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Abstract

We develop a statistical method for discriminating and classifying multivariate non-
stationary signals. It is assumed that the processes that generate the signals are char-
acterized by their time-evolving spectral matrix - a description of the dynamic con-
nectivity between the time series components. Here, we address two major challenges:
first, data massiveness and second, the poor conditioning that leads to numerically
unstable estimates of the spectral matrix. We use the SLEX library (collection bases
functions consisting of localized Fourier waveforms) to extract the best set of time-
frequency features that best separate classes of time series. The SLEX approach yield
readily interpretable results since it is a time-dependent analogue of Fourier approach
to stationary time series. Moreover, it uses computationally efficient algorithms to en-
able handling of large data sets. We estimate the SLEX spectral matrix by shrinking
the initial SLEX periodogram matrix estimator towards the identity matrix. The re-
sulting shrinkage estimator has lower mean-squared error than the classical smoothed
periodogram matrix. A leave-one out analysis for predicting motor intent (left vs. right
movement) using electroencephalograms indicates that the proposed SLEX-Shrinkage
method gives robust estimates of the evolutionary spectral matrix and good classifica-
tion results.
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1 Introduction

Our goal is to develop a statistical method for discriminating and classifying multivariate

non-stationary signals. This project is motivated by a neuroscience experiment (conducted

at the laboratory of Jerome Sanes, Brown University) to study brain network that medi-

ate voluntary movement. In this experiment, participants performed a simple voluntary

movement that required quick displacements of a hand-held joystick from a central position

either to the right or to the left. Visual cues appearing on a computer monitor provided

timing instructions to the participants Here, we develop a method to discriminate between

presumed brain connectivity occurring during leftward and rightward movements, aiming to

predict intentions to move by assessing the information evident in an electroencephalogram

(EEG) time-series recorded contemporary with the voluntary movements. From a montage

of 64 scalp electrodes, we identified a set of 11 EEG sensors that appeared to have the most

relevance to the voluntary movements (Figure 1). Figure 3 illustrates time-amplitude plots

of the EEG obtained from a representative participant during leftward (Figure 3, left) and

rightward (Figure 3, right) joystick movements.

Discrimination and classification of time series has a long history. Shumway and Unger

(1974) and Shumway (1982) developed the framework for discrimination in time series that

has been adopted in most subsequent work. Shumway and colleagues applied their work to

discriminate between different seismic activities (e.g., earthquake vs explosion). Kakizawa et

al. (1998) concatenated the P-arrival and S-phases of the seismic signals into a bivariate time

series and developed classification and discrimination methods for stationary multivariate

time series.

For non-stationary time series, Shumway (2003) developed an information-theoretic clas-

sification method that treats the time series as realizations of the Dahlhaus model of locally

stationary processes (see Dahlhaus 1997; 2001). Sakiyama and Taniguchi (2004) showed

consistency of the classification procedure using the Kullback-Leibler criterion. Fryzlewicz
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Figure 1: EEG scalp topography. The 11 channels are as follows: left frontal central
(FC3, FC5), right frontal central (FC4, FC6), left central (C3), right central (C4), left
parietal (P3), right parietal (P4), left occipital (O1), right occipital (O2) and central occip-
ital (Oz, not in picture, between O1 and O2).

and Ombao (2009) developed a consistent classification method using stochastic wavelet rep-

resentations. Saito (1994) developed another approach that selects a basis (from a collection

of bases in a library) that gives maximal separation between classes of time series. There

are a number of localized libraries that could be used for discriminating non-stationary time

series. For example, one can use the localized trigonometric library, wavelet packets or the

SLEX library (smoothed localized complex exponentials) which was developed in Ombao,

Raz, von Sachs and Malow (2001) for analyzing non-stationary time series. Recently, Huang,

Ombao and Stoffer (2004), inspired by the ideas in Saito (1994) and Shumway (1982), devel-

oped a procedure using the SLEX library to select the best time-frequency spectral features

for discriminating between classes of univariate non-stationary time series.

Here, we address two major challenges with classifying and predicting multivariate non-

stationary time series (such as EEGs). First, we note that most EEG datasets are massive

and require computationally efficient transforms that can capture localized features of the
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data. Second, estimates of the multivariate spectra can be poorly conditioned (i.e., the

ratio of the maximum to the minimum eigenvalue can be extremely large) which could

be due to strong cross-correlation between channels. Consequently, inverting the spectral

matrix estimates may give imprecise results thereby adversely impacting predictive ability

especially when using information-based classification criteria such as the Chernoff criterion

in Equation (2.4).

