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Introduction

I n this thesis we develop identification and non parametric estimation tech-
niques in the context of statistical ill-posed inverse problems with unknown

operator. Non parametric statistics is concerned with the estimation of an
unknown function g in a functional class which cannot be indexed by a finite-
dimensional parameter space. Typical non parametric estimation problems
arise in density deconvolution and regression. An introduction to classical non
parametric estimation methods and their statistical properties is provided in
the textbook by Tsybakov (2004).
An inverse problem arises if we are not interested in the function g itself, but

in the solution f of the equation g = Tf , where T denotes some transform.
If g and T are known, the inverse problem may be solved by numerical meth-
ods. In contrast to this, we are going to deal with statistical inverse problems
with unknown operator. This means that in the settings we are going to con-
sider, both g and T are unknown and need to be estimated in the context of a
statistical model.
We organize this introduction as follows. After a brief paragraph on non

parametric estimation, we give some background information on inverse prob-
lems in a deterministic context before discussing statistical inverse problems
in general. Then, we explain the objectives we will be guided by throughout
this thesis, and we present the particular models treated in Chapters 1 to 4.
Finally, we give a résumé of our contributions.

Non parametric estimation
Non parametric estimation is concerned with the reconstruction of an unknown
function belonging to some infinite-dimensional vector space G, based for exam-
ple on an independent and identically distributed (iid.) sample from a random
variable Y . More precisely, we will denote by Y a real valued random variable
with a probability distribution P (abbreviated by Y ∼ P ) eventually belonging
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2 Introduction

to a collection PG = {Pg | g ∈ G} indexed by G. Such a collection is called
a statistical model. The model is said to be correctly specified if there exists
g ∈ G such that Y ∼ Pg. It is further called identifiable if Pg = Pg′ implies
g = g′ for any elements Pg and Pg′ of PG. The function g could be a proba-
bility density or a regression function, for example. Classical non parametric
estimation methods are kernel estimators (e.g. Rosenblatt, 1956) or estimation
by projection (e.g. Tsybakov, 2004).

Background: Inverse problems
Suppose now that we are not actually interested in finding g ∈ G itself, but a
function f belonging to another vector space H, given implicitly by the rela-
tion g = Tf , where T denotes some transform. The reconstruction of f from
an approximation of g is called an inverse problem, because it necessitates the
inversion of the operation T . According to Hadamard (1902), an inverse prob-
lem g = Tf is called well-posed if the following three conditions are satisfied;
otherwise it is called ill-posed. In what follows, we will suppose that H and G
are Hilbert spaces with inner products 〈·, ·〉H, 〈·, ·〉G and associated norms ‖·‖H
and ‖·‖G, respectively.

Condition 1: Existence of a solution Firstly, a solution must exist, meaning
that g belongs to the image of T in G. If this is not the case, one can consider
the least squares solution if it exists. It is defined as the minimizer of the
distance ‖g − Tf‖G over all f ∈ H.

Condition 2: Uniqueness of the solution Secondly, the solution has to be
unique, which is the case if and only if T is injective. If this condition is
violated, one cannot find a well-defined solution f even if g is fully known or
can be approximated with arbitrarily high precision. However, the operator
may be injective on subsets of the space H, and uniqueness can be recovered by
restricting the class of potential solutions f to such a subset. In order not to
be too restrictive, it is desirable to find classes which on the one hand include
a large variety of possible solutions and on the other hand can be defined by
conditions which one can verify in practice.

Condition 3: Continuous inverse operator Hadamard’s third condition de-
mands that the solution depend on g in a continuous way, or in other words
that the inverse operator T−1 be continuous. Suppose that we do not know g
exactly, but that for any given δ > 0, we can compute an approximation gδ

satisfying ‖g − gδ‖G < δ. If the inverse problem is well-posed, this enables us
to approximate the solution f as well. Indeed, by the definition of continuity,
for every ε > 0 there is a δ > 0 such that ‖T−1gδ − f‖H < ε. If however T−1

is discontinuous, we cannot control the approximation error in H.
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Example Let us illustrate Hadamard’s conditions with an example. Denote by
L2[0, 1] the space of square integrable complex-valued functions on the unit in-
terval with respect to the Lebesgue measure λ, endowed with the inner product
〈f1, f2〉L2 =

∫
[0,1] f1f2 dλ. We consider the quotient spaces H = G = L2[0, 1] :=

L2[0, 1] / .= with respect to the equivalence relation f1
.= f2 which is true if

and only if f1 = f2 almost everywhere with respect to the Lebesgue measure.
As the integral is unique up to a change of the integrand on a null set, the in-
ner product of the space L2[0, 1] can also be written 〈f1, f2〉L2 =

∫
[0,1] f1f2 dλ,

and by slight abuse of language we use the term «function» for the elements
of L2[0, 1] as well.
Define now a linear operator from H to G by g(x) = (Tf)(x) =

∫ x
0 f(t)dt.

Its inverse is the differential operator, that is T−1g = g ′. Obviously, a unique
solution to the equation g = Tf exists if g is a differentiable function. Thus,
the first and the second Hadamard conditions are satisfied if we restrict the
image space G to a class of differentiable functions.
Consider Hadamard’s third condition and let us illustrate how it depends on

the topological structures of the particular spaces H and G under consideration.
An important example of differentiability classes is the Sobolev class W per

p of
periodic functions on [0, 1]. It contains the p-times differentiable periodic func-
tions whose first (p−1) derivatives are absolutely continuous. It can be written
as

W per
p =

{
h ∈ L2[0, 1]

∣∣∣∣ ‖h‖2Wp
:=
∑
j∈Z
|j|2p 〈h, ej〉2L2 <∞

}
,

where {ej | j ∈ Z} denotes the exponential basis of L2[0, 1] which is defined by
ej(x) = exp(−i2πjx) for all j ∈ Z and x ∈ [0, 1]. The p-th derivative g(p) of a
p-times differentiable function g ∈ L2[0, 1] can be written in this basis as

g(p) =
∑
j∈Z

(2iπj)p [g]j ej ,

where [g]j := 〈g, ej〉L2 denotes the j-th coefficient of g (e.g. Neubauer, 1988b).
It follows that for a differentiable g ∈ L2[0, 1], we have

‖T−1g‖2L2 =
∑
j∈Z

4π2j2 |[g]j |2 = 4π2‖g‖2W1
.

This implies immediately that the inverse T−1 is continuous if we equip H
with the L2 norm and G with the W1 norm. If we consider the L2 norm in
both spaces, however, T−1 is discontinuous. Indeed, the sequence of functions
gn := n−1en in G clearly converges to zero in the L2 norm as n tends to infinity,
but we have ‖T−1gn‖2L2 = 4π2 for all n ∈ N.
This example shows in particular that the well-posedness of an inverse prob-

lem actually depends on the topological structure of the spaces H and G.
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Regularization
Suppose that we want to evaluate the approximation of the solution of an
inverse problem by means of the integrated squared error. In this case, we have
no alternative to the L2 structure of the spaces. If the inverse operator T−1

is not continuous with respect to the L2 norms, one may regularize it, that is,
approximate it by a continuous operator. The monograph by Engl et al. (1996)
gives an introduction to the regularization of inverse problems and provides a
collection of different techniques. Let us mention two examples here.

Tikhonov regularization Given an inverse problem g = Tf and an approxi-
mation gδ of g with ‖g − gδ‖G < δ, the regularized solution is defined as the
minimizer of the Tikhonov functional, that is

fδα := argmin
f∈H

{
‖Tf − gδ‖2G + α ‖f‖2H

}
for some α > 0 which is called regularization parameter. The role of this pa-
rameter is crucial. On the one hand, the vulnerability of the approximation fδα
to perturbations of g decreases as α increases. On the other hand, if consider-
ing the true g instead of gδ in the Tikhonov functional, the approximation will
deteriorate with increasing α. This systematic error is the price for stability.
See Engl et al. (1996) for a discussion of how α has to be chosen subject to δ
such that fδα converges to the solution as δ tends to zero.
In certain cases, the Tikhonov regularization has an alternative, more explicit

representation. Suppose that the operator T is compact and that its image is
infinite-dimensional, which implies that T−1 is not continuous. Denote the
adjoint of T by T ∗. Then, the symmetric operator T ∗T admits a spectral
decomposition. This means that there is an orthonormal basis of eigenfunctions
{uj} ⊂ H and a corresponding sequence of eigenvalues {τ2

j } such that T ∗Tuj =
τ2
j uj for all j. The eigenvalues tend to zero as j tends to infinity. It is easy
to verify that the definition vj := Tuj ‖Tuj‖−1

G yields an orthonormal system
in G. Furthermore, we have Tuj = τjvj and T ∗vj = τjuj . The collection
({uj}, {vj}, τj) is called the singular value decomposition of the operator T .
We deduce that the solution of the inverse problem g = Tf can be written as

f =
∞∑
j=1

1
τj

[g]j uj .

Note that the sequence τ−1
j is unbounded. Thus, small perturbations of the

coefficients [g]j = 〈g, vj〉G are greatly amplified, and replacing g with the ap-
proximation gδ from above, we may end up far off the true solution. This
mechanism reflects the discontinuity of the inverse operator. In this situation,
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Tikhonov’s regularization can be written as

fδα =
∞∑
j=1

τj
τ2
j + α

[gδ]j uj , (1)

where α > 0 is the regularization parameter that appears in the Tikhonov
functional. Due to the regularization, errors in the j-th coefficient of g are only
amplified by the factor τj/(τ2

j +α) which remains bounded as j tends to infinity.
Heuristically speaking, we have replaced T−1 with a continuous operator T−1

α

described by (1).

Galerkin solution Another regularization approach consists in approximating
the solution f of the inverse problem g = Tf in a finite dimensional subspaceHk
of H generated by linearly independent vectors {w1, . . . , wk}. The Galerkin
solution is defined as

fδk := argmin
f∈Hk

‖Tf − gδ‖G,

where gδ denotes the approximation of g from above. The dimension k acts as
the regularization parameter. Like the Tikhonov regularization, the Galerkin
solution is defined implicitly. However, if we choose the elements wj generating
the spaceHk be the eigenfunctions uj of T ∗T with corresponding eigenvalues τ2

j ,
then the Galerkin solution takes the explicit form

fδk =
k∑
j=1

1
τj

[gδ]j uj .

Of course, this requires that the eigenfunctions of T ∗T are known. For example,
the eigenfunctions of a convolution operator on a compact space are given by
the exponential basis. In many situations, however, no information about the
eigenfunctions is available. Obviously, the restriction to the finite-dimensional
space causes a systematic approximation error while stabilizing the Galerkin
solution at the same time, so the same remarks as in the case of the Tikhonov
regularization hold in regard to the choice of the regularization parameter.

Statistical ill-posed inverse problems with unknown operator
In a classical statistical inverse problem, the left hand side g is estimated by
some ĝ in the framework of a specific statistical model {Pg | g ∈ G}. Suppose
that this model is correctly specified and identified with respect to the func-
tion g. If the first two Hadamard conditions are satisfied, that is if T is injective
and g belongs to its image, then the model {PTf | f ∈ H} is obviously correctly
specified and identified for the solution f . We will assume this throughout this
work.
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Consider Hadamard’s third condition. If it is satisfied, that is if the inverse
operator is continuous, the natural estimator f̂ := T−1ĝ of f eventually inherits
desirable properties such as consistency or asymptotic normality from ĝ by
virtue of the delta method. Otherwise the inverse problem is ill-posed and we
need to regularize T−1. To this end, one can for instance use the regularization
methods discussed in the previous paragraph. An estimator is then obtained by
replacing the deterministic approximation gδ by the estimator ĝ. In this thesis,
we use the general Galerkin approach and its special case, the orthogonal series
estimator.

Additional problems arise when the operator T is unknown. For example, the
solution may fail to be identifiable even if the unknown operator is assumed
to be injective. Indeed, the same image g could possibly be represented by
combinations g = T1f1 = T2f2 of different solutions f1, f2 and operators T1, T2.
We will discuss two approaches of recovering identifiability in this situation.

On the one hand, we will develop identifiability conditions that involve both the
solution and the operator simultaneously. More precisely, we will assume that T
belongs to a parametric class. In a second step, we define a functional class of
possible solutions such that f is identifiable in spite of the uncertainty about
the operator. On the other hand, we will consider settings where additional
observations allow for a preliminary estimation of the operator, which also
ensures the identifiability of the solution. As far as estimation is concerned,
the methods discussed in the paragraph on regularization remain available. An
estimator of f can be constructed by replacing the approximation gδ of g and
the operator T by their respective estimates ĝ and T̂ .

Objectives of this thesis

Within the general framework of non parametric estimation in statistical inverse
problems with unknown operator, this thesis comprises four chapters treating
various specific models by technically rather different approaches. A leitmotif
of the present work lies in the development and evaluation of the proposed
methods along the thread defined by the four criteria identifiability, consistency,
minimax optimality and adaptation, which we will now discuss in more detail.

Identifiability Identifiability in the sense of injectivity of the operator T is our
minimal requirement concerning the model specification. Though, as the oper-
ator will be unknown in our models, we need further assumptions. Smoothness
conditions on f and T are a common way of dealing with this problem. How-
ever, we will also develop results allowing for identification when no information
about the solution’s smoothness is available beforehand.
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Consistency This is a minimal quality criterion for statistical estimators.
Roughly speaking, consistency means convergence of the estimator to the es-
timated object as the sample size tends to infinity: the more information is
available, the more precise should the estimate become. Consequently, there
are as many notions of consistency as there are of convergence. In a well-posed
inverse problem, the consistency of the estimator f̂ = T−1ĝ follows by the
delta method if ĝ is consistent. Being confronted with inverse problems that
are ill-posed with respect to the initial topological structures of H and G, we
will either have to regularize T−1 or to choose the notion of convergence in a
way as to ensure consistency.

Minimax One way of benchmarking the performance of a consistent esti-
mator f̂ of f is minimax theory with respect to some risk R(f, f̂ ). For
example, if H = L2, one could consider the mean integrated squared error
R(f, f̂ ) = E‖f − f̂‖2L2 . As the value of the risk depends on the target den-
sity f , one considers the supremum of the risk over a class F ⊂ H. Note that
the estimator f̂ and hence the value of R(f, f̂ ) also depend on the unknown
operator T . Therefore, we take another supremum over a class T of possible
operators. The performance of a given estimator f̂ of f with respect to the
classes F and T is then measured by its maximal risk

sup
f∈F

sup
T∈T

R(f, f̂ ).

An estimator is called minimax optimal if its maximal risk coincides, up to a
constant, with the minimax risk

inf
f̃

sup
f∈F

sup
T∈T

R(f, f̃ ),

where the infimum is taken over all possible estimators f̃ of f . In ill-posed in-
verse problems, the estimator generally depends on some regularization param-
eter as for example the dimension of the orthogonal series estimator mentioned
above. Minimax optimality of the estimator can only be achieved if this pa-
rameter is chosen in an optimal way. The optimal choice generally depends on
characteristics of both the solution and the estimator via the classes F and T .
For an introduction to minimax theory in non parametric estimation, see also
Tsybakov (2004).

Adaptation The difficulty of choosing the regularization parameter in ill-
posed statistical inverse problems can be overcome by adaptation. By adaptive,
we mean estimators which depend exclusively on the data but which are nev-
ertheless minimax optimal with respect to a wide range of classes F and T .
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Density deconvolution, frontiers, and instrumental regression
Having explained the general theoretical framework of this thesis, let us now
introduce the specific statistical models we are going to work with. More de-
tailed descriptions of the models and motivation by applications are provided
in the introductions to the respective chapters.

Density deconvolution on RRR Suppose we want to estimate non parametrically
a probability density f ∈ L2(R) of a real-valued random variable X. When an
iid. sample from f is available, the density can be estimated directly by means
of a kernel estimator, for example. We will however drop the assumption that
the available data are an exact sample from the density of interest. Instead, we
are going to suppose that we observe an sample of iid. copies of the variable

Y = X + ε. (2)

The real-valued random variable ε is supposed to be independent of X. It
models a stochastic measurement error present in the observed data and is
referred to as the error for short. Assuming that ε has a density h ∈ L2(R),
the variable Y is distributed according to the density h∗f = g ∈ L2(R), where ∗
denotes convolution, meaning that g(x) =

∫
R f(x − t)h(t)dt for all x ∈ R. In

other words, the density g of the observations is the image of the density f under
a convolution operator Th depending on the error density h. Recovering f from
the observations is hence an inverse problem. In Section 1.1 of the first chapter,
we provide a literature review of some classical and more recent estimation
methods in deconvolution models. A quite exhaustive overview can be found
in the monograph by Meister (2009).
Note that the model is correctly specified and identifiable when the error

density is known and its characteristic function is strictly positive on the whole
real line. However, we will investigate under which conditions we can obtain
identification and consistent estimation when the operator is not fully known.

