the other are internal tasks. We assume the number of
tasks is finite.

3.3 Transformation of probabilistic sys-
tems to nondeterministic systems for
verification

When a probabilistic system A of a value independent
protocol is given as a task-PIOA, we transform A into pure
nondeterministic system Aab.

First, we abstract away the individual random values ap-
pearing in actions as parameters. That is, we reduce action
task name(v1, . . . , vk) to task name. We also abstract
away the post condition. When the action includes a substi-
tution x:= v in the post condition, it is replaced by x:= T .
For a value independent protocol, each reduced action of A
corresponds to a unique task. With this correspondence, we
classify the reduced actions into external and internal ac-
tions. Let Int be the set of internal reduced actions of A
and Ext be the set of external reduced actions of A. A unit
of actions is defined as a pair of a finite sequence of inter-
nal reduced actions and an external action: an element of
Int∗×Ext. Let ([in1 . . . ink], ob) be a unit of actions de-
noted by ut. From ut, we create the action of Aab as follows
and denote it by det action(ut).

1. The action name of det action(ut) is (ob, distrd1×
. . .×distrdm), where rd1, . . . , rdm are the actions that
generate the uniformly distributed random values in-
cluded in {in1, . . . , ink}, and distrdi

is the distribu-
tion of rdi.

2. The precondition of det action(ut) is the merger of
the preconditions of in1, . . . , ink, and o in this order.
That is, if a precondition of inj or o is satisfied by a
postcondition of a proceeding inj′ (1 ≤ j′ ≤ j or
1 ≤ j′ ≤ k), then the precondition is not included in
the merging.

3. The postcondition of det action(ut) is simply the
union of the postconditions of in1, . . . , ink and ob.

Then the set of actions of Aab is defined as
{det action(ut) | ut∈Int∗×Ext}.

For the state of Aab, we retain the identical state vari-
ables as A, but their domains are changed to {>, ⊥} from
the full range. We denote the result of the abstraction of
state s by sab.

Informally, this transformation abstracts away individ-
ual random values in A and only keeps the information
of what distributions caused by random value generation
actions ({rd1, . . . , rdm}) are brought in each unit of ac-
tions. This information determines the probabilistic behav-
ior of the unit of actions because the randomness is uniform.
Therefore, the action name of det action(ut) represents the
observable probabilistic behavior of ut.

By our assumptions, the sets of Aab’s actions and its
states are finite. Originally, the number of units of actions
is exponential for In, but operation det action greatly re-
duces the number because the resulting actions are equiva-
lent if their action names, preconditions, and postconditions
are individually identical. On the other hand, there are dif-
ferent actions with the same action name.

We introduce some notations. An action of Aab is a class
of the sequences of reduced actions. As stated before, a re-
duced action corresponds to a task. Hence, when a finite
scheduler ρ whose last task is external and the others are
internal is given, we can consider ρ a unit of actions and de-
note the associated action of Aab by [ρ]. A scheduler whose
last task is external and the others are internal is called a
unit scheduler. When an action of Aab act is given, it has
name of the form (ob, distrd1× . . .×distrdm

). We denote
ob by r.ext and distrd1× . . .×distrdm

by r.dist.

3.4 Correctness of transformation

Theorem 2 states that the existence of a simulation re-
lation between two task-PIOAs implies that they imple-
ment each other. Besides, in the similar setting of Lynch
et al. [12], the other direction of this statement is proved,
that is, the implementation relation implies the existence of
a simulation relation between two PIOAs. This result has
not been transposed to the task-PIOA setting, but we prove
it to be true for at least a proper restrictions on the target-
ing class of task-PIOAs. Then, we state the correctness of
our transformation as the existence of simulation in original
task-PIOAs is equivalent to the existence of simulation in
the transformed nondeterministic systems.

For probabilistic execution ε, let lstate(ε)ab be sab for a
s ∈ supp(lstate(ε)).

Lemma 2 For value independent protocols, lstate(ε)ab is
well defined. That is, it is independent from the choice of s.

This, which is one of the characteristics of value indepen-
dent protocols, is easily verified.

Theorem 4 Let A1, A2 be the probabilistic systems in a
task-PIOA for value independent protocols. Then the fol-
lowing holds. There is a simulation from Aab

1 to Aab
2 if and

only if there is a simulation from A1 to A2.

Proof: (⇒). We construct a simulation relation
from A1 to A2 by a given simulation relation Rab from
Aab

1 to Aab
2 . We define the relation R as ε1R ε2 if

lstate(ε1)abRablstate(ε2)ab. Now, we show that R is a
simulation relation. For the start condition, lstate(δ(qi))ab

= qi
ab and (q1)abRab(q2)ab. Then δ(q1)Rδ(q2) holds. For

the step condition, we slightly modify the step condition as
follows.