A standard approach to handling highly multi-collinear data entails reducing data di-

mensionality via, for example, principal components analysis (PCA). Though appealing and

popular in many applications, PCA may not be ideal in discrimination and classification ap-

plications since the eigenvalue-eigenvector decomposition of the spectral matrix is invariant

to (spatial) permutations of the time series. Consider, for example, a simple situation where

a pair of channels R1 and R2 (located on the right of the scalp topography) have a cross-

dependence structure during the right-movement condition that is identical to that between

a pair L1 and L2 on the left during the left movement condition. PCA cannot distinguish

the location of the sources thereby rendering it ineffective to discriminating between the

functional connectivity occurring during the leftward and rightward-movements conditions.

Another approach to regularize the estimators is to smooth the periodogram matrices

across frequency using a larger bandwidth. The smoothing approach is discussed in Parzen

(1961) for univariate time series and Brillinger (1981) for multivariate time series. However,

this approach does not guarantee that the resulting spectral matrix estimates will have good

condition numbers. Moreover, the spectral estimates will have poor frequency resolution

that can dull the predictive ability especially when the differences between conditions are

present in very narrow frequency bands.

Here, we develop a novel classification and discrimination method for multivariate time

series using the SLEX library to extract the localized cross-dependence structure (brain con-

nectivity) and the shrinkage method to estimate the spectral density matrix. The spectral
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shrinkage estimator is a linear combination of a mildly-smoothed periodogram matrix and

the identity matrix. The spectral shrinkage procedure is developed in Böhm (2008) and

Böhm and von Sachs (2009) for the stationary case. In this paper, we extend this procedure

to the non-stationary setting. The shrunken spectral estimator retains excellent frequency

resolution, has good condition numbers and is shown to be superior to the standard pe-

riodogram smoother in terms of the squared-error risk. Finally, as demonstrated in the

simulation studies in this paper, the shrinkage approach gives excellent classification rates.

The specific features of our approach are as follows. First, we use the SLEX (Smooth

Localized Complex EXponentials) library as a tool for extracting the time localized features

of the non-stationary signals. Second, we estimate the time-varying spectrum via the the

shrinkage procedure (i.e., the slightly smoothed periodogram matrix is shrunk towards the

identity matrix). In this paper, we employ the Chernoff criterion (see Equation 2.4) that

measures the divergence between the observed time series and the classes via the spectral

density matrix. Furthermore, this criterion requires the computation of the inverse and

the determinant of the spectral matrices. Naturally, poorly-conditioned estimates result

in unreliable Chernoff divergence values and, as demonstrated in this paper, can lead to

unacceptably high misclassification rates.

2 The SLEX-Shrinkage Method

We consider the following set up. Training data for each of conditions 1 and 2 consists of

N number of P -channel time series each of length T . The number of trials N need not be

identical for the two conditions but we make them to be so only for ease in presenting ideas.

These time series from the two conditions are denoted, respectively, by

• Xn(t) = [Xn1(t), . . . , XnP (t)]′; n = 1, . . . , N ; t = 1, . . . , T ;

• Yn(t) = [Yn1(t), . . . , YnP (t)]′; n = 1, . . . , N ; t = 1, . . . , T .
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Figure 2: Left: averaged time series (across N = 100 trials) for the left condition at each of
the 11 channel locations. Right: averaged time series (across N = 100 trials) for the right
condition

Figure 3: Left: representative 11-channel EEG recorded from one trial for the left condition.
Right: representative 11-channel EEG recorded from one trial for the right condition.
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Suppose that the data generated under these two conditions are modeled as zero mean mul-

tivariate non-stationary processes which are characterized by their spectral matrix denoted,

respectively, as f1(u, ω) and f2(u, ω). The first goal is to identify the time-frequency features

(auto-spectra, cross-spectra, coherence) that can best separate the two conditions. We shall

use the SLEX library to extract the localized cross-dependence features and then find the set

of time blocks and frequencies that give the largest separation between f1(u, ω) and f2(u, ω).

The second goal is to use these features to classify a future signal whose group membership

(or condition under which the signal was generated) is not known. We first provide a short

discussion on the two elements of our proposed method, namely the SLEX library and the

spectral shrinkage estimation method.