Density deconvolution on the circle Again, consider the model described
by (2), but suppose that the random variables are defined on the circle instead
of the real line. Identifying the circle with the half open unit interval [0, 1), we
assume f, h ∈ L2[0, 1]. Using the floor function b·c, the model equation can
be rewritten as Y = X + ε− bX + εc and the circular convolution operator as
(Thf)(x) = g(x) =

∫
[0,1) h((x−s)−bx−sc) f(s) ds for all x ∈ [0, 1). The model

is correctly specified and identifiable when the error density h is known and its
Fourier coefficients are strictly positive. However, we will not assume any a
priori knowledge on h. Instead, we suppose that an extra sample is observed
that allows for a preliminary estimation of h. Our objective in this model is
adaptive minimax optimal estimation of f .
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Frontier estimation Interestingly, a similar deconvolution problem as in (2)
arises in the context of frontier estimation. A frontier is the boundary point
of the support of a probability distribution. In economic models, the support
boundary of a production distribution represents the maximal production out-
put that can be achieved for a given input (investment).
More precisely, suppose that a positive real output z ∈ R+ can be produced

using an input x ∈ R+ if and only if the pair (x, z) belongs to the set of
production possibilities Φ which is a subset of the quadrant R2

+. The frontier is
defined as the boundary of this set. Under appropriate assumptions on Φ, it can
be described by a continuous function ϕ mapping R+ to itself. One objective
in this model is the non parametric estimation of ϕ based on an iid. sample
from the joint in- and output (X,Z) associated to individual production units.
However, a sample from the exact production distribution may not be avail-

able. Assume for example that the input data is contaminated with a centered
normally distributed measurement error of unknown variance. This amounts to
observing an iid. sample from (Y,Z) rather than from (X,Z), where Y = X+ε
is a version of X which is subject to the independent normal error ε. This rela-
tion lets us expect that a similar deconvolution problem as above is involved in
the estimation of the frontier function ϕ, although we are not primarily inter-
ested in reconstructing the density of X. Indeed, we will see that a preliminary
step in the estimation of the boundary consists in reconstructing not the den-
sity, but the survival function of X. This can be expressed as a deconvolution
problem as well.

Instrumental regression Regression is a classical model in non parametric
statistics: the dependence of a real-valued response variable Y on a regressor
Z ∈ Rp is modeled by

Y = f(Z) + U, (3)

where f is the regression function and the random variable U the error with
zero mean. The objective is to estimate f based on an iid. sample from (Y, Z).
The classical estimation methods require that the regressor Z be stochasti-
cally independent of the error or at least that the conditional expectation of U
given Z satisfies E[U |Z] = 0. This is an assumption which does not always
hold in applications.
If Z and U are dependent, the regression function f is no longer identifiable

by the observation of (Y, Z). However, if an instrumental variable is avail-
able, identification and estimation are possible. An instrumental variable, or
instrument for short, is a random variable W ∈ Rq which is correlated to the
regressor Z on the one hand but satisfying E[U |W ] = 0 on the other hand. The
regression function f is to be estimated based on an iid. sample from (Y, Z,W ).
This is a statistical inverse problem. Indeed, taking the conditional expecta-
tion with respect to the instruments W in (3), we obtain a regression problem
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expressed by
g = E[Y |W ] = E[f(Z)|W ] = Tf,

where T denotes the conditional expectation operator. This operator is obvi-
ously determined by the joint distribution of the couple (Z,W ) which is un-
known in general. We are thus dealing with an inverse problem with unknown
operator T which has to be estimated based on the sample from (Z,W ). The
left hand side g can be estimated using the sample from the couple (Y,W ).
For a methodological overview regarding instrumental regression, we refer to
Darolles et al. (2001) and Carrasco et al. (2007).

Contributions of this thesis
To conclude the introduction, let us now summarize the results that we con-
tribute in this thesis on the subject of statistical inverse problems with unknown
operator.

Chapter 1
Identification & consistent

density deconvolution

In the framework of the density deconvolution model
on R, we assume that the error density belongs to a
parametric class. More precisely, we show our results

under the assumption that the error is normally distributed with mean zero
and unknown variance σ2, but we discuss other choices of distribution classes
that are possible as well. In this setting, we prove a sufficient condition un-
der which the solution f and the error variance σ2 are identifiable from the
observation of the noisy sample alone. The novelty of this condition lies in
its being independent of the solution’s smoothness properties – its definition
does not involve any Fourier coefficients. Instead, the condition uses an easily
interpretable property in the time domain. Finally, we propose a simultaneous
minimum contrast estimator of the solution and the error variance. We prove
its consistency by showing that the underlying inverse problem is well-posed
with respect to almost sure weak convergence. The results of this chapter have
been published in Schwarz and Van Bellegem (2010).

Chapter 2
Frontier estimation

from noisy observations

In the context of a frontier model, the purpose of this
chapter is the development of a consistent estimator of
the frontier function ϕ when the input variable is ob-

served with a centered normal measurement error. Reviewing the literature,
we show that classical frontier estimators fail to be consistent in this situation.
By solving first the underlying deconvolution problem using the techniques from
the first chapter, we are able to define a new robust frontier estimator and to
prove a sufficient condition for its consistency. The results of this chapter have
been published in Schwarz et al. (2011).
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Chapter 3
Adaptive circular

density deconvolution

In the circular density deconvolution model, we suppose
that in addition to the iid. sample of size n from Y = X+ε,
an independent iid. sample of size m from the error ε is

available. First, we develop the minimax theory for this problem by deriving
a lower bound for the maximal risk over certain density classes F and E of
possible solutions and error densities, respectively. This lower bound consists
of two terms. Each of these terms depends on one of the two sample sizes but
not on the other. In this way, the influence of the sample sizes on the difficulty
of the estimation problem is well characterized.
The circular structure of the model allows for the representation of f as a

discrete series. Therefore, it is natural to regularize the underlying inverse
problem by projection. Thus, we define an orthogonal series estimator f̂k and
show that for an appropriate choice k = k∗n, it is minimax optimal over a
wide range of classes F and E . However, k∗n depends on characteristics of the
classes F and E .
The main contribution of this chapter is the development of a fully data-

driven choice k̂ of the regularization parameter k that mimics the behavior
of k∗n. This is done using the model selection approach developed in Barron
et al. (1999). We derive an upper risk bound for the adaptive estimator f̂

k̂
and

show that it is minimax optimal over a wide range of density classes F and E
including in particular classical smoothness classes. The results of this chapter
are also available in Johannes and Schwarz (2009).

Chapter 4
Adaptive non parametric
instrumental regression

We derive the minimax rate for the non parametric in-
strumental regression problem with respect to certain
classes F and T of regression functions and conditional

expectation operators, respectively. The operator is supposed to be compact
but otherwise unknown. We define an estimator of the regression function
based on projection and additional thresholding and show that it is minimax
optimal, provided the dimension of the projection space is chosen optimally.
We are confronted with the difficulty that the optimal choice of this dimension
depends on characteristics of the classes.
This problem is solved by defining a fully data driven choice of k following the

model selection approach. In order to do so, we need to assume, however, that
the eigenbasis of the conditional expectation operator is known. We show that
the adaptive estimator is minimax optimal over classical smoothness classes.
Finally, we briefly sketch an approach to how the risk of the adaptive esti-

mator could possibly be controlled for a completely unknown operator, that is
without assuming its eigenfunctions to be known. The results of this chapter
are also available in Johannes and Schwarz (2010).
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Résumé The most important contributions of this thesis are the time-domain
identification condition for the density in a deconvolution problem on the real
line and its consistent estimation under weakest assumptions in Chapter 1; the
identification and consistent estimation of a stochastic frontier in the presence
of noise in the data in Chapter 2; a minimax theory for the circular density de-
convolution problem taking into account the two sample sizes, and an adaptive
estimator which is minimax optimal with respect to a wide range of classical
smoothness classes (Chapter 3); finally, a minimax theory for the non para-
metric instrumental regression model and, in the case where the eigenfunctions
of the operator are known, an adaptive estimator attaining minimax optimal
rates of convergence under classical smoothness assumptions.



Chapter 1

Consistent deconvolution on the real line
under partially known error distribution

A classical problem in non parametric statistics is the consistent estimation
of the distribution of some real random variable X based on a statistical

sample which is subject to an independent additive measurement error ε. For-
mally, one usually assumes iid. observations from a random variable Y = X+ε.
In the case where the cumulative distribution function (cdf) of ε is known, a
vast literature focuses on the accuracy of estimation of the cdf of X (e.g. Car-
roll and Hall, 1988; Fan, 1991). The full knowledge of the cdf of ε is a strong
assumption that one is rarely able to impose in real data analysis.
In order to deal with uncertainty about the distribution of ε, two approaches

suggest themselves: Firstly, one could consider different sampling processes
providing empirical information about the unknown distribution. This would
allow for a preliminary estimation of the error distribution before proceeding to
the estimation of the target density itself. Secondly, one may restrict the sets
of possible distributions of X and ε in a way that allows for identifiability even
in the case where only the contaminated sample is observed. In this chapter,
we proceed according to the second approach.
This chapter is organized as follows: We begin with a literature review on

the density deconvolution problem. First, we consider the case of a known
error distribution, then the case with incertainty about this distribution. In
particular, we discuss the two aforementioned approaches to dealing with this
uncertainty. At the end of the review, we outline our own approach, compar-
ing it to methods available in the literature. In Section 1.2, we address the

13
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identification issue and in Section 1.3 we define a minimum contrast estima-
tor and prove its consistency. This chapter is based mainly on Schwarz and
Van Bellegem (2010).

1.1 A review on density estimation from noisy
observations

1.1.1 The case of a known error distribution
Assume that we have a sample of iid. copies or the variable Y in the decon-
volution model Y = X + ε with independent error. Many research papers
focus on the accurate estimation of the cumulative distribution function (cdf)
of X under the assumption that the cdf of ε is known. The independent addi-
tive measurement error implies that if we assume that densities exist, then the
density of Y is the convolution of the density of ε with the one of X:

fY (y) = (fε ∗ fX)(y) :=
∫ ∞
−∞

fε(y − s)fX(s)ds .

A key observation for solving the deconvolution problem, that is the problem
of reconstructing fX , is the following well-known result which can be found in
Walker (1988), for example.

Theorem 1.1 (Convolution Theorem) Let f and g be two probability densities
defined on R. If F [f ]( · ) =

∫
R f(t) exp(−2πit · )dt denotes the Fourier trans-

form of f , then we have
F [f ∗ g] = F [f ]F [g].

Similarly, if X and Y are independent random variables and ψX and ψY their
characteristic functions, then ψX+Y = ψX ψY .

In view of this result, most estimators of fX studied in the literature use the
characteristic function of the involved random variables. Such methods are said
to work in the Fourier domain. Hypotheses on the characteristic functions or
on the Fourier transforms of the densities are called assumptions in the Fourier
domain. A natural estimator of ψY is the empirical characteristic function
based on the sample (Y1, . . . , Yn), i.e.

ψ̂Y (t) := 1
n

n∑
k=1

exp(itYk), t ∈ R.

Stefanski and Carroll (1990) remark that in order to estimate fX , it is not
sufficient, however, to consider the inverse Fourier transform of (ψ̂Y /ψε), which
need not even exist due to the decay of ψε. Instead, they consider a kernel
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estimator ĝK of g for some kernel K. The characteristic function of ĝK writes
ψ
ĝK

= ψ̂Y ψK , where ψK denotes the Fourier transform of K. The authors then
propose the inverse Fourier transform of (ψ

ĝK
/ψε). Under some integrability

conditions on K, this estimator is consistent.
Estimators following similar construction principles have been studied by

Carroll and Hall (1988) and Fan (1991), for example. Alternative estimators
using wavelets, for instance, have been developed by Pensky and Vidakovic
(1999); Johnstone et al. (2004); Bigot and Van Bellegem (2009).
The exact knowledge of the characteristic function and hence the distribution

of the error is however not realistic in many empirical studies. If we want
to relax the condition that the distribution of the error is known, one major
obstacle is that the distribution of X is no longer identifiable. At least three
approaches to overcome this problem can be found in the literature.

1.1.2 The case of an unknown error distribution
A first approach assumes that an independent sample from the measurement
error ε is available in addition to the sample of Y . From the independent obser-
vation of ε, the density fε is identified and consequently, the target density fX
is identified as well. Based on the sample of the ε’s, a non parametric estimator
of fε can be constructed and then be used in the construction of the estimator
of fX (Neumann, 1997; Johannes and Schwarz, 2009; Johannes et al., 2011).
If this approach may be realistic in a number of practical situations (e.g. some
problems in biostatistics or astrophysics), it is hardly applicable in the context
of production frontier estimation, for example, which we are going to consider
in the next chapter.
Similarly, one can consider various sampling processes which allow for iden-

tification. Li and Vuong (1998) suppose that repeated measurements for one
single value of X are available, such as Yj = X + εj for j = 1, 2. Assuming
further that X, ε1, and ε2 are independent, E[εj ] = 0, and that the charac-
teristic functions of X and ε are non-zero everywhere, they show how these
characteristic functions can be expressed as functions of the joint characteristic
function of (Y1, Y2). From this representation it follows that the distributions
of both X and ε can be identified from the observation of the couple (Y1, Y2).
The joint characteristic function of (Y1, Y2) can be estimated from a sample
of (Y1, Y2) and then used to derive an estimator of fX . The characteristic
functions of X and ε, denoted by ψX and ψε, can then be computed using
the above-mentioned representation. Delaigle et al. (2008) have considered this
setting and present modified kernel estimators which, if the number of repeated
measurements is large enough, can perform as well as they would under known
error distribution.
The assumption of repeated measurements of X in a multilevel model pro-

vides a similar setting. Neumann (2007) supposes that Yij = Xi + εij are
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observed for j = 1, . . . , N and i = 1, . . . , n (see also Meister et al., 2010).
In this sampling process, the identification of the cdf of X is ensured by a
condition on the zero-sets of the characteristic functions of X and ε. Let
Y = (Yi1, . . . , YiN )′, ψY its characteristic function, and ψ̂Y the empirical char-
acteristic function of Y. A consistent estimator of the density of X is obtained
by minimizing the discrepancy∫
Rn

∣∣ψX(t1 + · · ·+ tn)ψε(t1) · · ·ψε(tn)− ψ̂Yn (t1, . . . , tn)
∣∣K(t1, . . . , tn)dt1 . . . dtn

over certain classes of possible characteristic functions ψX and ψε of X and ε,
respectively. The function K is some positive kernel ensuring the existence
of the integral. Repeated measurements of multilevel sampling arise in some
economic situations, for instance when production units are observed over time
(Park et al., 2003; Daskovska et al., 2010).
A second approach to recover the identification of X in spite of the noise ε

consists in assuming that the distribution of ε is only partially unknown. A
realistic case for practical purposes is to assume that ε is normally distributed,
but the variance of ε is unknown. The distribution of X is not identified in
general under such assumptions, and it is necessary to restrict the class of
possible distributions in order to recover identification.
Several recent research papers have proposed identification restrictions on

the class of X given a partial knowledge about the cdf of the noise. Butucea
and Matias (2005) assume that the error density is «s-exponential», meaning
that its Fourier transform, ψε, satisfies

b exp(−|u|s) 6 |ψε(u)| 6 B exp(−|u|s)

for some constants b, B, s, and for |u| large enough. In their approach the error
density is supposed to be known up to its scale σ (called noise level). As for the
density fX , both polynomial and exponential decay of its Fourier transform are
shown to lead to a fully identified model. For τ > 0, let ψετ denote the Fourier
transform of (τfε). The key to the estimation of σ is the observation that the
function |F (τ, u)| = |ψY (u)|/|ψετ (u)| diverges as u → ∞ if τ > σ and that it
converges to 0 otherwise. Let F̂ (τ, u) = |ψ̂Y (u)|/|ψετ (u)|. Then Butucea and
Matias (2005) show that

σ̂n := inf{τ > 0 | |F̂ (τ, un)| > 1}

yields a consistent estimator of σ for some well balanced sequence (un)n>1. This
estimator is then used to deconvolve the empirical density of Y and to obtain
an estimator of the density of X. Some extensions are proposed in Butucea
et al. (2008), where the error density is assumed to have a stable symmetric
distribution with ψε(u) = exp(−|γu|s) in which γ represents some known scale
parameter and s is an unknown parameter, called the self-similarity index.
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A similar setting is considered in Meister (2006). In this paper, the error
is supposed to be normally distributed with an unknown variance parameter.
Identification is recovered by assuming that ψX lies in

{ψ
∣∣ c1|u|−β 6 |ψ(u)| 6 c2|u|−β for all u� 0} (1.1)

for some strictly positive constants c1, c2. In Meister (2007), the author assumes
that ψε is known on some arbitrarily small interval [−ν, ν] and that fε belongs
to some class

Gµ,ν = {f is a density such that ‖f‖∞ 6 C, |F [f ](t)| > µ ∀|t| > ν}.