Modified step condition: Let ρ1, ρ2 be finite sched-
ulers whose last task is external, ερ1Rερ2 and tdist(ερ1) =
tdist(ερ2). Then for any unit scheduler ρ′1, there is a unit
scheduler ρ′2 such that ερ1ρ′

1
E(R)ερ2ρ′

2
and tdist(ερ1ρ′

1
) =

tdist(ερ2ρ′
2
).

Let si = lstate(εi)ab. By the assumption ερ1Rερ2 ,

s1R
abs2. When there is a transition s1

[ρ′
1]→s′1, there is a

unit scheduler ρ′2 such that s2
[ρ′

2]→s′2, s′1R
abs′2, [ρ′1].ext =

[ρ′2].ext and [ρ′1].dist = [ρ′2].dist. Because lstate(ερiρ′
i
)ab

= s′i, s′1 R s′2, and then s′1 E(R) s′2. By [ρ′1].ext = [ρ′2].ext
and [ρ′1].dist = [ρ′2].dist, tdist(ερ1ρ′

1
) = tdist(ερ2ρ′

1
), as de-

sired.
(⇐) By the assumption, there is a simulation relation

from A1 to A2. We denote this relation by R. Now we
define a simulation from Aab

1 to Aab
2 , denoted by Rab, as

s1Rs2 if there are probabilistic executions ε1 of A1 and ε2
of A2 such that s1 = (lstate(ε1))ab, s2 = (lstate(ε2))ab,
ε1E(R)ε2 and tdist(ε1) = tdist(ε2). We show that Rab is a
simulation relation from Aab

1 to Aab
2 .

For the start condition, by the start condition of R,
δ(q1)Rδ(q2), and then δ(q1)E(R)δ(q2). On the other
hand, qi

ab = lstate(δ(qi))ab. Thus, q1
abRabq2

ab. For the
step condition, let s1R

abs2. That is, si = (lstate(εi))ab,
ε1E(R)ε1, and tdist(ε1) = tdist(ε2).

We assume that s1
[ρ′

1]→ s′1. Let ρ′1 = T 1
1 · · ·T 1

m. By repeat-
edly using the results of Lemma 2, we have a finite sched-
uler ρ′1 and write ε′1 for apply(ε, ρ′1) and ε′2 for apply(ε, ρ′2),
such that ε′1E(R))ε′2 and tdist(ε′1)=tdist(ε′1). From
tdist(ε1) = tdist(ε2) and tdist(ε′1)=tdist(ε′1), [ρ′1].dist =
[ρ′2].dist. Moreover, because ρ′1 and ρ′2 are unit schedulers,
[ρ′1].name = [ρ′1].name. It is also easily shown that s′1 =
lstate(ε′1)

ab. Therefore, if we let s′2 = lstate(ε′2)
ab, then s2

has an observably identical transition to s′2 as s1
[ρ′

1]→ s′1 and
s′1R

abs′2 as desired.

3.5 Verification procedure

We prove the existence of a simulation from Aab
1 to Aab

2

by bisimulation. The basic idea is that X⊂Y is implied by

equation X=X∩Y for sets X and Y . We achieve this for
transition systems by the following two system syntheses.

The first is the synchronization of two systems: A∩B for
nondeterministic transition systems A and B. The set of the
states of A∩B is the product of the sets of the states of A
and B. The set of the actions of A∩B is the intersection of
the sets of the actions of A and B. The transition of A∩B
is the application of a common action to a pair of states:
if sa

a→s′a in A and sb
a→s′b in B, then (sa, sa) a→(s′a,s′b) in

A∩B. The second is the disjoint union of two systems:
A+B. The set of the states of A+B is the disjoint union
of the sets of the states of A and B. The set of actions is the
union of the sets of the actions of A and B. The transition
is obtained by individually applying the actions of A or B
to their states: if sa ∈ A, sa

a→s′a and (sa, A)∈ A+B, then
(sa, A) a→(s′a, A), and the case of (sb, B)∈ A+B is similar.

With these syntheses, we obtain the following results.

Claim: Let initA and initB be the initial states of A and
B, respectively. Then (initA, A) is bisimilar to ((initA,
initB), A∩B) in system A+(A∩B), if and only if there is a
simulation from A to B.

Now, by Theorem 4 and the Claim, we prove A1 ≤0 A2

by showing that (qab
1 , Aab

1) is bisimilar to ((qab
1 , qab

2), Aab
1

∩ Aab
2) in system Aab

1 +(Aab
1 ∩ Aab

2), using the partition re-
finement algorithm.

4 Implementation

We implemented our method in Java and represented the
system state transitions and the set of states, “partitions,” by
Binary Decision Diagram (BDD). We applied the method to
the example of oblivious transfer protocol in [6]. It success-
fully output the results in 13 minutes and 8 seconds on an
Apple Power PC G5 2.5 GHz dual with 512 MB, creating
1,911 partitions and 1,497,102 BDD nodes.