2.1 Brief Overview of the SLEX library

2.1.1 The SLEX waveforms.

The Fourier waveforms {exp(i2πωu), ω ∈ (−1/2, 1/2)} may not adequately represent pro-

cesses whose spectral properties evolve with time. A popular remedy uses the windowed

Fourier function (Daubechies, 1992) which is of the form φF (u) = Ψ(u) exp(i2πωu) where

Ψ(.) is a taper with compact support. Due to the Balian-Low theorem, these windowed

Fourier functions are localized in time but they cannot be simultaneously smooth and orthog-

onal (Wickerhauser, 1994). To overcome the Balian-Low obstruction, a projection operator

(rather than a taper) is applied to the Fourier waveforms resulting in localized orthonormal

Fourier waveforms that we label as SLEX. The localized generalization of the Fourier func-

tions is the SLEX functions. A SLEX waveform on time block b, denoted φb,ω(u), has the

form

φb,ω(u) = Ψ+(b) exp(i2πωu) + Ψ−(b) exp(−i2πωu) (2.1)

where ω ∈ (−1/2, 1/2] and u ∈ [−η, 1 + η] where 0 < η < 0.5. The windows Ψ+ and Ψ− are

constructed by using rising cut-off functions. These windows come in pairs, i.e., once Ψ+ is
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specified, Ψ− is determined. A plot of the SLEX waveform is given in Figure 4. The SLEX

waveforms (within each basis) are orthogonal. This property is important for analyzing

massive time series because it is mathematically elegant, aids in the theoretical development

of a model, preserves the energy of the time series and allows the use of computationally

efficient tools like the best basis algorithm (BBA) of Coifman and Wickerhauser (1992).

Thus, it facilitates the analysis of high dimensional massive data sets.

2.1.2 The SLEX library of bases.

The SLEX library is a collection of bases; each basis consists of the SLEX waveforms which

are localized, thus they are able to capture the local spectral features of the time series.

The SLEX library allows a flexible and rich representation the observed time series. To

illustrate these ideas, we construct a SLEX library in Figure 4 with level J = 2. There

are 7 dyadic blocks in this library. These are: S(0, 0) which covers the entire time series;

S(1, 0) and S(1, 1) which are the two half blocks and S(2, b), b = 0, 1, 2, 3 which are the

four quarter blocks. Note that in general, for each resolution level j = 0, 1, . . . , J , there 2j

blocks each having length T/2j. We will adopt the notation S(j, b) to denote the block b on

level j where b = 0, 1, . . . , 2j − 1. There are five possible basis from this particular SLEX

library and one of them is composed of blocks S(1, 0), S(2, 2), S(2, 3) which correspond to the

shaded blocks in Figure 4. We note that each basis is allowed to have multi-resolution scales,

i.e., a basis can have time blocks with different lengths. This is ideal for processes whose

regimes of stationarity have lengths that also vary with time. In choosing the finest time

scale (or deepest level) of the transform J , the statistician will need some advice from the

scientific expert. For example, neurologists can give some guidance regarding an appropriate

time resolution of EEGs. In general, the blocks should be small enough so that we can be

confident that the time series is stationary in these blocks. At the same time, the blocks

should not be smaller than what is necessary in order to control the variance of the spectral

estimator. Note that the SLEX allows for more general segmentation of the time series. For
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Figure 4: Top: A SLEX waveform localized at time block [0.25, 0.50] and oscillating at
frequency of two cycles over the time block. Bottom: A SLEX library with level J = 2. The
shaded blocks represent one basis from the SLEX library.
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simplicity and computational efficiency, we adopt the dyadic segmentation.

2.1.3 Computing the SLEX transform.

The SLEX transform is a collection of coefficients corresponding to the SLEX waveforms in

the SLEX library. We will demonstrate that the SLEX coefficients can be computed using

the fast Fourier transform (FFT). Let X`(t) be one component of a P -variate time series

X(t) of length T . The SLEX coefficients (corresponding to X`(t)) on block S(j, b) are defined

as:

d`j,b(ωk) = (Mj)
−1/2

∑
t

X`(t)φj,b,ωk,t

= (Mj)
−1/2

∑
t

Ψ+(
t− α0

|S| )X`(t) exp[−i2πωk(t− α0)] +

(Mj)
−1/2

∑
t

Ψ−(
t− α0

|S| )X`(t) exp[i2πωk(t− α0)]

where Mj = |S(j, b)| = T/2j and φj,b,ωk,t = φS(j,b),ωk,t is the SLEX basis vector on block

S(j, b) oscillating at frequency ωk = k/Mj where k = −Mj/2 + 1, . . . ,Mj/2. We also note

the “edge” blocks in each level j, namely S(j, 0) and S(j, 2j − 1), are padded with zeros

when we compute the SLEX transform. Finally, by using the FFT, the number of operations

needed to compute the SLEX transform has order of magnitude O[T (log2 T )2].