The target density fX is assumed to belong to

FS,C,β =
{
f a density

∣∣∣∣ ∫ S

−S
f(u)du = 1 and

∫
|F [f ](t)|2(1 + t2)βdt 6 C

}
,

that is in the class of densities with compact support that are uniformly bound-
ed in the Sobolev norm. Empirically the direct access to ψX via Fourier de-
convolution is restricted to the interval [−ν, ν]. However, it is shown using a
Taylor expansion that ψX is uniquely determined by its restriction to [−ν, ν],
and therefore is everywhere identified.
We conclude this review mentioning the work by Horrace and Parmeter

(2011) who consider a composed error model, where the error ε in a regres-
sion equation Y = Xβ + ε can on its part be decomposed into ε = U + V ,
where U is the original error with unknown distribution and V a centered
normally distributed additional error with unknown variance σ2, independent
of U . The aim in this situation is to reconstruct the density of U based on a
sample from (X,Y ). Identification is ensured by assuming that the character-
istic function ψU of U has polynomial decay, that is, it lies in the class defined
in (1.1).
Note that these models and approaches require either additional observations

– which we do not assume in our model – or assumptions in the Fourier domain.
Such assumptions have the disadvantage of not being easily interpretable in an
heuristic and illustrative way. In fact, they may be hard to verify in practice.
Let us now briefly outline our strategy in this chapter.

1.1.3 The approach of this chapter
In the present chapter our goal consists in identifying and consistently esti-
mating the distribution of X using the noisy Y -sample only, and this under
as few restrictions as possible on the class of possible cdfs of X. Our strategy
in this setting is the assumption of partial knowledge about the error distribu-
tion: we assume that ε is normally distributed with mean zero and unknown
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variance σ2. The cdf of X is of course still not identified from the observa-
tion of Y . Identification is achieved by restricting the class of possible cdfs
of X. However, in Remark 1.7 we show by giving a counter-example that this
restriction is not sufficient in order to ensure the consistency of the minimum
distance estimator we will be considering. Consistency is obtained restricting
the density class further. Thus, the procedure in this chapter illustrates well
how we can obtain additional properties (identification, consistency) by grad-
ually adding hypotheses. The next step beyond the scope of this chapter could
be the derivation of convergence rates. It seems to us that to this end another
refinement of the hypotheses would be necessary.
In Hall and Simar (2002), a similar setting is considered, but under the

additional assumption that σ2 depends on the sample size n in such a way
that σ2 tends to zero as n tends to infinity. Matias (2002) and Butucea and
Matias (2005) also consider the consistent estimation of σ2 and of the cdf of X,
but under strong restrictions on the characteristic function of X. Both of these
assumptions have a drawback: As far as the noise level is concerned, it is not
clear in which situations it tends to zero with increasing sample size. And as for
assumptions in the Fourier domain, they are rather hard to verify in practice.
In Section 1.2, we define the above-mentioned class of probability distribu-

tions within which the cdf of X is identified from a Y -sample. This class is
characterized by a simple condition in the time domain. Restricting this class
slightly further, we prove the consistency of a minimum penalized contrast es-
timator of the cdf of X and of the variance σ2 in Section 1.3. We illustrate by
a counterexample that this restriction is indeed necessary in order to obtain
a consistent estimator. The estimation procedure presented in this chapter is
inspired by a similar estimator suggested by Neumann (2007) in the context of
panel data. However, Neumann uses an identification condition in the Fourier
domain which to avoid is our purpose.
The results in this chapter show that in the deconvolution model with par-

tially known error distribution, identification and consistency can be obtained
under fairly weak and easy to interpret assumptions in the time domain.

1.2 Identification
Suppose we want to recover the probability distribution PX of a random vari-
able X that is observed with an additive and independent random contami-
nation error ε. One might argue that in practical settings, the independence
assumption can hardly be verified. We discuss a possible relaxation of this
assumption in Section 1.4 on further research. The measurement error is as-
sumed to be normally distributed with mean zero and unknown variance σ2.
The resulting observational model is

Y = X + ε. (1.2)
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The distribution of Y is the convolution PY = PX ∗ Nσ, where Nσ denotes
the centered normal distribution with variance σ2. Writing ψX , ψY and ψσ for
the characteristic functions of PX , PY and Nσ, respectively, the convolution
equation is equivalent to ψY = ψX ψσ by virtue of the convolution Theorem 1.1.
Because of the uncertainty with regard to the variance of the measurement
error, not all probability distributions can be recovered from the model. Define
the set of distributions

P0 =
{
P ∈ P

∣∣ ∃A ∈ B(R) : |A| > 0 ∧ P (A) = 0
}
,

where B(R) denotes the set of Borel sets in R and P the set of all probability
distributions on R, and |A| the Lebesgue measure of A. In the following the-
orem, we show that all distributions belonging to P0 are identifiable from the
observational model.

Theorem 1.2 (Identification) The model defined by (1.2) is identifiable for the
parameter space P0× (0,∞), that is, for any two probability measures P 1, P 2 ∈
P0 and σ1, σ2 > 0, we have that P 1 ∗ Nσ1 = P 2 ∗ Nσ2 implies P 1 = P 2 and
σ1 = σ2.

In contrast to the assumptions made in Butucea and Matias (2005), the hy-
pothesis that the solution PX lies in P0 does not involve the characteristic
function of X. The assumption is natural insofar as it has an obvious interpre-
tation: there has to be some interval in which X does almost surely not fall.
This interval may be arbitrarily small and located anywhere on the real axis.
Note that we do not need to know neither the length nor the location of this
interval in order that PX be identifiable. However, we will see below that more
information is needed in order to be able to estimate PX consistently.
The proof of the identification theorem is based on the following lemma.

Lemma 1.3 Let P 1 and P 2 be probability distributions and 0 < σ1 < σ2. Then,

P 1 ∗ Nσ1 = P 2 ∗ Nσ2 =⇒ P 1 = P 2 ∗ Nσ3 , where σ3 =
√
σ2

2 − σ2
1.

Proof. First, apply the convolution theorem on both sides of the equation, then
divide by ψσ1 which is positive everywhere. To conclude, it suffices to remark
that ψσ3 = (ψσ2/ψσ1). �

Proof of Theorem 1.2. Suppose that (P 1, σ1), (P 2, σ2) ∈ P0 × (0,∞). We have
to show that

P 1 ∗ Nσ1 = P 2 ∗ Nσ2 =⇒ (P 1, σ1) = (P 2, σ2).

First, we prove by contradiction that σ1 = σ2. Suppose that σ1 6= σ2. Without
loss of generality, say σ1 < σ2. By virtue of Lemma 1.3, this implies P 1 =
P 2 ∗ Nσ3 .
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We show now that this is only possible if P 1 is not in P0 which contradicts
the assumption. Indeed, let A = [a1, a2] be some interval of positive length
|A| = a2 − a1 and B = [b1, b2] another interval with |B| < |A| and P 2(B) > 0.
By definition of the convolution and in view of the independence of X and ε in
our model, we can write

(P 2 ∗ Nσ3)(A) = (P 2 ⊗Nσ3)(SA), where SA = {(x, y) ∈ R2 | x+ y ∈ A}

and ⊗ denotes the product measure. We have that a1 − b1 < a2 − b2 because
of |B| < |A|. It is easily verified that B × [a1 − b1, a2 − b2] ⊂ SA and hence

P 1(A) = (P 2 ∗ Nσ3)(A) > P 2(B)Nσ3([a1 − b1, a2 − b2]) > 0.

This contradicts the assumption that P 1 ∈ P0, showing that σ1 = σ2. The
characteristic function of the normal distribution being positive everywhere,
an application of the convolution theorem completes the proof. �

Remark 1.4 The identification theorem assumes that the measurement error ε
is normally distributed with an unknown variance σ2. Although this is a most
natural assumption from a practical point of view, it should be noticed that
the proof essentially exploits the infiniteness of the support of ε. Therefore,
the identification result may be extended to other scale families of error dis-
tributions, provided some counterpart of Lemma 1.3 holds. This is the case
for Cauchy distributions with location parameter µ = 0 or, more generally, for
stable distributions with fixed exponent α ∈ (0, 2], skewness parameter β = 0,
and location µ = 0, for example.
Note that one could also exchange the roles of X and ε in the model: The

distribution of the error would have to lie in the class P0 (e.g. a bounded
error) and the distribution of X would belong to one of the parametric classes
described above. By symmetry, the distribution of ε and the parameter of the
distribution of X would be identified and the estimation techniques developed
below would apply. �

It is worth noticing that if in Theorem 1.2 we do not suppose both P 1 and P 2 to
belong to P0, the conclusion is false in general as the following counterexample
illustrates. Let P 1 be the uniform distribution on the unit interval and ψ1

its characteristic function. Clearly, P 1 ∈ P0. If we let P 2 be the probability
distribution with characteristic function ψ2 := ψ1 ψσ/ψ(σ/2), then, in view of
the convolution theorem, we have P 1 ∗ Nσ = P 2 ∗ N(σ/2), but P 1 6= P 2.
We conclude this section by remarking that the probability distributions in

question are not required to have densities. For those having one, the identi-
fication condition can be equivalently expressed by requiring that the density
has to vanish on a set of positive Lebesgue measure.
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1.3 Consistent estimation
Now suppose we have an iid. sample {Y1, . . . , Yn} from the model (1.2). Let
D−→ denote convergence in distribution. An estimator (P̂Xn , σ̂n) of (PX , σ) is
called consistent if, almost surely, P̂Xn

D−→ PX and σ̂n → σ as n → ∞. For a
consistent estimator, we always have P̂Xn ∗ Nσ̂n

D−→ PY , which is hence a nec-
essary condition of consistency. We call an estimator satisfying this condition
admissible.

1.3.1 Minimum distance estimation
In this section we develop a minimum distance estimator which is inspired by
a method proposed in Neumann (1997). Let ψ̂Yn (t) = 1

n

∑n
k=1 exp(itYk) be the

empirical characteristic function of the observations. By the Glivenko-Cantelli
theorem, it converges almost surely uniformly to the true characteristic func-
tion ψY . For characteristic functions ψ̃X , ψ̃σ, and ψ̃Y let us define a distance ρ,

ρ(ψ̃X , ψ̃σ; ψ̃Y ) :=
∫
R
|ψ̃X(t) ψ̃σ(t)− ψ̃Y (t)| K(t) dt, (1.3)

where K is some continuous and strictly positive probability density ensuring
the existence of the integral. Under slight abuse of notation we do not make
the dependence of the distance on K explicit, as it does not have any influence
on the results derived in this work. The estimation consists in choosing P̂Xn
and N

σ̂n
such that their characteristic functions ψ̂Xn and ψ

σ̂n
minimize the

distance ρ(· , · ; ψ̂Yn ).

Definition 1.5 Let (δn)n∈N be a vanishing sequence of positive real numbers
and C a set of probability distributions. We call a random sequence (P̂Xn , σ̂n)
depending on the observations {Y1, . . . , Yn} a minimum distance estimator on C
if it is such that the corresponding characteristic functions yield

ρ(ψ̂Xn , ψσ̂n ; ψ̂Yn ) 6 inf
ψ̃X∈ΨC
σ̃>0

ρ(ψ̃X , ψ
σ̃
; ψ̂Yn ) + δn, (1.4)

where we denote by ΨC the set of the characteristic functions of all the distri-
butions in C. Let further P̂X+ε

n := P̂Xn ∗ Nσ̂n , the characteristic function of
which is ψ̂Xn ψ

σ̂n
.

Our aim is to prove the consistency of this estimator. Obviously, this requires
further assumptions on the class C. In the first instance, we show that the
minimum distance estimator is always admissible.
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Lemma 1.6 (Admissibility) Every minimum distance estimator (P̂Xn , σ̂n) on
the set P of all probability distributions is admissible.

Proof. The empirical characteristic function ψ̂Yn converges almost surely point-
wise to ψY . By Lebesgue’s Theorem, this implies ρ(ψX , ψσ; ψ̂Yn ) → 0 almost
surely. Applying the triangle inequality and using ψXψσ = ψY , we obtain

ρ(ψ̂Xn , ψσ̂n ;ψY ) 6 ρ(ψ̂Xn , ψσ̂n ; ψ̂Yn ) + ρ(ψX , ψσ; ψ̂Yn ).

Because of (1.4), we can write ρ(ψ̂Xn , ψσ̂n ; ψ̂Yn ) 6 ρ(ψX , ψσ; ψ̂Yn ) + δn, so that
we conclude that, almost surely,

ρ(ψ̂Xn , ψσ̂n ;ψY ) 6 2ρ(ψX , ψσ; ψ̂Yn ) + δn → 0.

We choose an element ω ∈ Ω of the underlying probability space such that this
convergence holds. As the integrand in (1.3) is non-negative, it follows that∫ a

0
ψ̂Xn (t)ψ

σ̂n
(t) dt −→

∫ a

0
ψY (t) dt

for all a ∈ R as n→∞. We have shown that the integrated characteristic func-
tions of the measures P̂X+ε

n converge to the integrated characteristic function
of the probability measure PY . Theorem 6.3.3 from Chung (1968) states that
in this case, we have P̂X+ε

n
V−→ PY , where V−→ denotes vague convergence.

Recall that a sequence of probability distributions Qn on R is said to converge
vaguely to a limiting sub-probability measure Q if

∫
g dQn converges to

∫
g dQ

as n → ∞ for all functions g : R → R with compact support. Note that the
limit measure may have a total mass strictly smaller than 1. In our situation,
however, the vague limit PY is a probability distribution. The Portmanteau
Theorem states that that in this case we have indeed weak convergence, which
means that the estimator is admissible. �

Remark 1.7 We have seen that the minimum distance estimator is always ad-
missible. Next, we determine classes of distributions on which it is also con-
sistent. One might wonder if the identification condition alone is sufficient
to guarantee consistency, that is, if minimum distance estimators on P0 are
consistent. This is not the case, as the following counterexample illustrates.
Let

P̂Xn (A) := P̂Yn (A ∩ [−n, n])/P̂Yn ([−n, n])

for any Borel set A, where P̂Yn is any consistent estimator of PY , and denote
by ψ̂Xn its characteristic function. Note that P̂Xn ∈ P0 for every n > 1, and
let further σ̂n := n−1. Then, (P̂Xn , σ̂n) is a minimum distance estimator. In-
deed, P̂Xn converges to PY in distribution almost surely by construction. Using
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Lévy’s continuity theorem, we deduce that |ψ̂Xn (t)ψ
σ̂n

(t)− ψ̂Yn (t)| → 0 for all t
almost surely and hence ρ(ψ̂Xn , ψσ̂n ; ψ̂Yn )→ 0 almost surely by Lebesgue’s dom-
inated convergence theorem. Thus, the sequence (P̂Xn , σ̂n) is a candidate for
a minimum distance estimator when δn decreases sufficiently slow. It is eas-
ily verified that this estimator is admissible but not consistent. The following
consideration shows in which way we have to restrict the class P0 in order to
obtain consistency. Assume that PX ∈ P0 and let (P̂Xn , σ̂n) be an admissible
estimator. By virtue of Lemma 1.10 below, admissibility implies the existence
of an increasing sequence (nk)k∈N, some probability measure PX∞ , and σ∞ > 0
such that

P̂Xnk
D−→ PX∞ and σ̂nk −→ σ∞ (1.5)

as n → ∞, which implies P̂Xnk ∗ Nσ̂nk
D−→ PX∞ ∗ Nσ∞ , and hence, due to

admissibility and by uniqueness of the weak limit,

PX∞ ∗ Nσ∞ = PX ∗ Nσ. (1.6)

It follows from (1.5) that a necessary condition for P̂Xn to be consistent is
PX∞ = PX . In view of (1.6) and Theorem 1.2, this is equivalent to PX∞ ∈ P0.
But this may not be the case in spite of all P̂Xnk lying in P0 as this class is not
closed under convergence in distribution as the above counterexample shows.�

1.3.2 Consistency
In Remark 1.7 we have seen that in order to show consistency of the minimum
distance estimator, we need to restrict the set of considered distributions further
than to the identifiable set P0. For every R, η > 0, let

PηR := {P ∈ P | ∃A = (a1, a2) ⊂ [−R,R] : |A| > η ∧ P (A) = 0}.

This choice avoids the problem of possibly obtaining a sequence of estimators
the weak limit of which lies outside the identified class P0. Indeed, the following
lemma shows that the closure of PηR with respect to weak convergence is a subset
of P0. This allows us to show in Theorem 1.9 that the minimum distance
estimator is consistent when we restrict the class of solutions to PηR ⊂ P0 for
some η,R > 0. The class P0 imposes that the distribution PX assign zero
mass to some Borel set of positive Lebesgue measure. In addition, the class PηR
involves knowledge about size and location of this Borel set. In general, such
knowledge may not be available in practice. Note however that for a positive
random variable X for example, we have PX ∈ PηR for any choice of η and R.

Lemma 1.8 For any R, η > 0, weakly convergent sequences in PηR have their
limit in P0.
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Proof. Let (Pn)n∈N be a sequence in PηR. Then, we have

∀n ∈ N ∃ interval An ⊂ [−R,R] : Pn(An) = 0 ∧ |An| > η. (1.7)

Suppose further that (Pn)n∈N converges in distribution to some P∞. We have
to show that there is some A∞ ∈ B([−R,R]) of positive Lebesgue measure such
that P∞(A∞) = 0, that is P∞ ∈ P0. Firstly, we deduce from (1.7) that there
exists an x0 ∈ [−R,R] which lies in infinitely many An, or in other words,

∃x0 ∈ [−R,R] ∃ strictly monotone (nk)k∈N ∀k ∈ N : x0 ∈ Ank .