5 Discussion and Future work

For our verification method, we posed some restrictions
on the targeting systems. Among them, the restriction on
the preconditions of actions is strong and excludes a few
important protocols such as mutual authentications where
nonces are compared by the excluded condition: x1 = x2.
To include such preconditions, we have to refine the classes
of random values, which are currently {>, ⊥}, by these
equations in preconditions. Such a method of introducing
proper equivalence classes requires more careful analysis
on the relations of classification and distribution. This im-
portant extension remains future work.

For verification, an alternative approach might directly
employ the decision algorithm of probabilistic bisimulation

[9]. However, that algorithm can be intractable in proving
weak bisimulation relations. Moreover, the number of ac-
tions in an original probabilistic system is huge if we do
not abstract away the random values or introduce a coarse
equivalence relation on them.

Our procedure automatizes the proof of perfect imple-
mentation relation ≤0 for a class of security protocols. To
make the proof of a security protocol under computational
assumptions fully automatic, we have to introduce a
systematic way of splitting the implementation of the
original simulatability and designing simulators for imple-
mentation. The second simulator problem is an especially
challenging future work.

Acknowledgments
We thank Tatsuaki Okamoto for arranging this research col-
laboration. We also appreciate Roberto Segala’s helpful
comments on our method.

References

[1] M. Backes, B. Pfitzmann, and M. Waidner, “Se-
cure Asynchronous Reactive Systems,” Cryp-
tology ePrint Archive, Report 2004/082,, 2004,
http://eprint.iacr.org/.

[2] G. Barthe, J. Cerderquist, and S. Tarento, “A Machine-
Checked Formalization of the GM and the ROM,” Au-
tomated Reasoning: Second International Joint Con-
ference, IJCAR 2004, pp. 385–399, 2004.

[3] M. Bellare and P. Rogaway, “The game-playing tech-
nique and its application to triple encryption,” Cryp-
tology ePrint Archive, Report 2004/331, 2004.

[4] B. Blanchet, “A Computationally Sound Mechanized
Prover for Security Protocols,” IEEE Symposium on
Security and Privacy, pp. 140-154, 2006.

[5] R. Canetti, “Universally Composable Security: A
New Paradigm for Cryptographic Protocols,” FOCS
2001, pp. 136-145, 2001.

[6] R. Canetti, L. Cheung, D. Kaynar, M. Liskov, N.
Lynch, O. Pereira, and R. Segala, gUsing task-
structured probabilistic I/O automata to analyze an
oblivious transfer,” MIT CSAIL Technical Reports -
MIT-CSAIL-TR-2006-047, 2006.

[7] R. Canetti, L. Cheung, D. Kaynar, M. Liskov, N.
Lynch, O. Pereira, and R. Segala, gAnalyzing Se-
curity Protocols Using Time-Bounded Task-PIOAs,h
Discrete Event Dynamic Systems, vol. 18, num. 1, issn
0924-6703, pp. 111–159, Kluwer Academic Publish-
ersm 2008.

[8] R. Canetti, L. Cheung, N. Lynch, and O. Pereira, “On
the Role of Scheduling in Simulation-Based Security,”
7th International Workshop on Issues in the Theory of
Security (WITS’07), pp. 22–37, 2007.

[9] S. Cattani and R. Segala, “Decision Algorithms for
Probabilistic Bisimulation,” CONCUR 2002, pp. 371-
385, 2002.

[10] L. Cheung, S. Mitra, and O. Pereira, “Verifying Statis-
tical Zero Knowledge with Approximate Implementa-
tions,” Cryptology ePrint Archive, Report 2007/195,
2007.

[11] K.-K. Raymond Choo, “Refuting Security Proofs for
Tripartite Key Exchange with Model Checker in Plan-
ning Problem Setting,” 19th IEEE Computer Security
Foundations Workshop - CSFW 2006, pp. 297–308,
2006.

[12] N. Lynch, R. Segala, and F. Vaandrager “Observing
Branching Structure through Probabilistic Contexts,”
SIAM Journal on Computing 2007, Vol. 37, Issue 4,
pp. 977–1013, 2007.

[13] J.C. Mitchell, A. Ramanathan, A. Scedrov, and V.
Teague, “A Probabilistic Polynomial-time Process
Calculus for the Analysis of Cryptographic Proto-
cols,” Theoretical Computer Science 353, pp. 118-
164, 2006.

[14] V. Shoup, “Sequences of games: a tool for tam-
ing complexity in security proofs,” Cryptology ePrint
Archive, Report 2004/332, 2004.

[15] C. Sprenger, M. Backes, D. Basin, B. Pfitzmann,
and M. Waidner, “Cryptographically Sound Theorem
Proving,” 19th IEEE Computer Security Foundations
Workshop - CSFW 2006, pp. 153-166, 2006.