2.1.4 Some Applications.

The SLEX library has been used in a number of methods for non-stationary time series

including evolutionary spectral and coherence estimation (Ombao, Raz, von Sachs and Malow

(2001)); stochastic representation of non-stationary time series (Ombao, Raz, von Sachs and

Guo (2002)); classification and discrimination (Huang, Ombao and Stoffer, 2004) and time-

dependent principal components analysis (Ombao, von Sachs and Guo, 2005). In this paper,

we will utilize SLEX, in conjunction with the shrinkage method, to classify multi-channel

non-stationary time series.
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2.2 Overview of the Shrinkage Procedure for Spectral Estimation

The possibility of the data being highly multi-collinear makes it necessary to regularize the

estimate of the SLEX spectrum in order to permit matrix inversion without running into

numerical instability. One possible solution could be to reduce the overall dimensionality of

the data using PCA, as proposed in Ombao, von Sachs and Guo (2005). However, there are

a number of disadvantages in using PCA. First, the choice of the number of dimensions to

take into account is an arbitrary one. Second, with a non-stationary signal, a sensible choice

of dimension may even vary over different time points or, worse, between different instances

of the training data set. Third, as already discussed in the introduction, PCA abstracts from

the spatial structure of the data, which is not desirable here because the cross dimensional

stochastic dependence may be critical for discrimination.

In this paper, we follow the shrinkage procedure for spectral estimation. The philosophy

behind shrinkage is to regularize a possibly badly conditioned, matrix-valued estimator by

constructing a new estimator which is a linear combination of the estimator and a well

conditioned matrix. In this setting, where we make no model assumptions on the data, the

identity matrix is used as the latter and referred to as the shrinkage target.

2.2.1 Shrinkage for Stationary Time Series

We summarize the basic ideas on the shrinkage procedure for spectral estimation for sta-

tionary time series. For deeper insights and technical details, the readers are referred to

Böhm (2008) and Böhm and von Sachs (2009). Let X(t) = [X1(t), . . . , XP (t)]′, t = 1, . . . , T ,

be a stationary time series with spectral density matrix f(ω). Define the vector of Fourier

coefficients to be dT (ω) = [d1(ω), . . . , dP (ω)]′ where

dp(ω) =
1√
T

T∑
t=1

Xp(t) exp(−i2πωt), p = 1, . . . , P.

The Fourier P × P periodogram matrix is

IT (ω) = dT (ω)d∗T (ω).
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The classical estimator is the smoothed periodogram (with span mT ) which we denote as

f̃T (ω) =
1

mT

(mT−1)/2∑

k=−(mT−1)/2

IT (ω + ωk) where ωk = k/T.

Call the elements of f̃T (ω) to be f̃pq,T (ω). Define µ̂T (ω) =
1

P

P∑
p=1

f̃pp,T (ω) and 1 to be the

P × P identity matrix. The shrinkage estimator for f(ω) takes the form

f̂T (ω) =
β̂2
T (ω)

δ̂2
T (ω)

µ̂T (ω)1 +
α̂2
T (ω)

δ̂2
T (ω)

f̃T (ω) (2.2)

where the weights are as follows.

First, denote ‖ A ‖2 to be the Hilbert-Schmidt norm of the matrix A (i.e.,

‖ A ‖2=
1

P
trace(AA′)). Next, define

δ̂2
T (ω) =‖ f̃T (ω)− µ̂T (ω)1 ‖2

which is a measure of empirical divergence (i.e., Hilbert-Schmidt norm) between the classical

smoothed periodogram and the scaled identity matrix. Define β
2

T (ω) to be

β
2

T (ω) =
1

m2
T

(mT−1)/2∑

k=−(mT−1)/2

‖ IT (ω + ωk)− f̃T (ω) ‖2 .

Finally, β̂2
T (ω) and α̂2

T (ω) are

β̂2
T (ω) = min{β2

T (ω), δ̂2
T (ω)}

α̂2
T (ω) = δ̂2

T (ω)− β̂2
T (ω).