As all Ank are intervals of length at least η, there is an interval containing x0
which is a null set for infinitely many measures of the sequence Pnk . More
precisely, there is a subsequence n′k of nk such that

(x0 − η/2, x0] ⊂
⋂
k∈N

An′
k

or [x0, x0 + η/2) ⊂
⋂
k∈N

An′
k
.

Hence, we can choose A∞ = (x0 − η/2, x0) or A∞ = (x0, x0 + η/2) such that
|A∞| = η/2 > 0 and Pn′

k
(A∞) = 0 for all k ∈ N. The latter assertion implies

that lim infn→∞ Pn(A∞) = 0. Recall that the Pn converge weakly to P∞ and
that A∞ is an open set. Therefore, the Portmanteau theorem allows us to
conclude that P∞(A∞) = 0. �

Before proving consistency, recall the definition of the Lévy distance: For proba-
bility distributions P 1, P 2 with cumulative distribution functions F 1, F 2, define

d(P 1, P 2) := inf{δ > 0 | F 1(x−δ)−δ 6 F 2(x) 6 F 1(x+δ)+δ ∀x ∈ R}. (1.8)

For a sequence Pn of probability distributions, one has that Pn
D−→ P if and

only if d(Fn, F ) → 0 as n → ∞. In other words, d metrizes the weak conver-
gence. Now define, for probability distributions P̃X and real numbers σ̃,

∆(P̃X , σ̃;PX , σ) = d(P̃X , PX) + |σ̃ − σ|.

Remark that ∆(PXn , σn;PX , σ) → 0 if and only if PXn
D−→ PX and σn → σ

(and hence Nσn
D−→ Nσ).

Theorem 1.9 (Consistency) Let R, η > 0 and suppose that in the deconvolu-
tion model (1.2), we have PX ∈ PηR. Then, any minimum distance estimator
(P̂Xn , σ̂n) on PηR is consistent, that is, we have ∆(P̂Xn , σ̂n;PX , σ) → 0 almost
surely.
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Proof. We have seen in Lemma 1.6 that the estimator is admissible. Now we
show that under the assumptions of this theorem, the admissibility already
implies

∆(P̂Xn , σ̂n;PX , σ)→ 0.

The proof is by contradiction. Assume there is a δ > 0 and an increasing
sequence (nk)k∈N in N such that ∆(P̂Xnk , σ̂nk ;PX , σ) > δ ∀ k ∈ N. Lemma 1.10
furnishes a subsequence (n′k)k∈N of (nk)k∈N, a probability measure PX∞ and a
constant σ∞ > 0 such that

P̂Xn′
k

D−→ PX∞ and N
σ̂n′
k

D−→ Nσ∞ . (1.9)

Denote the characteristic functions of PX∞ and Nσ∞ by ψX∞ and ψσ∞ , respec-
tively. Since weak convergence implies point-wise convergence of the corre-
sponding characteristic functions, we obtain by Fatou’s Lemma that

ρ(ψX∞, ψσ∞ ;ψY ) 6 lim inf
k→∞

ρ(ψ̂Xn′
k
, ψ

σ̂n′
k

;ψY ) = 0,

that is,
∫
R |ψ

X
∞(t)ψσ∞(t) − ψY (t)| K(t) dt = 0. As K is strictly positive and

characteristic functions are uniformly continuous on R, we conclude that

ψX∞(t)ψσ∞(t) = ψY (t) = ψX(t)ψσ(t) ∀ t ∈ R.

Lemma 1.8 allows us to deduce from (1.9) that PX∞ ∈ P0. Consequently, Theo-
rem 1.2 ensures that PX∞ = PX and σ∞ = σ. Together with (1.9), this implies
∆(P̂Xn′

k
, σ̂n′

k
;PX , σ) → 0. This contradicts the assumption and thus completes

the proof. �

To complete the arguments of this chapter, it remains to show the following
technical lemma which we have used in Remark 1.7 and in the main result
Theorem 1.9.

Lemma 1.10 Let Qn be a sequence of probability distributions and σn a se-
quence of positive real numbers. Suppose further that (Qn ∗Nσn)n∈N converges
weakly to some probability distribution. Then, there exist an increasing sequence
(nk)k∈N, a probability distribution Q∞, and a constant σ∞ > 0 such that

Qnk
D−→ Q∞ and Nσnk

D−→ Nσ∞

as n→∞, where N0 := δ0 denotes the Dirac measure by convention.

Proof. By Helly’s selection theorem, there is a subsequence (nk)k∈N and a
sub-probability measure Q∞ such that Qnk

V−→ Q∞, where V−→ denotes vague
convergence (e.g. Chung (1968)). We show below that the σnk are bounded
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from above such that they have a convergent subsequence; without loss of
generality, say σnk → σ∞ for some σ∞ > 0. Proposition 3.1 from Jain and
Orey (1979) states that if Rn

V−→ R and Sn
D−→ S, then Rn ∗ Sn

V−→ R ∗ S,
so we have Qnk ∗ Nσnk

V−→ Q∞ ∗ Nσ∞ . By assumption, the same sequence
converges weakly, and hence vaguely, to some distribution, so the uniqueness
of the vague limit of measures on locally compact spaces implies Q∞(R) = 1
because (µ∗ν)(R) = µ(R) ν(R) for any two finite measures µ and ν on (R,B(R)).
The Portmanteau Theorem then implies Qnk

D−→ Q∞, which was our claim.
It remains to prove that σnk is bounded from above. We show that otherwise

the sequence (Qnk ∗ Nσnk )k∈N would not be tight, which contradicts its weak
convergence. Random variable notation is more convenient for this argument,
so let Uk ∼ Qnk and Vk ∼ Nσnk be i.i.d. random variables and Wk := Uk + Vk.
We have to show the non-tightness of the distributions of {Wk}k∈N, that is

∃ δ ∈ (0, 1) ∀ J > 0 ∃ k ∈ N : P
[
Wk ∈ [−J, J ]

]
< 1− δ.

Fix δ = (1/12) and J > 0, and let J = [−J, J ]. Put I+
j = [3jJ, (3j + 1)J ]

and I−j = [−(3j + 2)J,−(3j − 1)J ], and let I :=
⊎
j>0 I

+
j be the disjoint

union of the I+
j . Because of the monotony of the normal density on [0,∞), we

have P[Vk ∈ I+
j ] > (1/3)P

{
Vk ∈ [3jJ, 3(j + 1)J)

}
. The disjoint union over

j > 0 of the intervals on the right hand side of this inequality is [0,∞), and
P[Vk > 0] = (1/2). Thus, we have P[Vk ∈ I] > (1/6). We can now write
P[Wk ∈ J ] < (5/6) + (1/6)P[Wk ∈ J | Vk ∈ I], and it is sufficient to prove
that the conditional probability appearing in this inequality is less than (1/2)
for some k.
It is easy to check that

P[Wk ∈ J | Vk ∈ I] =
∞∑
j=0

P[Wk ∈ J | Vk ∈ I+
j ] P[Vk ∈ I+

j | Vk ∈ I].

By construction, Vk ∈ I+
j and Wk ∈ J together imply Uk ∈ I−j . Using further

the monotony of the normal density on [0,∞), we deduce that

P[Wk ∈ J | Vk ∈ I] 6 6P[Vk ∈ I+
0 ]
∞∑
j=0

P[Uk ∈ I−j ].

As the I−j are pairwise disjoint, the sum is bounded from above by 1, and hence
P[Wk ∈ J | Vk ∈ I] 6 6P[Vk ∈ I+

0 ]. If σnk is unbounded, k can be chosen in
such a way that the right hand side of this inequality is less than (1/2), which
completes the proof. �
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1.4 Conclusion
In this chapter, we have considered the problem of density deconvolution from
one single sample which is contaminated with some independent additive nor-
mal error whose variance is unknown. We have explained the identification
problem that arises in this situation, and discussing several known methods of
coping with this issue, we have noticed that most of them are based on iden-
tification conditions in the Fourier domain. Such conditions are often difficult
to verify in practice.
Our purpose in this chapter was hence to propose a new type of assump-

tion which ensures identification of the deconvolution density and allows for
its consistent estimation without referring to its properties in the Fourier do-
main. Accordingly, we have first shown identification under a weak and easy
to interpret condition in the time domain. One could be interested in different
time-domain conditions ensuring identifiability. The key step in the identifi-
ability section was the construction of a distribution class P0 such that the
convolution of any distribution P ∈ P0 with a centered normal distribution
does not belong to P0. Alternatives to the class defined in this chapter could
possibly be defined by conditions involving the decay of the densities. This
could be subject to further research.
The condition defined by P0, although ensuring identifiability, was not strong

enough as to ensure the consistency of a minimum contrast estimator, as we
have illustrated by a counterexample.
Sharpening the identification condition slightly, we have been able to show

that consistency is indeed achieved. However, we do not have convergence
rates for the estimator. Kneip et al. (2010) have derived asymptotic results
under similar assumptions in the case of boundary estimation. Their interesting
approach of a maximum penalized profile likelihood could be explored in the
context of the model discussed here.
Another interesting question concerns the independence between X and the

error ε. One could be interested in relaxing this hypothesis by allowing for
some heteroscedasticity. As a first step, one could let depend the unknown
noise level σ2 on X in a two-level way:

σ2 =
{
σ2

+ (X > ξ)
σ2
− (X < ξ)

for some unknown ξ ∈ R. In a second step, one could try to cope with step
functions σ2

x in x. Obviously, the identification problem becomes more difficult
when one dispenses with the independence assumption. Some computations in
the two-level model have shown that the techniques of this chapter might be
generalized to this case in order to establish identification, although some tech-
nical difficulties remain. This seems an interesting problem worth investigating
further.





Chapter 2

Consistent robust frontier estimation
from noisy observations

T he modelling and estimation of production functions have been the topic
of many research papers on economic activity. The objects of study are

production units to which one associates a vector of inputs (cost) x ∈ Rp+ and
a vector of outputs (production) y ∈ Rq+. The set of production possibilities is
denoted by Φ. It is a subset of Rp+q+ on which the inputs x can produce the
outputs y. Following Shephard (1970), several assumptions are often imposed
on Φ : convexity, free disposability, or strong disposability. Free disposability
means that if (x, y) belongs to Φ and if x′, y′ are such that x′ > x and y′ 6 y
then (x′, y′) ∈ Φ. Strong disposability requires that one can always produce a
smaller amount of outputs using the same inputs.
The boundary of the production set is of particular interest in the efficiency

analysis of production units. The efficiency frontier in the input space is defined
as follows. For all y ∈ Rq+, consider the set ρ(y) = {x ∈ Rp+ | (x, y) ∈ Φ}. The
radial efficiency boundary is then given by

ϕ(y) =
{
x ∈ Rp+ | x ∈ ρ(y) ∧ θx 6∈ ρ(y) ∀ θ ∈ (0, 1)

}
for all y. Similarly, a frontier in the output space may be defined (Färe et al.,
1985). In empirical studies, the attainable set Φ is unknown and has to be
estimated from observed data. Suppose a random sample of production units

Xn = {(Xi, Yi) ∈ Rp+q+ | i = 1, . . . , n}

29
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is observed. We assume that each unit (Xi, Yi) is an independent replication of
(X,Y ) whose joint probability distribution on Rp+q+ describes the production
process. The support of this probability measure coincides with Φ. Estimating
the efficiency boundary amounts hence to estimating the support of (X,Y ).
Non parametric methods are natrual to use in this context, because they

do not require restrictive assumptions on the data generating process of Xn.
Deprins et al. (1984) have introduced the Free Disposal Hull (FDH) estimator

Φ̂FDH =
{

(x, y) ∈ Rp+q+ | ∃ i ∈ {1, . . . , n} : (y 6 Yi) ∧ (x > Xi)
}

which has become a popular estimation method (De Borger et al., 1994; Leleu,
2006). The convex hull of Φ̂FDH, called the Data Envelopment Analysis (DEA),
is the smallest free disposal convex set covering the data (Seiford and Thrall,
1990). Asymptotic results for these two estimators can be found for example
in Kneip et al. (1998) for the DEA and Park et al. (2000) for the FDH.
The FDH estimator and other data envelopment techniques are only con-

sistent when the production units are observed without noise, which implies
in particular that (X,Y ) belongs to Φ almost surely. However, especially the
FDH is very sensitive to the contamination of the data by measurement errors
or by outliers (Cazals et al., 2002; Daouia et al., 2009). As measurement er-
rors are frequently encountered in economic data bases, more robust estimation
procedures are needed.
Cazals et al. (2002) propose a new non parametric estimator that addresses

the problem of contaminated samples in non parametric frontier estimation.
For p = 1 and under the free disposability assumption, they show that the
frontier function ϕ(y) can be represented as

ϕ(y) = inf{x ∈ R+ such that SX|Y>y(x) < 1}, (2.1)

where SX|Y>y(x) = P(X > x|Y > y) denotes the conditional survival function.
The authors observe that for m independent replications (Xi, Yi) of the couple
(X,Y ), the expected minimum input functions

ϕm(y) := E (min{X1, . . . , Xm}|min{Y1, . . . , Ym} > y) (m ∈ N) (2.2)

are such that
ϕm(y) :=

∫ ∞
0

{
SX|Y>y(u)

}m du, (2.3)

and ϕm(y) converges point-wise to the frontier ϕ(y) as m tends to infinity,
assuming the existence of ϕm(y) for m = 1 and hence for all m > 1. This
follows from Lebesgue’s convergence theorem, because SX|Y>y(u) = 1 for all
u ∈ [0, ϕ(y)] and SX|Y>y(u) < 1 for all u > ϕ(y). The functions ϕm(y) are
estimated in Cazals et al. (2002) using non parametric estimators of the condi-
tional survival function SX|Y>y. The empirical survival function is defined by
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ŜX,Y (x, y) = n−1∑n
i=1 1(Xi > x, Yi > y) and an empirical version of SX|Y>y

is given by

ŜX|Y>y(x) = ŜX,Y (x, y)
ŜY (y)

, (2.4)

where ŜY (y) = n−1∑
i 1(Yi > y). Cazals et al. (2002) have studied the asymp-

totic properties of the m-frontier estimator

ϕ̂m,n(y) :=
∫ ∞

0

{
ŜX|Y>y(u)

}m
du (2.5)

and they claim that it is less sensitive to extreme values or noise in the sample
of production units than FDH- or DEA-type estimators. Our starting point is
the observation that when the noise level on the data does not vanish as the
sample size n grows, then the m-estimator is no longer consistent.
In this chapter, a new robust estimator of the survival function is studied

which copes with an additive error in the inputs X. The error is supposed to
be normally distributed with mean zero and unknown variance σ2. We adapt
the density deconvolution techniques from Chapter 1 in order to apply them in
this context.
The chapter is organized as follows. In the following section, we consider

the problem of estimating the survival function of a random variable from
noisy observations. A consistent estimator based on the techniques from the
previous chapter is developed. In Section 2.2, we first show that the m-frontier
estimator is not consistent in the presence of noise in the data because it is
based on the empirical survival function. Finally we show a sufficient condition
under which consistency is preserved when plugging in the consistent estimator
of the survival function in the m-frontier estimator. Section 2.4 summarizes the
results of this chapter and suggests future directions of research. Two technical
lemmas are deferred to the end of the chapter. This chapter is mainly based
on the article by Schwarz, Van Bellegem, and Florens (2011).

2.1 Estimating the survival function from noisy
observations

Suppose we observe a sample {Z1, . . . , Zn} of n independent replications of the
random variable Z from the model Z = X + ε, where ε is a N (0, σ2) random
variable, independent from the positive random variable X, and with unknown
variance σ2 > 0. As explained in Chapter 1, the probability density of Z is the
convolution φσ ∗ fX , where fX is the probability density of X and φσ denotes
the central normal density with standard deviation σ. As we suppose X to
be a positive random variable, it follows immediately from Theorem 1.2 that
the density of X and thus its survival function SX are identifiable from the
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observation of Z. Observe that the survival function SZ of Z can be written
as the convolution

SZ(z) = φσ ∗ SX(z).

The estimator of SX is constructed as an approximation in a sieve as follows.
For any integers k,D > 0, define

∆(k,D) := {δ ∈ Rk | 0 6 δ1 6 . . . 6 δk 6 D},

and for δ ∈ ∆(k,D) define

Sδ(t) := 1
k

k∑
j=1

1(δj > t) . (2.6)

For any δ ∈ ∆(k,D), denote by Pδ the probability distribution corresponding to
the survival function Sδ. The choice of the approximating function is performed
minimizing the contrast function

γ(S, ζ;T ) :=
∫ ∞
−∞

∣∣(φζ ∗ S)(t)− T (t)
∣∣K(t)dt,

where K is some strictly positive probability density ensuring the existence of
the integral. We are now in position to define our estimator of the survival
function. Let (kn)n∈N and (Dn)n∈N be two positive, divergent sequences of
integers. The estimator (Sδ̂(n), σ̂n) is defined by

(δ̂(n), σ̂n) := argmin
δ∈∆(kn,Dn)

σ∈[0,Dn]

γ(Sδ, σ; ŜZn ) , (2.7)

where ŜZn := n−1∑n
k=1 1(Zk > t) is the empirical survival function of Z. Note

that the argmin is attained because it is taken over a compact set of parameters,
but it is not necessary unique. If it is not, an arbitrary value among the possible
solutions may be chosen.

Theorem 2.1 The estimator (Sδ̂(n), σ̂n) is consistent in the sense that

PX
δ̂n

D−→ PX and σ̂n → σ

almost surely as n → ∞, where D−→ denotes weak convergence of probability
measures.

The proof of this result uses two technical lemmas which can be found in
Section 2.3.
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Proof. For probability distributions P , P ′, and positive real numbers σ, σ′,
define the distance ∆(P, σ;P ′, σ′) := d(P, P ′) + |σ − σ′|, where d(·, ·) denotes
the Lévy distance, which metrizes weak convergence (see (1.8) for its definition).
The theorem is hence equivalent to stating that, almost surely,

∆(Pδ̂(nk), σ̂nk ;PX , σ)→ 0

as k → ∞. The proof is by contradiction. Suppose that there is some d > 0
and an increasing sequence (nk)k∈N such that

∆(Pδ̂nk , σ̂(nk);PX , σ) > d

for all k ∈ N. By virtue of Lemma 2.4, the distributions given by (Sδ̂(n) ∗ φσ̂n)
converge almost surely weakly to PZ . Lemma 1.10 from the previous chapter
implies that there is a distribution P∞, some σ∞ > 0, and a sub-sequence
(n′k)k∈N such that almost surely

Pδ̂(n′
k
)
D−→ P∞ and σ̂n′

k
→ σ∞,

which implies the almost sure point-wise convergence of Sδ̂n′
k

to S∞. Fatou’s
lemma then implies

γ(S∞, σ∞;SZ) 6 lim inf
k→∞

γ(Sδ̂(n′
k
), σ̂n′k ;SZ) = 0 almost surely,

where the last equality holds because of Lemma 2.4. Hence, γ(S∞, σ∞;SZ) = 0,
and using continuity, we conclude that S∞ ∗φσ∞ = SX ∗φσ. Or equivalently, in
terms of distributions, P∞∗φσ∞ = PX ∗Nσ. As all the distributions Pδ̂(n′

k
) have

their mass on the positive axis, Lemma 1.8 from the previous chapter implies
that P∞ ∈ P0, and hence that P∞ = PX and σ∞ = σ, which is a contradiction
to the assumption and thus concludes the proof. �

To illustrate the estimator, we present the result of a Monte Carlo experi-
ment. We consider two designs for the input X. One is uniformly distributed
over [1, 2], and the other is a mixture U [1, 2]+Exp(1). In both cases the density
of X is zero below 1, and in the second case the support of X is not bounded to
the right. For various true values of σ, we calculate the estimators (δ̂(n), σ̂n) for
sample sizes n = 100, 200 and 500. No particular optimization over the value
of k (appearing in (2.6)) is provided, except that we increase k as the sample
size increases. For the considered sample sizes, we set k = 10n1/2. This choice
is surely ad hoc; a better choice could possibly be made by means of a boot-
strap procedure. The minimization of the contrast function is calculated using
the algorithm optim in the R software. For this algorithm, we have chosen the
initial values of δj to be equi-spaced values over the interval [0, 3] and the initial
value of σ is the empirical standard deviation of the sample Z1, . . . , Zn.
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True σ
n 1 2 5
100 1.30 -1.08

(1.05) (0.51)
200 0.91 0.07 -0.38

(3.84) (0.45) (0.45)
500 0.37 0.06 0.14

(0.30) (0.44) (0.49)

Table 2.1: The inputs simulated in this experiment are uniformly distributed
over [1, 2]. For each sample size and noise level, we compute the
mean of σ − σ̂n from B = 2000 replications (the standard deviation
is given between parentheses)

True σ
n 1 2 5
100 2.84 -0.92

(7.80) (7.15)
200 -0.49 -0.49

(6.32) (5.92)
500 1.78 0.029 0.014

(5.90) (4.88) (6.69)

Table 2.2: The inputs simulated in this experiment are a mixture U [1, 2] +
Exp(1). For each sample size and noise level, we compute the mean
of σ−σ̂n from B = 2000 replications (the standard deviation is given
between parentheses)
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Tables 2.1 and 2.2 show the result of the Monte Carlo simulation usingB = 2000
replications of each design. The mean and standard deviation of σ − σ̂n over
the B replications are displayed. Some results are not reported for very small
sizes, because a stability problem has been observed, especially in the mixture
case. In these cases, the optim algorithm did not always converge (a similar phe-
nomenon has been observed using the nlm algorithm). Better numerical results
might be obtained designing an optimization algorithm taking into account the
specific properties of the contrast function and the sieve under consideration
instead of using the standard procedures. Note further that the simulations
have been run for very small sample sizes in order to evaluate the small sample
behavior of the estimator. Also, observe that due to condition (2.11) in The-
orem 2.2, the convergence of the estimator essentially depends on the rate at
which the parameter sequence mn diverges to infinity. Its choice is crucial for
the performance of the estimator as we also discuss at the end of this chapter.
It also has to be mentioned that the procedure is fairly sensitive to the choice

of k and to the choice of initial values for δ and σ. For larger sample sizes, or
larger values of the noise, the results overall improve with the sample size.

2.2 Robust m -frontier estimation in the presence of
noise

Let us now consider our initial problem of consistently estimating the produc-
tion frontier ϕ(y) from a sample of production units (Xi, Yi), where Xi is the
input and Yi is the output. In this section we assume that the dimension of
the input and the output are p = q = 1.
First, we discuss briefly the fact that the standard m-frontier estimator is

not consistent when applied to noisy data. In the second subsection, we will
introduce the plug-in estimator and show a sufficient condition under which it
is consistent.

2.2.1 Inconsistency of the m -frontier estimator
The m-frontier estimator (cf. (2.5)) is more robust in the presence of noise that
the FDH or DEA estimator. In Cazals et al. (2002, Theorem 3.1) it is shown
that for any interior point y in the support of the distribution Y and for any
m > 1, it holds that

ϕ̂m,n(y)→ ϕm(y) almost surely as n→∞ (2.8)

where ϕm(y) is the expected minimum input function of order m given in
equation (2.2). When the input of the production units is contaminated by a
centered normal additive error, the actually observed inputs are

Zi = Xi + εi, εi ∼ N (0, σ2)
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for i = 1, . . . , n, instead of Xi, for some positive, unknown variance parame-
ter σ2. If σ2 does not vanish asymptotically, the limit appearing in (2.8) is no
longer given by the expected minimum input function (2.2). Instead we get

ϕ̂m,n(y)→ E [min{Z1, . . . , Zm}|Y > y] almost surely as n→∞.

The expectation appearing on the right hand side does not coincide with (2.2),
because the support of the variable Z is the whole real line. Therefore, the
m-frontier estimator does not converge to the desired target function, due to
the non vanishing error variance. Note that Hall and Simar (2002) and Simar
(2007) assume the noise level to be asymptotically negligible.
The inconsistency of the m-frontier estimator is illustrated in Figures 2.1

and 2.2. The true production frontier in this simulation is given by ϕ(y) = y1/2

and is displayed by the dotted line. We have simulated 200 production inputs
from the model Xi = Y 2

i + Ei, where Ei ∼ Exp(1). The production inputs
are then contaminated by an additive noise, so that the observed inputs are
Zi = Xi + εi instead of Xi, where the εi are independently generated from a
zero mean normal variable with standard error σ = 2.
The FDH estimator computed in Figure 2.1 is known not to be consistent in

this situation, because it is constructed under the assumption that all produc-
tion units are in the production set Φ with probability one. Figure 2.2 shows
the m-frontier of Cazals et al. (2002) for m = 1 and 50 respectively (cf. (2.5)).
As discussed in Cazals et al. (2002), the appropriate choice of m is delicate and,
as far as we know, there is yet no automatic procedure to select it from the
data. If m is too low, the m-frontier is not a good estimator of the production
function. In the theory of Cazals et al. (2002), m is an increasing parameter
with respect to the sample size.
For larger values of m, as shown in Figure 2.2, the estimator is close to the

FDH estimator. Because the value of m increases with n in theory, the two
estimators will be asymptotically close. This illustrates the inconsistency of
the m-frontier in the case where the noise on the data is not vanishing with
increasing sample size.

2.2.2 Robust m -frontier estimation
In order to recover the consistency of the m-frontier, we need to plug-in a con-
sistent estimator of the conditional survival function in (2.3). The construction
of the estimator is easy from the above results if we assume that the additive
noise to the inputs is independent from the input X and the output Y . Let y
be a point in the output domain where the support of Y is strictly positive.
Restricting the data set to (Zi|Yi > y), we can construct the empirical condi-
tional survival function ŜZ|Y>y using the usual non parametric estimator (2.4).
Note that this estimator does not require any regularization parameter such as
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Figure 2.1: The gray points are the simulated production units and the thick
line is the true production frontier. The solid line is the Free Dis-
posal Hull (FDH) estimator of the frontier.

Figure 2.2: Using the same data as in Figure 2.1, the two solid lines are the
m-frontier estimator with m = 1 and m = 50 respectively.



38 Consistent robust frontier estimation

a bandwidth. In analogy to (2.7), we also define

(δ̂(n), σ̂n) := argmin
δ∈∆(kn,Dn)

σ∈[0,Dn]

γ(Sδ, σ; ŜZ|Y>y) . (2.9)

The robust m-frontier estimator is then defined by

ϕ̂robm,n(y) :=
∫ ∞

0

{
Sδ̂(n)(u)

}m
du . (2.10)

This integral is easy to compute since Sδ̂(n) is a step function. The following
result establishes the consistency of this new estimator under an independence
assumption and a growth condition on the parameter m. The assumption
that there is an error only in the input variable and that this error is further
independent of the in- and output may be hard to verify in practice. A next
step in the development of robust frontier estimation techniques could be the
relaxation of these hypotheses as we discuss at the end of this chapter.

Theorem 2.2 Suppose that we have n independent observations (Zi, Yi)i=1,...,n
of production units, where the input data Zi are a noisy version of the true
inputs Xi in the sense that Zi = Xi+εi, where εi ∼ N (0, σ2) is a measurement
error that is independent from Xi and Yi and whose variance σ2 is unknown.
Consider the robust m-frontier estimator given by equations (2.9) and (2.10)
and let mn be a divergent monotone sequence of positive integers such that

{Sδ̂(n)(ϕ(y))}mn → 1 (2.11)

almost surely as n→∞. Then ϕ̂robmn,n(y)→ ϕ(y) almost surely as n→∞.

The proof of the theorem uses two technical lemmas which can be found in
Section 2.3 below.

Proof. We begin the proof by plugging-in the sequence mn into the robust
estimator and by splitting up the integral occurring in (2.10) into∫ ∞

0

{
Sδ̂(n)(u)

}mn
du =∫ ϕ(y)

0

{
Sδ̂(n)(u)

}mn
du+

∫ ∞
ϕ(y)

{
Sδ̂(n)(u)

}mn
du =: An +Bn (2.12)

with obvious definitions for An and Bn. We have that Bn → 0 almost surely
as n tends to infinity. To see this, let tn := ϕ(y) ∨ sup{t ∈ R | Sδ̂(n)(t) = 1}
and decompose Bn further into∫ ∞

ϕ(y)
{Sδ̂(n)(u)}mn du =

∫ tn

ϕ(y)
1 du+

∫ ∞
tn

{Sδ̂(n)(u)}mn du. (2.13)
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Firstly, tn → ϕ(y) as n→∞ because of the consistency of Sδ̂(n). Therefore, the
first integral on the right hand side of (2.13) tends to 0 as n → ∞. Secondly,
Sδ̂(n) is non increasing and strictly smaller than 1 on (tn,∞) for every n ∈ N.
As the sequence Sδ̂(n) is further surely point-wise convergent on R, the other
integral of the decomposition in (2.13) also tends to 0.
It remains to show that An → ϕ(y) almost surely as n → ∞. Since Sδ̂(n) is

non increasing and Sδ̂(n)(0) = 1, we have that sn 6 ϕ(y). On the other hand,
sn > ϕ(y) {Sδ̂(n)(ϕ(y))}mn , which concludes the proof of the result in view of
the assumption. �

This result illustrates well the role of the parameter m = mn, which has to tend
to infinity at an appropriate rate as n→∞ in order to achieve consistency of
the robust frontier estimator. Indeed, were mn bounded by some M > 0,
Fatou’s Lemma would imply that almost surely

lim
n→∞

ϕ̂robmn,n(y) >
∫ ∞

0

{
SX|Y>y(u)

}M du = ϕ(y) +
∫ ∞
ϕ(y)

{
SX|Y>y(u)

}M du.

Except for the trivial case where the true conditional survival function is the
indicator function of the interval (−∞, ϕ(y)), the last integral on the right hand
side is strictly positive. This shows that the robust estimator asymptotically
overestimates the true frontier ϕ(y) if mn does not diverge to infinity.
On the other hand, if mn increases too fast in the sense that the condition

in (2.11) does not hold, then ϕ̂robmn,n(y) may asymptotically underestimate the
true frontier ϕ(y) as one can see considering the decomposition in (2.12). In-
deed, Bn tends to 0 almost surely for n → ∞ as explained in the proof of the
above theorem. As for An, the integrand converges to a non negative monotone
function S with S(ϕ(y)) < 1, and hence the integral may tend to a limit that
is smaller than the true frontier ϕ(y). However, this need not be the case, and
thus the condition in (2.11) is sufficient but not necessary.
Summarizing the above discussion, the sufficient condition in (2.11) implicitly

defines an appropriate rate at which mn has to diverge to infinity such that the
new robust frontier estimator is consistent. This rate depends on characteristics
of the true conditional survival function, and we do not know at present how
to choose it in an adaptive way. Nevertheless, the simulations show that even
for finite samples, large choices of m do not deteriorate the performance of the
robust estimator.
The estimator is computed for each possible value of y. In practice, it is

not necessary to estimate the standard deviation of the noise for each y. We
can first estimate the noise level using the marginal data set of inputs only,
and use the techniques developed in Section 2.2. We then use this estimated
value in (2.9) even as an initial parameter of the optim algorithm, or as a fixed,
known parameter of the noise standard deviation.
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Figure 2.3 shows the estimator on the simulated data of Figure 2.1. As for
the standard m-frontier, the robust m-frontier with m = 1 is not a satisfactory
estimator. An interesting fact about the robust m-frontier is that it does not
deteriorate the frontier estimation for large values of m.

Figure 2.3: Using the same data as in Figure 2.1, the two solid lines are the
robust m-frontier estimator with m = 1 and m = 50 respectively.

2.3 Auxiliary results
Lemma 2.3 The estimator (Sδ̂(n), σ̂n) satisfies

γ(Sδ̂(n), σ̂n; ŜZn )→ 0 as n→∞.

Proof. By the triangle inequality, we have, for any (S′, σ′) ∈ C × R+,

γ(Sδ̂(n), σ̂n; ŜZn ) = min
δ∈∆(kn,Dn)

σ̃∈[0,Dn]

γ(Sδ, σ̃; ŜZn )

6 min
δ∈∆(kn,Dn)

σ∈[0,Dn]

γ(Sδ, σ;SX ∗ φσ) + γ(SX , φσ; ŜZn ).
(2.14)

Let η > 0 and T > 0 be such that
∫∞
T
SX(x) dx 6 η/2. For n sufficiently large,

we have σ 6 Dn and there is δ ∈ ∆(kn,Dn) with
∫ T

0 |(Sδ − S
X)(x)| dx 6 η/2,



2.3 Auxiliary results 41

such that
∫
R |(Sδ − S

X)(x)| dx 6 η. It follows that the first term on the right
hand side of (2.14) is a vanishing sequence, because

γ(Sδ, σ;SX ∗ φσ) 6 ‖(Sδ − SX) ∗ φσ‖L1 6 ‖Sδ − SX‖L1‖φσ‖L1 6 η.

The second term is also a vanishing sequence by virtue of Glivenko-Cantelli’s
and Lebesgue’s Theorem. �

Lemma 2.4 The estimator Sδ̂(n) defined by (2.7) satisfies

(Pδ̂(n) ∗ φσ̂n) D−→ PZ

almost surely as n→∞.

Proof. The survival function SZ is continuous everywhere as it can be written
as a convolution with some normal density. Therefore, the convergence

ŜZn (x) n→∞−−−−→ SZ(x) a.s.

holds for every x ∈ R. Hence, by Lebesgue’s theorem,

γ(SX , σ; ŜZn ) n→∞−−−−→ 0 a.s.

The triangle inequality, together with Lemma 2.3, implies

γ(Sδ̂(n), σ̂n;SZ) 6 γ(Sδ̂(n), σ̂n; ŜZn ) + γ(SX , σ; ŜZn ) n→∞−−−−→ 0 a.s.