2.2.2 Extension of Shrinkage Procedure for Non-Stationary Time Series

For a given non-stationary time series, the shrinkage estimator of the SLEX spectrum at time

block b and frequency ωk is derived by extending the result above. Let IT (b, k) be the SLEX

periodogram at block b and frequency index k. Denote the smoothed SLEX periodogram to

be

f̃T (b, ωk) =
1

mT

(mT−1)/2∑

`=−(mT−1)/2

IT (b, k + `)
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and whose elements are denoted f̃pq,T (b, ωk). Denote

µ̂T (b, ωk) =
1

P

P∑
p=1

f̃pp,T (b, ωk).

The shrinkage estimator for f(b, ωk) takes the form

f̂T (b, ωk) =
β̂2
T (b, ωk)

δ̂2
T (b, ωk)

µ̂T (b, ωk)1 +
α̂2
T (b, ωk)

δ̂2
T (b, ωk)

f̃T (b, ωk) (2.3)

where the weights are derived analogously as follows:

δ̂2
T (b, ωk) = ‖ f̃T (b, ωk)− µ̂T (b, ωk)1 ‖2

β̂2
T (b, ωk) = min{β2

T (b, ωk), δ̂
2
T (b, ωk)}

α̂2
T (b, ωk) = δ̂2

T (b, ωk)− β̂2
T (b, ωk)

where

β
2

T (b, ωk) =
1

m2
T

(mT−1)/2∑

`=−(mT−1)/2

‖ IT (b, k + `)− f̃T (b, ωk) ‖2 .

2.3 Discussion

Böhm and von Sachs (2009) use a double-asymptotic framework is used to derive the mean-

squared error of the shrinkage estimator of the spectrum of a stationary time series. The

benchmark is the smoothed periodogram which is a consistent estimator of the spectral

density matrix under mixing conditions in Brillinger (1981). However, the fact that the

smoothed periodogram matrix is consistent does not mean that it has good finite sample

properties. As a matter of fact, it is shown to be suboptimal with respect to L2 risk,

compared to a novel shrinkage estimator. In addition, the averaged periodogram has a

bad condition number unless the smoothing span is much larger than the dimensionality.

However, the smoothing span cannot be chosen to be arbitrarily large without losing high

frequency resolution which can be problematic when the spectra of two processes are different

at very narrow frequency band(s).
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The new shrinkage estimator is shown, in the stationary case, to have asymptotically

minimal L2 risk in a class of estimators that is chosen to compensate for the bias of the

eigenvalues of the averaged periodogram. Thus, the shrinkage estimator is not only more

precise, but at the same time is dramatically superior in terms of condition number. As a

matter of fact, the shrinkage estimator remains well-conditioned even when the dimension-

ality exceeds the smoothing span. Finally, intensive Monte Carlo studies (in Böhm, 2008)

indicate that it is not only asymptotically superior, but that, even for very small sample size,

it works far better than the averaged periodogram. This makes the shrinkage estimator an

ideal candidate for the analysis of possibly high frequency, non-stationary multivariate time

series.

2.4 The Algorithm of the SLEX-Shrinkage Method

Suppose that we have two multivariate non-stationary processes which are characterized by

the spectra denoted as f1(u, ω) and f2(u, ω) where f g(u, ω) is the P×P time-varying spectral

density matrix of condition g. As stated, we need to identify time-localized spectral (auto-

spectral, cross-spectral and coherence) features that best separate the two conditions. The

second is to use these discriminant features to classify a future multivariate time series.

Goal 1: Feature Extraction and Selection.

Step 1.1 Compute the spectral matrix estimate at time-block and frequency-index (b, k) .

Let Xn(t) = [Xn1(t), . . . , XnP (t)]′; n = 1, . . . , N ; t = 1, . . . , T ; be the multivariate time

series recorded from N trials for condition 1. The SLEX-shrinkage spectral estimate at time

block b and frequency ωk is

f̂1(b, ωk) =
1

N

N∑
n=1

f̂1
n(b, ωk)
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where f̂1
n(b, ωk) is the SLEX-shrinkage spectral estimate for the n-th trial of condition 1.

Let Yn(t) = [Yn1(t), . . . , YnP (t)]′; n = 1, . . . , N ; t = 1, . . . , T ; be the multivariate time

series recorded from N trials for condition 2. The SLEX-shrinkage spectral estimate at time

block b and frequency ωk is

f̂2(b, ωk) =
1

N

N∑
n=1

f̂2
n(b, ωk)

where f̂2
n(b, ωk) is the SLEX-shrinkage spectral estimate for the n-th trial of condition 2.

Step 1.2. Compute the Chernoff divergence between the two conditions at time-block b and

frequency ωk:

D(b, ωk) = ln
|λf̂1(b, ωk) + (1− λ)f̂2(b, ωk)|

|̂f2(b, ωk)|
− λ ln

|̂f1(b, ωk)|
|̂f2(b, ωk)|

(2.4)

where |A| denotes the determinant of the matrix A and λ ∈ (0, 1) is the regularization

parameter . Thus, the total Chernoff divergence at time block b is

D(b) =

Mb∑

k=1

D(b, ωk)

where Mb is the number of coefficients in this block.

Step 1.3. Select the most discriminant basis.

The choice of the best discriminant basis is accomplished via the best basis algorithm

(BBA) of Coifman and Wickerhauser (1992) which is a bottom-up algorithm. A parent block

S(b, j) is selected in favor of the children blocks S(2b, j+ 1)
⋃
S(2b+ 1, j+ 1) if the Chernoff

divergence at the parent block exceeds the sum of the divergence at the children blocks.

Denote the best basis to be the collection of blocks which we denote by B.

Goal 2: Classification.

Consider a new time vector-valued series to be Z = [Z(1), . . . ,Z(T )] with estimated

spectral matrix f̂Z. The goal is to classify Z to the condition (either 1 or 2) to which it
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is least dissimilar according to the Chernoff divergence criterion. The Chernoff divergence

between Z and conditions 1 and 2, denoted D1 and D2 respectively, is

D1 =
∑

b∈B

∑

k

ln
|λf̂1(b, ωk) + (1− λ)f̂Z(b, ωk)|

|̂fZ(b, ωk)|
− α ln

|̂f1(b, ωk)|
|̂fZ(b, ωk)|

D2 =
∑

b∈B

∑

k

ln
|λf̂2(b, ωk) + (1− λ)f̂Z(b, ωk)|

|̂fZ(b, ωk)|
− λ ln

|̂f2(b, ωk)|
|̂fZ(b, ωk)|

.

If D1 > D2 then we classify Z into condition 2. Otherwise, it is classified to condition 1. In

our analysis, we used λ = 0.50.

3 Data Analysis

Electroencephalograms (EEGs) were recorded in an experiment for which five participants

moved the joystick from a central position to the right when a cursor flashed on the right side

of a computer monitor (or left, accordingly). There were N = 100 trials for each condition

(right and left) and the EEG trace for each trial is a 500 millisecond interval with time 0

as the stimulus onset. In our analysis, we focused on the P = 11 channels identified from

the standard 10-20 EEG topography that are believed to be most highly involved in brain

motor networks engaged in visual-motor actions, namely,

• On the left side of the scalp topography: P3, C3, FC3, FC5

• On the right side of the scalp topography: P4, C4, FC4, FC5

• Occipital channels: O1, Oz and O2.

Our analysis showed that difference between the right and left conditions is best captured

by the partial coherence between C3 and FC3 channels at the alpha frequency band (8− 12

Hz) which is significantly larger in magnitude for the left condition than the right condition

(see Figure 5). This difference appears to be consistent across all five participants. We eval-

uated the predictive ability of the best discriminant features via a leave-one-out procedure,
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Figure 5: The most highly discriminant network feature is the alpha-band (8−12 Hertz) co-
herence between the C3 and FC3 channels which is significantly greater for the left condition
than the right condition.

comparing the SLEX with vs. without shrinkage procedures. The obtained classification

rates correctly identifying leftward or rightward movements are shown in the table below.

Participant With Shrinkage (%) Without Shrinkage (%)
1 71 65
2 72 67
3 74 66
4 74 66
5 68 71

The results are very promising - shrinkage in general gives a better classification rate

than non-shrinkage. The SLEX-Shrinkage method discriminates between the two conditions

through their spectral matrices. For zero mean Gaussian processes, all information in the

time series are contained in their spectra. For non-Gaussian processes, it is necessary to

investigate differences in the higher order moments.
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4 Conclusion

We developed a statistical method for discrimination and classification of multivariate non-

stationary signals. We addressed two major challenges namely massiveness of typical data

and the poor conditioning which leads to numerically instable estimates of the spectral

matrix. We used the SLEX library to extract the best set of time-frequency features that

best separate classes of time series. We estimate the SLEX spectral matrix by shrinking

the initial SLEX periodogram matrix estimator towards the identity matrix. The resulting

shrinkage estimator is superior to (i.e., has mean-squared error than) the classical smoothed

periodogram matrix and is demonstrated in this paper to produce better correct classification

rates.
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