A continuity argument implies

(Sδ̂(n) ∗ φσ̂n)(x) n→∞−−−−→ SZ(x) a.s.

for every x ∈ R, which is in fact weak convergence and concludes the proof. �

2.4 Conclusion
The contribution of this chapter is the estimation of frontiers based on obser-
vation with additive noise in the input variable. The noise is not assumed to
vanish asymptotically. In this situation, them-frontier estimator introduced by
Cazals et al. (2002) is still a valuable tool, but it requires the plug-in of a con-
sistent estimator of the conditional survival function in order to be consistent
itself.
Attempting to construct such a consistent estimator, we are confronted with

a deconvolution problem which we solve adapting the results of Chapter 1 to
the context of the model at hand. Note that the noise level is not known, and
therefore needs to be estimated from a cross section of production units.
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Measurement errors are frequently encountered in empirical economic data, and
the new robust estimator is designed to be consistent in this setting. The rate of
convergence of the estimator is unknown, though. The study of its convergence
speed might be of interest for future research in efficiency analysis.
Note that the choice of the parametermn is crucial for the estimation quality.

In view of condition (2.11), the appropriate rate of divergence for mn which
makes the frontier estimator consistent depends on the convergence speed of
the deconvolution estimator of the conditional survival function ŜX|Y>y in the
frontier point. However, this convergence speed is not known. Thus, an adap-
tive choice of the parameter mn as a function of the sample size would be of
high interest. One approach to adaptivity could consist in deliberately choos-
ing too slow a rate for mn and trying to estimate the resulting bias. Such a
proceeding has been proposed by Daouia et al. (2009). It would be interesting
to investigate if this technique can be transferred to the case with noise in the
input variable.
One could also be interested in the case where the measurement error is in

the output rather than in the input variable. We would like to end this chapter
by explaining how the above methods can be adapted to this problem. In this
setting, in contrast to Section 2.2, the inputs Xi are directly observed, but only
a contaminated version

Wi = Yi + ηi, ηi ∼ N (0, σ2) (2.15)

of the true output variables Yi is observed, with ηi independent from Xi and Yi.
Let us briefly discuss the case where both the input and the output spaces are
one-dimensional, i.e. p = q = 1. As the frontier function ϕ : R+ → R+ given
in (2.1) is strictly increasing, its inverse function ϕ−1 : R+ → R+ exists. The
efficiency boundary can be described by either of the functions ϕ and ϕ−1.
Estimating ϕ−1 is thus equivalent to estimating ϕ itself. We can write the
inverse frontier function as

ϕ−1(x) = inf{y ∈ R+ | FY |X6x(y) = 1},

where FY |X6x denotes the conditional distribution function of Y given X 6 x.
To apply the robust m-frontier methodology, we therefore need to estimate
the conditional distribution function FY |X6x. From the model (2.15), one can
easily show that the estimation of FY |X6x is again a deconvolution problem,
and recalling that FY |X6x = 1− SY |X6x, we can define

(δ̂(n), σ̂n) := argmin
δ∈∆(kn,Dn)

σ∈[0,Dn]

γ(Sδ, σ; ŜW |X6x) and F̂n := 1− Sδ̂(n)

in analogy to Section 2.2.2. F̂n is the deconvolving estimator of the conditional
distribution function FY |X6x. We proceed by defining the robust m-frontier
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estimator of ϕ−1 as

ϕ̂−1
m,n(x) := A−

∫ A

0

{
F̂n(u)

}m
du,

where A > 0 is some constant fixed in advance. Let mn be a strictly divergent
sequence such that {F̂n(ϕ(x))}mn → 1 almost surely as n→∞. In analogy to
Theorem 2.2, it can be shown that for such a sequence, ϕ̂−1

mn,n(x) is consistent if
A > ϕ−1(x). Otherwise, ϕ̂−1

mn,n(x) tends to A almost surely. This suggests the
following adaptive choice of A. First, one computes the estimator with some
arbitrary initial value of A. If the result is close to A, recompute it repeatedly
for increasing values of A until a value smaller than A is obtained.
This estimator is thus robust with respect to noise in the output variable,

but note that it is not obvious how to generalize this procedure to a multi-
dimensional setting. Moreover, it is not clear how one could cope with a situ-
ation with error in both variables. These questions could be subject to further
investigation.





Chapter 3

Adaptive circular deconvolution

I n this chapter, which is based on Johannes and Schwarz (2009), we deal
with the estimation of circular probability densities from noisy observations.

«Circular» means that the observations are points on the circle. Such models
arise in numerous and various fields of application. Data with temporal struc-
ture is most naturally represented in this way – for example, times of day when
events of interest happen can be represented as points on a clock face, such
as requests in a computer network, financial transactions, or gun crimes (Gill
and Hangartner, 2010). Replacing the clock face by a compass rose, directional
data can also be treated in the circular setting. Curray (1956) considers the
analysis of directional data in the context of geological research. Cochran et al.
(2004) investigate migrating birds’ navigation abilities using circular data. But
the applications of circular data are not restricted to a spatio-temporal context:
Gill and Hangartner (2010) give an overview of circular data in political sci-
ence, where they can be used for example to model political preferences which
are neither of temporal nor of spatial nature. For a more detailed discussion of
the particularities of circular data we refer to Mardia (1972). Numerous circu-
lar data sets and examples of their statistical analysis can be found in Fisher
(1993).
Let X be a circular random variable whose density f we are interested in

and ε an independent additive circular error with unknown density ϕ. Denote
by Y = X+ε the contaminated observation data and by g its density. Through-
out this chapter we will identify the circle with the unit interval [0, 1), for nota-
tional convenience. Let b·c denote the floor function. Taking into account the
circular nature of the data, the model can be written as Y = X + ε− bX + εc.

45
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Then, we have

g(y) = (f ∗ ϕ)(y) :=
∫

[0,1)
f((y − s)− by − sc)ϕ(s) ds, y ∈ [0, 1),

such that ∗ denotes circular convolution. Therefore, the estimation of f is called
a circular deconvolution problem. Let L2 := L2([0, 1)) be the Hilbert space of
square integrable complex-valued functions defined on [0, 1) as defined in the
introduction of this thesis. We equip this space with the usual inner product
〈f, g〉 =

∫
[0,1) f(x)g(x)dx where g(x) denotes the complex conjugate of g(x). In

this chapter we suppose that f and ϕ, and hence g, belong to the subset D of
all densities in L2. It would be interesting as well to consider densities in L1 or,
more generally, in Lp spaces with p ∈ [1,∞]. The techniques that we employ
in this chapter make however use of the specific properties of L2 spaces, for
example the convergence of the Fourier series. A collection of hypotheses and
techniques allowing for estimation in L1 can be found in the monograph by
Devroye and Györfi (1985).
In L2, the densities admit representations as discrete Fourier series with

respect to the exponential basis {ej}j∈Z of L2, where ej(x) := exp(−i2πjx)
for x ∈ [0, 1) and j ∈ Z. Given p ∈ D and j ∈ Z, let [p]j := 〈p, ej〉 be the
j-th Fourier coefficient of p. In particular, [p]0 = 1. The key to the analysis of
the circular deconvolution problem is the discrete convolution theorem which
states that g = f ∗ ϕ if and only if [g]j = [f ]j [ϕ]j for all j ∈ Z. Therefore, as
long as [ϕ]j 6= 0 for all j ∈ Z, which we assume from now on, we have

f = 1+
∑
|j|>0

[g]j
[ϕ]j

ej with [g]j = E[ej(−Y )] and [ϕ]j = E[ej(−ε)] ∀ j ∈ Z.

(3.1)
Note that representation like (3.1) also holds in the case of deconvolution on
the real line when the X-density is compactly supported, but the error term ε,
and hence Y , take their values in R. In this situation, the deconvolution density
still admits a discrete representation as in (3.1), but involving the characteristic
functions of ϕ and g rather than their discrete Fourier coefficients. In fact,
apart from guaranteeing the discrete representation, the circular structure of
the model is only exploited in the proof of the lower bounds, the upper bounds
remaining valid in the case of a compactly supported density on the real line.
In this chapter we suppose that we know neither the density g = f ∗ ϕ of

the contaminated observations, nor the error density ϕ. But we have at our
disposal two independent samples of iid. random variables

Yk ∼ g, (k = 1, . . . , n) and εk ∼ ϕ, (k = 1, . . . ,m) (3.2)

distributed according to the densities g and ϕ, respectively. In practical situ-
ations, such an additional sample of the error distrubution is available for in-
stance when calibration measurements can be performed. For example, many
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digital cameras have an automatic color balance feature which necessitates tak-
ing a picture of a white sheet of paper. This can be interpreted as an observation
of Y = X + ε with known X, thus yielding an observation of ε itself. In the
context of circular data, one may rather think of calibrating navigation devices.
Our purpose is to establish a fully data-driven estimation procedure for the

deconvolution density f which attains optimal convergence rates in a minimax-
sense. More precisely, given classes Frγ and Edλ (defined below) of deconvolution
and of error densities, respectively, we shall measure the accuracy of an esti-
mator f̃ of f by the maximal weighted risk supf∈Frγ supϕ∈Ed

λ
E‖f̃−f‖2ω defined

with respect to some weighted norm

‖f‖2ω :=
∑
j∈Z

ωj |[f ]j |2, f ∈ L2 (3.3)

where ω := (ωj)j∈Z is a strictly positive sequence of weights. This allows us to
quantify the estimation accuracy in terms of the mean integrated square error
(MISE) not only of f itself, but as well of its derivatives, for example. It is well
known that even in case of a known error density the maximal risk in terms
of the MISE in the circular deconvolution problem is essentially determined
by the asymptotic behavior of the sequences of Fourier coefficients ([f ])j∈Z
and ([ϕ])j∈Z of the deconvolution density and the error density, respectively.
For a fixed deconvolution density f , a faster decay of the ε-density’s Fourier
coefficients ([ϕ])j∈Z results in a slower optimal rate of convergence. In the
standard context of an ordinary smooth deconvolution density for example,
i.e. when ([f ])j∈Z decays polynomially, logarithmic rates of convergence appear
when the error density is super smooth, i.e. when ([ϕ])j∈Z has exponential decay.
Efromovich (1997) treats exclusively this special case, for example. However,
this situation and many others are covered by the density classes

Frγ :=
{
p ∈ D

∣∣∣ ∑
j∈Z

γj |[p]j |2 =: ‖p‖2γ 6 r
}

and

Edλ :=
{
p ∈ D

∣∣∣ d−1 6
|[p]j |2

λj
6 d ∀ j ∈ Z

}
,

where r, d > 1 and the positive weight sequences γ := (γj)j∈Z and λ := (λj)j∈Z
specify the asymptotic behavior of the respective sequence of Fourier coeffi-
cients. In section 3.2 we show a lower bound of the maximal weighted risk which
is essentially determined by the sequences γ, λ, and ω. This lower bound is
composed of two main terms, each of them depending on the size of one sample,
but not on the other. Let us define an orthogonal series estimator by replacing
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the unknown Fourier coefficients in (3.1) by empirical counterparts, that is,

f̂k := 1 +
∑

0<|j|6k

[̂g]j
[̂ϕ]j

1[| ̂[ϕ]j |2>1/m]ej with

[̂g]j := 1
n

n∑
i=1

ej(−Yi) and [̂ϕ]j := 1
m

m∑
i=1

ej(−εi). (3.4)

For each j, we introduce a threshold for the estimated coefficient [̂ϕ]j that
corresponds, as Neumann (1997) remarks, to the rate at which [ϕ]j can be
estimated. Again, things work out analogously in deconvolution on the real
line, where one only has to replace the empirical Fourier coefficients by the
corresponding values of the empirical characteristic functions. Similar estima-
tors have already been studied by Neumann (1997) on the real line and by
Efromovich (1997) in the circular case, for example.
We show in this chapter that the estimator f̂k can attain the lower bound and
is hence minimax optimal. By comparing the minimax rates in the cases of
known and unknown error density, we can characterize the influence of the
estimation of the error density on the quality of the estimation. In particular,
depending on the Y -sample size n, we can determine the minimal ε-sample
size mn needed to attain the same upper risk bound as in the case of a known
error density, up to a constant. Interestingly, the required sample size mn is far
smaller than n in a wide range of situations. For example, in the super smooth
case, it is sufficient that the size of the ε-sample is a polynomial in n, that is,
mn = nr for any r > 0.
Of course, minimax optimality is only achieved as long as the dimension

parameter k is chosen in an appropriate way. In general, this optimal choice of k
depends among other things on the sequences γ and λ. However, in the special
case where the error density is known to be super smooth and the deconvolution
density is ordinary smooth, the optimal dimension parameter depends only on λ
but not on γ. Hence, the estimator is automatically adaptive with respect to γ
under the optimal choice of k. In this situation Efromovich (1997) provides an
estimator which is also adaptive with respect to the super smooth error density.
On the contrary, Cavalier and Hengartner (2005), deriving oracle inequalities in
an indirect regression problem based on a circular convolution contaminated by
Gaussian white noise, treat the ordinary smooth case only. Like in our setting,
their observation scheme involves two independent samples. It is worth to note
that in order to apply these estimators, one has to know in advance at least
if the error density is ordinary or super smooth. We provide in this chapter
a unified estimation procedure which can attain minimax rates in either of
the both cases, that is, which is adaptive over a class including both ordinary
and super smooth error densities. This fully adaptive method to choose the
parameter k only depends on the observations and not on characteristics of
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neither f nor ϕ. The central result of the present chapter states that for this
automatic choice k̂, the estimator f̂

k̂
attains the lower bound up to a constant,

and is thus minimax-optimal, over a wide range of sequences γ and λ, covering
in particular both ordinary and super smooth error densities. A similar result
has recently been derived in the context of a functional linear regression model
by Comte and Johannes (2010).
As far as the two sample sizes are concerned, the assumption made by Cav-

alier and Hengartner (2005) on the respective noise levels can be translated
to our model by stating that the ε-sample size m is at least as large as the
Y -sample size n. This assumption is also used by Efromovich (1997). Note
also that in the functional linear regression model, only one sample size n oc-
curs (c.f. Comte and Johannes (2010)). However, as mentioned above, without
changing the minimax rates, the ε-sample size can be reduced to mn, which
can be far smaller than n. This is a desirable property, as the observation of
the additional sample from ε may be expensive in practice. Nevertheless, the
minimal choice of m depends among other things on the sequences γ and λ
and is hence unknown in general. In spite of the minimax rate being eventu-
ally deteriorated by choosing the sample size m smaller than n, the proposed
estimator still attains this rate in many cases, that is, no price in terms of
convergence rate has to be paid for adaptivity.
The adaptive choice of k is motivated by the general model selection strategy

developed in Barron et al. (1999). Concretely, following Comte and Taupin
(2003), who treat the case of a known error density only, we first define a
contrast Υ(·) such that the orthogonal series estimator f̂k is its argmin and
Υ(f̂k) = −‖f̂k‖2ω. See the proof of Theorem 3.12 for the details. Then, k̂ is the
minimizer of a penalized contrast

k̂ := argmin
16k6K

{
− ‖f̂k‖2ω + pen(k)

}
.

Note that the norm ‖f̂k‖2ω can easily be computed. As in case of a known
error density, it turns out that the penalty function pen(·) as well as the upper
bound K needed for the right choice of k depend on a characteristic of the error
density which is now unknown. This quantity is often referred to as the degree of
ill-posedness of the underlying inverse problem. Therefore, as an intermediate
step, we allow the penalty function pen(·) and the upper bound K to depend
on the error density. We then show an upper risk bound for the resulting
partially adaptive estimator. We prove that over a wide range of sequences γ,
this choice of k yields the same upper risk bound as the optimal choice, up to
a constant. Finally, we choose k fully adaptively by replacing pen(·) and K
by their empirical versions which depend only on the data. As in the case of
known degree of ill-posedness, we show an upper risk bound for the now fully
adaptive estimator.
This chapter is organized as follows. In the first section, we discuss the case
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of direct density estimation, that is, without noise on the data. This example
serves as an introduction to the tools used throughout this (and the following)
chapter, such as orthogonal series estimators, minimax theory, and adaptation
by model selection. In Section 3.2, we develop the minimax theory for the
circular deconvolution model with respect to the weighted norms introduced
above and we compute the rates which we can obtain in different configurations
for the weight sequences. Section 3.3 is devoted to the construction of the
adaptive estimator and an upper risk bound is shown. Again, the result is
illustrated by the example configurations considered in Section 3.2. On account
of legibility, some technical Lemmas are deferred to the end of the chapter.

3.1 Minimax and adaptivity – an introductory
example

In order to introduce the basic concepts of this chapter – namely orthogonal
series estimators, minimax theory, and adaptation – we consider in this section
the case of direct density estimation without noise in the variables. This allows
us to explain the method in a general way without having to cope with too
many technicalities.

Orthogonal series

Let X be a real-valued random variable distributed according to some unknown
density f ∈ L2[0, 1] and suppose an iid. sample X1, . . . , Xn from X. Let (ej)j∈Z
be the exponential basis of the Hilbert space L2[0, 1] and denote by [f ]j :=
〈f, ej〉 = E[ej(−X)] the coefficients of f with respect to this basis. These
coefficients can be estimated without bias by [̂f ]j := n−1∑n

k=1 ej(−Xk). Then,
the density has the representation f =

∑
j∈Z[f ]j ej and a natural estimator

of f is given by the orthogonal sum f̂k =
∑
|j|6k [̂f ]j ej . The mean integrated

squared error (MISE) is then easily seen to be bounded by

E‖f̂k − f‖2 6 kn−1 +
∑
|j|>k

[f ]2j ,

where the first summand is the variance term and the second one the bias
term. Obviously, the bias term tends to zero as k tends to infinity. Thus, f̂k is
consistent if k →∞ and k/n→ 0 simultaneously.

Minimax

One performance measure for our estimator f̂k is its maximal risk over a given
class of possible density functions. Suppose that f lies in the class Frγ which
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we have defined in the introduction of this chapter. In this paragraph, we will
only consider the special case where

γ0 = 1 and γj = j2p for |j| > 1

in order to keep things simple. The minimax risk is then

inf
f̃

sup
f∈Frγ

E‖f̃ − f‖2,

where the infimum is taken over all possible estimators f̃ of f . Such an estima-
tor is said to be minimax optimal with respect to the class Frγ if its maximal
risk over the class Frγ is bounded from above by the minimax risk up to a con-
stant. In the case of our orthogonal series estimator, with f in Frγ , one easily
sees that the maximal risk over the class Frγ is bounded by

sup
f∈Frγ

E‖f̂k − f‖2 6
{
kn−1 + rk−2p}.

The upper bound of the maximal risk is minimal when bias and variance term
are of the same order which is the case for k = k∗n := n1/(2p+1) in this example.
Plugging in, we obtain

sup
f∈Frγ

E‖f̂k∗n − f‖
2 6 Cn−2p/(2p+1),

which is known to be the minimax risk1. Hence, the estimator f̂k∗n is minimax
optimal in the class Frγ . It is important to notice that minimax optimality is
ensured only under the appropriate choice of the dimension parameter k. Its
optimal value, k∗n, however, depends on the class Frγ via the parameter p.

Adaptivity

If no information about the parameter p is available, the choice of the dimension
parameter k has to be made based on the observations only. We call such a
choice adaptive to the parameter p if the estimator attains the minimax optimal
rate of convergence with respect to the class Frγ for a wide range of possible
parameters p. Later on in this chapter, we are going to consider more general
sequences γ.
As a method of constructing an adaptive estimator, we use the so called

model selection which is inspired by the techniques summarized in Barron et al.
(1999): First, a contrast function is defined such that the orthogonal series
estimator can be written as its minimizer. Then, the adaptive choice of the

1This follows for example from Proposition 3.8 [o-o] with a = s = 0. (cf. also Tsybakov,
2004)
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dimension parameter is defined as the minimizer of a penalized contrast. This
construction allows us to find an upper bound of the risk like in (3.16). The
technical difficulty lies in finding an appropriate decomposition of the terms
appearing in this upper bound and in their statistical control.
In the context of our example model, we use the contrast function

Υ(t) = ‖t‖2 − 2
〈
t,
∑
j∈Z

[̂f ]j ej
〉
.

For functions t in the subspace Sk := span{e−k, . . . , ek} in L2[0, 1], this contrast
takes the form Υ(t) = ‖t− f̂k‖2 − ‖f̂k‖2 and we can obviously write the series
estimator as

argmin
t∈Sk

Υ(t) = f̂k. (3.5)

Noting that Υ(f̂k) = −‖f̂k‖2, we define

k̆ := argmin
k=1,...,n

{−‖f̂k‖2 + 24 k n−1}, (3.6)

where 24 k n−1 is the above-mentioned penalty term which has to be of the
order of the estimator’s variance. The adaptive estimator is then defined as f̂k̆.

Remark 3.1 The constant 24 appearing in the penalty term may seem some-
what arbitrary at first sight, but in fact this choice results from the coefficients
arising in the decomposition of the risk which we perform below. The same
is true for other numerical constants appearing in the subsequent results and
proofs of this work. Although the focus of this work is not the optimality of
the constants in the risk bounds, we have tried to give precise numerical val-
ues for the constants where ever possible. Constants in risk bounds and their
optimalization in various models have been worked on by Barron et al. (1999),
for example. �

Letting pen(k) = 24kn−1, we have for all 1 6 k 6 n that Υ(f̂k̆) + pen(k̆) 6
Υ(fk) + pen(k), using (3.5) and (3.6). Letting fk :=

∑
|j|6k[f ]j ej denote the

projection of f , this implies

‖f̂k̆‖
2 − ‖fk‖2 6 2〈f̂k̆ − fk, Φ̂f̂ 〉+ pen(k)− pen(k̆),

and hence

‖f̂k̆ − f‖
2 6 ‖f − fk‖2 + pen(k)− pen(k̆) + 2〈f̂k̆ − fk,Φf̂ − f〉. (3.7)

Consider the unit ball Bk := {f ∈ Sk | ‖f‖ 6 1} and, for arbitrary τ > 0 and
t ∈ Sk, the elementary inequality

2|〈t, h〉| 6 2‖t‖ sup
t∈Bk
|〈t, h〉| 6 τ‖t‖2 + 1

τ
sup
t∈Bk
|〈t, h〉|2 = τ‖t‖2 + 1

τ

k∑
j=−k

|[h]j |2.
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Combining this bound with (3.7) yields

‖f̂k̆−f‖
2 6 ‖f−fk‖2+τ ‖f̂k̆−fk‖

2+pen(k)−pen(k̆)+ 1
τ

sup
t∈Bk∨k̆

|〈t,Φ
f̂
−f〉|2.

Notice that ‖f̂k̆ − fk‖2 6 2‖f̂k̆ − f‖2 + 2‖fk − f‖2 and that ‖f − fk‖2 6 r/γk
for all f ∈ Frγ because γk = k2p is non decreasing. Setting τ := 1/4, we obtain

1
2‖f̂k̆ − f‖

2 6
3
2 (r/γk) + pen(k)− pen(k̆) + 4 sup

t∈Bk∨k̆
|〈t,Φ

f̂
− f〉|2,

Then, using pen(k ∨ k̆) 6 pen(k) + pen(k̆),

1
2‖f̂k̆−f‖

2 6
3
2 (r/γk)+4

(
sup

t∈Bk∨k̆
|〈t,Φ

f̂
−f〉|2−6 (k ∨ k̆)/n

)
+

+2 pen(k)

for all k = 1, . . . , n. Finally, notice that since k∗n 6 n for any p > 0, the
term mink=1,...,n max(r/γk, k/n) is of the order of the minimax optimal risk
n−2p/(2p+1). Thus, we obtain

sup
f∈Frγ

E‖f̂k̆ − f‖
2 6 Cn−2p/(2p+1)

+ C E
[ n∑
k′=1

(
sup
t∈Bk′

|〈t,Φ
f̂
− f〉|2 − 6 (k′)/n

)
+

]
The second term can be shown to be of order n−1 using an exponential in-
equality by Talagrand (cf. Theorem A.5), which is one of the main technical
tools used in the proofs of this chapter. To end this example, we conclude from
the above that the estimator f̂k̆ is adaptive and minimax optimal with respect
to the class Frγ for polynomial sequences γj = j2p with p > 0. Note that the
constants appearing here and in the rest of the chapter are not optimal, though.
From the next section on, we will be considering the model described in the

introduction to this chapter. This involves a second unknown function, namely
the density of the error distribution which is supposed to lie in some class Edλ.
The minimax risk under consideration is thus

inf
f̃

sup
f∈Frγ

sup
ϕ∈Ed

λ

E‖f̃ − f‖2.

Furthermore, we will allow for other sequences γ than just polynomial ones. In
particular, we will show that the estimator we are going to develop is adaptive
over a range of sequences including both polynomial and exponential ones.
The construction of the adaptive estimator and the control of its risk follow
nevertheless the outline given in this section. Though, extra terms appear
in (3.7), for example, causing additional technical difficulties.
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3.2 Minimax optimal estimation

In this section, we develop the minimax theory for the estimation of a circu-
lar deconvolution density under unknown error density when two independent
samples from Y and ε of size n and m, respectively, are available. A lower
bound depending on both sample sizes is derived and it is shown that the or-
thogonal series estimator f̂k defined in (3.4) attains this lower bound up to a
constant if k is chosen in an appropriate way.
Here and subsequently, we will refer to any sequence (an)n∈Z as a whole by

omitting its index as for example in «the sequence a». Arithmetic operations on
sequences are defined element-wise. Furthermore, we will denote by C universal
numerical constants and by C(·) constants depending only on the arguments. In
both cases, the values of the constants may change from line to line. Moreover,
we write an . bn when an 6 C bn for all sufficiently large n ∈ N and an ∼ bn
when an . bn and bn . an simultaneously. All results in this chapter are
derived under the following minimal regularity conditions.

Assumption 3.2 Let γ, ω, and λ be strictly positive symmetric sequences of
weights with γ0 = ω0 = ω1 = λ0 = λ1 = 1 such that (ωn/γn)n∈N and (λn)n∈N
are non increasing, respectively with Λ :=

∑
j∈Z λj <∞.

As the densities f and ϕ are real-valued, the sequences of their Fourier coef-
ficients are symmetric. Therefore, the symmetry assumption is natural. The
monotonicity of (ω/γ) ensures that the norm ‖f‖ω with respect to the weighted
norm defined by ω is well defined for all f ∈ Frγ . In the context of the illustra-
tion section beginning on page 61, this roughly means that we cannot estimate
the (s+1)-th derivative of a solution f which is only s times differentiable. The
monotonicity and the summability of λ are no restrictions, because the error
density ϕ is supposed to lie in L2 and therefore its Fourier coefficients [ϕ]j are
square summable anyway.

Lower bounds

The next assertion provides a lower bound in case of a known error density,
which depends on the size of the Y -sample only. Of course, this lower bound
is still valid in case of an unknown error density.

Theorem 3.3 Assume that we have a sample of n iid. copies of Y . Consider
sequences ω, γ, and λ satisfying Assumption 3.2 such that

∑
j∈Z γ

−1
j =: Γ <∞
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and such that ϕ ∈ Edλ for some d > 1. Define for all n > 1

k∗n := k∗n(γ, λ, ω) := argmin
k∈N

{
max

(ωk
γk
,
∑

0<|j|6k

ωj
nλj

)}
and

ψn := ψn(γ, λ, ω) := max
(ωk∗n
γk∗n

,
∑

0<|j|6k∗n

ωj
nλj

)
.

(3.8)

If in addition η := infn>1{ψ−1
n min(ωk∗nγ

−1
k∗n
,
∑

0<|l|6k∗n
ωl(nλl)−1)} > 0, then

for all n > 2

inf
f̃

sup
f∈Frγ

{
E‖f̃ − f‖2ω

}
>
ηmin(r − 1, 1/(8dΓ))

16 ψn,

where the infimum is taken over all possible estimators of f .

The assumption that Γ <∞ is used in the proof of the lower bound when con-
structing candidate densities for the application of Assouad’s cube technique.
It roughly means that f has to be continuous. The condition η > 0 ensures
that the minimal risk can indeed be found by balancing bias and variance. It
is satisfied for a regular behavior of the sequences γ, λ, and ω as defined for
example in the illustration section of this chapter.

Remark 3.4 When ϕ is known, it is natural to consider the orthogonal series
estimator f̃k := 1 +

∑
1<|j|6k([̂g]j/[ϕ]j) ej . It is easily seen that for |j| 6 k,

we have E[[f̃ ]j ] = [f ]j and Var([f̃ ]j) 6 (n|[ϕ]j |2)−1, while E[[f̃ ]j ] = 0 and
Var([f̃ ]j) = 0 for |j| > k. Hence, for all f ∈ Frγ and ϕ ∈ Edλ we have

E[‖f̃k − f‖2ω] 6
∑
|j|>k

ωj |[f ]j |2 + 1
n

∑
0<|j|6k

ωj
|[ϕ]j |2

6 (r + d) max
(ωk
γk
,
∑

0<|j|6k

ωj
nλj

)
.

Thus, the choice k∗n of k from (3.8) realizes the best variance-bias trade-off ψn.
This shows that when ϕ is known, f̃k∗n actually attains the rate ψn which is
hence the minimax optimal one. �

Proof of Theorem 3.3. Defining first the quantities

ζ := ηmin(r − 1, 1/(8dΓ)) and αn := ψn(
∑

0<|j|6k∗n

ωj/(λjn))−1,
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we consider the function f := 1 + (ζαn/n)1/2∑
0<|j|6k∗n

λ
−1/2
j ej . Lemma 3.21

shows that for any θ := (θj) ∈ {−1, 1}2k∗n , the function

fθ := 1 +
∑

0<|j|6k∗n

θj [f ]jej

belongs to Frγ and is hence a possible candidate of the deconvolution density.
For each θ, the Y -density corresponding to the X-density fθ is given by the
convolution gθ := fθ ∗ ϕ. We denote by gnθ the joint density of an iid. n-
sample from gθ and by Eθ the expectation with respect to the joint density gnθ .
Furthermore, for 0 < |j| 6 k∗n and each θ we introduce θ(j) by θ(j)

l = θl for
j 6= l and θ(j)

j = −θj . The key argument of this proof is the following reduction
scheme based on Assouad’s cube technique (c.f. Korostolev and Tsybakov, 1993;
Tsybakov, 2004). Let f̃ denote an estimator of f . We deduce that

sup
f∈Frγ

E‖f̃ − f‖2ω > sup
θ∈{−1,1}2k∗n

Eθ‖f̃ − fθ‖2ω >
1

22k∗n

∑
θ∈{−1,1}2k∗n

Eθ‖f̃ − fθ‖2ω

>
1

22k∗n

∑
θ∈{−1,1}2k∗n

∑
0<|j|6k∗n

ωjEθ|[f̃ − fθ]j |2

= 1
22k∗n

∑
θ∈{−1,1}2k∗n

∑
0<|j|6k∗n

ωj
2

{
Eθ|[f̃ − fθ]j |2 + Eθ(j) |[f̃ − fθ(j) ]j |2

}
.

Considering the Hellinger affinity ρ(gnθ , gnθ(j)) =
∫ √

gnθ
√
gn
θ(j) , we obtain for

any estimator f̃ of f that

ρ(gnθ , gnθ(j)) 6
∫
|[f̃ − fθ(j) ]j |
|[fθ − fθ(j) ]j |

√
gn
θ(j)

√
gnθ +

∫
|[f̃ − fθ]j |
|[fθ − fθ(j) ]j |

√
gnθ

√
gn
θ(j)

6
(∫ |[f̃ − fθ(j) ]j |2

|[fθ − fθ(j) ]j |2
gnθ(j)

)1/2
+
(∫ |[f̃ − fθ]j |2

|[fθ − fθ(j) ]j |2
gnθ

)1/2
.

Rewriting the last estimate we obtain{
Eθ|[f̃ − fθ]j |2 + Eθ(j) |[f̃ − fθ(j) ]j |2

}
>

1
2 |[fθ − fθ(j) ]j |2ρ2(gnθ , gnθ(j)).

Bounding the Hellinger affinity from below by 1/4 using Lemma 3.22 shows
that for n > 2 we have{

Eθ|[f̃ − fθ]j |2 + Eθ(j) |[f̃ − fθ(j) ]j |2
}
>

ζαn
4λjn

.

Combining the last lower bound and the reduction scheme yields

sup
f∈Frγ

E‖f̃ − f‖2ω >
1

22k∗n

∑
θ∈{−1,1}2k∗n

∑
0<|j|6k∗n

ωj
2
ζ αn
4λjn

= ζ

8αn
∑

0<|j|6k∗n

ωj
λjn

.
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Hence, substituting the definitions of ζ and αn we obtain the lower bound given
in the theorem. �

Observe that in case r = 1, the lower bound is equal to zero, because in
this situation the set Frγ reduces to a singleton containing the uniform density
only. In the next theorem we state a lower bound characterizing the additional
complexity due to the unknown error density, which depends only on the error
sample size.

Theorem 3.5 Assume (3.2) and let ω, γ, and λ be sequences satisfying As-
sumption 3.2. For all m > 2, let

κm := κm(γ, λ, ω) := max
j∈N

{
ωjγ

−1
j min

(
1, 1
mλj

)
)}
. (3.9)

If in addition there exists a density in E
√
d

λ which is bounded from below by 1/2,
then, for all m > 2

inf
f̃

sup
f∈Frγ

sup
ϕ∈Ed

λ

{
E‖f̃ − f‖2ω

}
>

min(r − 1, 1) min(1/(4d), (1− d−1/4)2)
4
√
d

κm,

where the infimum is taken over all possible estimators of f .

It is easily seen that E
√
d

λ contains a density which is bounded from below by 1/2
if ` :=

∑
j∈Z λ

−1/2
j <∞ and

√
d > max(4`2, 1). It is worth to note that in case

d = 1, the set Edλ of possible error densities reduces to a singleton, and hence
the lower bound is equal to zero.
The proof of the last assertion is inspired by a proof given in Neumann (1997),

where a similar lower bound for deconvolution on the real line is shown when
both densities f and ϕ are ordinary smooth, i.e. when γ and λ have polynomial
decay.

Proof of Theorem 3.5. For each θ ∈ {−1, 1}, we construct an error density ϕθ
in Edλ and a deconvolution density fθ ∈ Frγ , such that gθ := fθ ∗ ϕθ satisfies
g1 = g−1. To this end, define

k∗m := argmax
|j|>0

{ωjγ−1
j min(1,m−1λ−1

j )}

and αm := ζ min(1,m−1/2λ
−1/2
k∗m

) with ζ := min(1/(2
√
d), (1−d−1/4)). Observe

that

1 > (1− αm)2 > (1− (1− 1/d1/4))2 > 1/d1/2

and 1 6 (1 + αm)2 6 (1 + (1− 1/d1/4))2 = (2− 1/d1/4)2 6 d1/2,
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which implies 1/d1/2 6 (1 + θαm)2 6 d1/2 for θ ∈ {−1, 1}. These inequalities
will be used below without further reference. By assumption there is a density
ϕ ∈ E

√
d

λ such that ϕ > 1/2. For each θ, let

fθ := 1 + (1− θαm)min(
√
r − 1, 1)
d1/4 γ

−1/2
k∗m

ek∗m and ϕθ := ϕ+ θαm[ϕ]k∗mek∗m .

By Lemma 3.23, we have fθ ∈ Frγ and ϕθ ∈ Edλ. Moreover, it is easily verified
that

gθ = 1 + (1− α2
m)min(

√
r − 1, 1)
d1/4 γ

−1/2
k∗m

[ϕ]k∗mek∗m
and hence g1 = g−1. We denote by gnθ the joint density of an iid. n-sample
from gθ and ϕmθ the joint density of an iid. m-sample from ϕθ. Since the
samples are independent from each other, pθ := gnθ ϕ

m
θ is the joint density of all

observations and we denote by Eθ the expectation with respect to pθ. Applying
a reduction scheme we deduce that for each estimator f̃ of f

sup
f∈Frγ

sup
ϕ∈Ed

λ

E‖f̃ − f‖2ω > max
θ∈{−1,1}

Eθ‖f̃ − fθ‖2ω

>
1
2

{
E1‖f̃ − f1‖2ω + E−1‖f̃ − f−1‖2ω

}
.

As in the proof of Theorem 3.3, employing the Hellinger affinity ρ(p1, p−1) we
obtain for any estimator f̃ of f that{

E1‖f̃ − f1‖2ω + E−1‖f̃ − f1‖2ω
}
>

1
2‖f1 − f−1‖2ωρ2(p1, p−1) > 1

8‖f1 − f−1‖2ω,

where the last inequality follows by Lemma 3.24. Moreover, we have

‖f1 − f−1‖2 = 4α2
mωk∗mγ

−1
k∗m

(r − 1) ∧ 1
d1/2

= 4(r − 1) ∧ 1
d1/2 ζ2ωk∗mγ

−1
k∗m

min
(

1, 1
mλk∗m

)
.

Combining the last lower bound, the reduction scheme and the definition of k∗m
implies the result of the theorem. �

Finally, by combination of both lower bounds we obtain the next corollary.

Corollary 3.6 Under the assumptions of Theorem 3.3 and 3.5 for all n,m > 2

inf
f̃

sup
f∈Frγ

sup
ϕ∈Ed

λ

{
E‖f̃ − f‖2ω

}
> C(η, r, d,Γ) max(ψn, κm).
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Upper bound

In the next theorem and in all subsequent results, we will suppose observa-
tions according to (3.2). First, we summarize sufficient conditions to ensure
the optimality of the orthogonal series estimator f̂k defined in (3.4) provided
the dimension parameter k is chosen appropriately. We use the value k∗n de-
fined in (3.8) which, though it obviously involves the sequences ω, γ, and λ,
surprisingly does not depend on the ε-sample size m. Under this choice, the
estimator attains the lower bound given in Corollary 3.6 up to a constant and
is hence minimax-optimal.

Theorem 3.7 Under Assumption 3.2, we have for all n,m > 1 that

sup
f∈Frγ

sup
ϕ∈Ed

λ

{
E‖f̂k∗n − f‖

2
ω

}
6 C {(d+ r)ψn + d r κm}.

Proof. We begin our proof with the observation that

Var([̂g]j) 6 n
−1 and Var([̂ϕ]j) 6 m

−1

for all j ∈ Z. Moreover, by virtue of Theorem A.3 from the appendix, there
exists a constant C > 0 such that E|[̂ϕ]j − [ϕ]j |4 6 C/m2 for all j ∈ Z and
m ∈ N. These results are used below without further reference. Define now

f̃ := 1 +
∑

0<|j|6k∗n

[f ]j1{|[̂ϕ]j |
2 > 1/m}ej

and decompose the risk into two terms,

E‖f̂k∗n − f‖
2
ω 6 2E‖f̂k∗n − f̃‖

2
ω + 2E‖f̃ − f‖2ω =: A+B, (3.10)

which we bound separately. Consider first A which we decompose further,

E‖f̂k∗n − f̃‖
2
ω 6 2

∑
0<|j|6k∗n

ωjE
[
|[̂g]j − [g]j |2

|[̂ϕ]j |2
1| ̂[ϕ]j |2>1/m

]

+ 2
∑

0<|j|6k∗n

ωj |[f ]j |2E
[
|[̂ϕ]j − [ϕ]j |2

|[̂ϕ]j |2
1{|[̂ϕ]j |

2 > 1/m}
]

=: A1 +A2.

Using the elementary inequality |[ϕ]j/[̂ϕ]j |2 6 2|[ϕ]j/[̂ϕ]j−1|2 +2, the indepen-
dence of ϕ̂ and ĝ, and ϕ ∈ Edλ together with the definition of ψn given in (3.8),
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we obtain

A1 6 4
∑

0<|j|6k∗n

ωj

{mVar([̂g]j) Var([̂ϕ]j)
|[ϕ]j |2

+
Var([̂g]j)
|[ϕ]j |2

}
6 8d

∑
0<|j|6k∗n

ωj
nλj

6 8dψn.

Moreover, we have

E
[
|[̂ϕ]j − [ϕ]j |2

|[̂ϕ]j |2
1{|[̂ϕ]j |

2 > 1/m}
]
6

2mE|[̂ϕ]j − [ϕ]j |4

|[ϕ]j |2
+

2 Var([̂ϕ]j)
|[ϕ]j |2

6
C

m|[ϕ]j |2
6

C d

mλj

and E
[
|[̂ϕ]j − [ϕ]j |2

|[̂ϕ]j |2
1{|[̂ϕ]j |

2 > 1/m}
]
6 1,

where we have used the elementary inequality and ϕ ∈ Edλ again. By combi-
nation of both bounds together with f ∈ Frγ and the definition of κm given
in (3.9) we obtain

A2 6 Cd
∑

0<|j|6k∗n

ωj |[f ]j |2 min(1, 1
mλj

) 6 Cdr κm.

Consider now B which we decompose further into

E‖f̃ − f‖2ω =
∑
0<|j|

ωj |[f ]j |2(1− 1{0 < |j| 6 k∗n}1{|[̂ϕ]j |
2 > 1/m})2

=
∑
|j|>k∗n

ωj |[f ]j |2 +
∑

0<|j|6k∗n

ωj |[f ]j |2P
(
|[̂ϕ]j |

2 < 1/m
)

=: B1 +B2,

where B1 6 ‖f‖2γωk∗nγ
−1
k∗n
6 rψn because f ∈ Frγ . Moreover, B2 6 4drκm by

using that
P
(
|[̂ϕ]j |

2 < 1/m
)
6 4dmin(1, 1

mλj
), (3.11)

which we will show below. The result of the theorem follows now by combina-
tion of the decomposition (3.10) and the estimates of A1, A2, B1 and B2.
To conclude, let us prove (3.11). If |[ϕ]j |2 > 4/m, then we deduce by em-

ploying Chebychev’s inequality that

P(|[̂ϕ]j |
2 < 1/m) 6 P(|[̂ϕ]j/[ϕ]j | < 1/2) 6 P(|[̂ϕ]j − [ϕ]j | > |[ϕ]j |/2)

6 4
Var([̂ϕ]j)
|[ϕ]j |2

6 4d/(mλj).
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On the other hand, in case |[ϕ]j |2 < 4/m the estimate P(|[̂ϕ]j |2 < 1/m) 6
4d/(mλj) holds too since 1 6 4/(m|[ϕ]j |2) 6 4d/(mλj). Combining the last
estimates and P(|[̂ϕ]j |2 < 1/m) 6 1 we obtain (3.11), which completes the
proof. �

Note that under slightly stronger conditions on the sequences ω, γ, and λ than
Assumption 3.2, it can be shown that in case of equally large samples from Y
and ε we have always the rate as in case of known error density. However,
below we show that in special cases the required ε-sample size can be much
smaller than the Y -sample size.

Illustration: estimation of derivatives
We will illustrate our results considering classical smoothness assumptions. As
far as the deconvolution density f is concerned, recall that the class Frγ is
a subset of the Sobolev space of p-times differentiable periodic functions if
γj ∼ |j|2p (Neubauer (1988a,b)). We call this case ordinary smooth. Moreover,
up to a constant, for any function h ∈ Frγ , the weighted norm ‖h‖ω with
ωj ∼ j2s equals the L2-norm of the s-th weak derivative h(s) for each integer
0 6 s 6 p. By virtue of this relation, the results in the previous section imply
also a lower as well as an upper bound of the L2-risk for the estimation of the s-
th weak derivative of f . If, on the contrary, γj ∼ exp(|j|2p) with p > 1, then Frγ
is a class of analytic functions (Kawata (1972)). We refer to this situation as
super smooth.
As for the error densities, we consider two special cases corresponding to a

regular decay of their Fourier coefficients. The error density is called ordinary
smooth if λj ∼ |j|−2a for some a > 1/2 and super smooth if λj ∼ exp(−|j|2a)
for some a > 0.
We are going to consider the following three situations: In the cases [o-o]

and [s-o], the error density is ordinary smooth, while the deconvolution density
falls in the ordinary or super smooth case, respectively. [o-s] is the opposite
case of [s-o].
It is easily seen that in all these cases the minimal regularity conditions given

in Assumption 3.2 and the additional conditions used in Theorems 3.3 and 3.5
translate to simple restrictions on p, a, and s which are given in the proposition
below. Roughly speaking, they imply that both the deconvolution density and
the error density are at least continuous. The lower bound presented in the
next assertion follows now directly from Corollary 3.6.
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Proposition 3.8

[o-o] For p > 1/2, a > 1, and 0 6 s 6 p, we have

inf
f̃(s)

sup
f∈Frγ

sup
ϕ∈Ed

λ

{
E‖f̃ (s) − f (s)‖2

}
& n−2(p−s)/(2p+2a+1) +m−((p−s)∧a)/a.

[s-o] For p > 0, a > 1, and s > 0, we have

inf
f̃(s)

sup
f∈Frγ

sup
ϕ∈Ed

λ

{
E‖f̃ (s) − f (s)‖2

}
& n−1(logn)(2a+2s+1)/(2p) +m−1.

[o-s] For p > 1/2, a > 0, and 0 6 s 6 p, we have

inf
f̃(s)

sup
f∈Frγ

sup
ϕ∈Ed

λ

{
E‖f̃ (s) − f (s)‖2

}
& (logn)−(p−s)/a + (logm)−(p−s)/a.

Proof. Since for each 0 6 s 6 p we have E‖f̃ (s) − f (s)‖2 ∼ E‖f̃ − f‖2ω we
can apply the general result given in Corollary 3.6. In both cases the addi-
tional conditions formulated in Theorem 3.3 and 3.5 are easily verified. There-
fore, it is sufficient to evaluate the lower bounds ψn and κm given in (3.8)
and (3.9), respectively. Note that the optimal dimension parameter k∗n :=
argminj∈N{max(ωjγj ,

∑
0<|l|6j

ωl
nλl

)} satisfies nωk∗n/γk∗n ∼
∑

0<|l|6k∗n
ωl/λl since

both sequences (γj/ωj) and (
∑

0<|l|6j
ωl
nλl

) are non increasing.

[o-o] The well-known approximation
∑m
j=1 j

r ∼ mr+1 for r > 0 implies
(γk∗n/ωk∗n)

∑
0<|l|6k∗n

ωl/λl ∼ (k∗n)2a+2p+1. It follows that k∗n ∼ n1/(2p+2a+1)

and the first lower bound is ψn ∼ n−(2p−2s)/(2p+2a+1). Moreover, we have κm ∼
m−([p−s]∧a)/a, since the minimum in κm = supj∈Z{|j|−2(p−s) min(1, |j|2a/m)}
is equal to one for |j| > m1/2a and |j|−2(p−s) is non increasing.

[s-o] Approximating the sum in the same way as above, we obtain

(γk∗n/ωk∗n)
∑

0<|l|6k∗n

ωl/λl ∼ (k∗n)2a+1 exp(k∗n
2p)

and thus k∗n ∼ (logn)1/(2p). The resulting rate is ψn ∼ n−1(logn)(2a+2s+1)/(2p).
Furthermore, we have κm ∼ m−1, since the supremum is taken over the ex-
pression j2s exp(−j2p) min(1, j2a/m) which takes its maximum at the border
because of the dominating exponential term.

[o-s] Applying Laplace’s Method (cf. chapter 3.7 in Olver (1974)) we have
(γk∗n/ωk∗n)

∑
0<|l|6k∗n

ωl/λl ∼ (k∗n)2p+((2a−1)∨0) exp(|k∗n|2a) which implies that
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k∗n ∼ (logn)1/(2a) and that the first lower bound can be rewritten as ψn ∼
(logn)−(p−s)/a. Furthermore, we have κm ∼ (logm)−(p−s)/a since the mini-
mum in

κm = sup
j∈Z
{|j|−2(p−s) min(1, exp(|j|2a)/m)}

is equal to one for |j| > (logm)(1/2a) and |j|−2(p−s) is non increasing. Conse-
quently, the lower bounds in Proposition 3.8 follow by Corollary 3.6. �

The derivative f (s) can be estimated by the s-th weak derivative2 of the esti-
mator f̂k defined in (3.4), with k to be specified below. Given the exponential
basis {ej}j∈Z, we recall that for each integer 0 6 s 6 p the s-th weak derivative
of the estimator f̂k can be written as

f̂
(s)
k =

∑
j∈Z

(2iπj)s [̂fk]jej .

As an immediate consequence of Theorem 3.7, the rates of the lower bound
given by Proposition 3.8 are attained for k = k∗n, which is summarized in the
next result. We have thus proved that these rates are optimal and the proposed
estimator f̂ (s)

k∗n
is minimax optimal in both cases. Furthermore, it is of interest

to characterize the minimal size m of the additional sample from ε needed to
attain the same rate as in case of a known error density. Hence, we let the
ε-sample size depend on the Y -sample size n, too.

Proposition 3.9

[o-o] For p > 1/2, a > 1, and 0 6 s 6 p with k∗n ∼ n1/(2p+2a+1), we have

sup
f∈Frγ

sup
ϕ∈Ed

λ

{
E‖f̂ (s)

k∗n
− f (s)‖2

}
. n−2(p−s)/(2p+2a+1) +m−((p−s)∧a)/a

and for any non decreasing sequence (mn)n>1 follows as n→∞

sup
f∈Frγ

sup
ϕ∈Ed

λ

{
E‖f̂ (s)

k∗n
− f (s)‖2

}

=

O(n−2(p−s)/(2p+2a+1)) if n2((p−s)∨a)/(2p+2a+1) = O(mn)

O(m−((p−s)∧a)/a
n ) otherwise.

2 cf. Definition A.2 in the appendix
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[s-o] For p > 0, a > 1, and s > 0 with k∗n ∼ (logn)1/(2p), we have

sup
f∈Frγ

sup
ϕ∈Ed

λ

{
E‖f̂ (s)

k∗n
− f (s)‖2

}
. n−1(logn)(2a+2s+1)/(2p) +m−1

and for any non decreasing sequence (mn)n>1 follows as n→∞

sup
f∈Frγ

sup
ϕ∈Ed

λ

{
E‖f̂ (s)

k∗n
− f (s)‖2

}

=
{
O(n−1(logn)(2a+2s+1)/(2p)) if n(logn)−(2a+2s+1)/(2p) = O(mn)

O(m−1
n ) otherwise.

[o-s] For p > 1/2, a > 0, and 0 6 s 6 p with k∗n ∼ (logn)1/(2a), we have

sup
f∈Frγ

sup
ϕ∈Ed

λ

{
E‖f̂ (s)

k∗n
− f (s)‖2

}
. (logn)−(p−s)/a + (logm)−(p−s)/a

and for any non decreasing sequence (mn)n>1 follows as n→∞

sup
f∈Frγ

sup
ϕ∈Ed

λ

{
E‖f̂ (s)

k∗n
− f (s)‖2

}
=
{
O((logn)−(p−s)/a) if logn = O(logmn)
O((logmn)−(p−s)/a) otherwise.

Proof. This result follows from Theorem 3.7 and Proposition 3.8. �

In the case [o-o] we obtain the rate of known error density whenever the
growth condition n2((p−s)∨a)/(2p+2a+1) = O(mn) is satisfied which is much less
than mn = n. This is even more visible in the case [o-s], here the rate of known
error density is attained even if mn = nr for arbitrary small r > 0. Moreover,
we emphasize the influence of the parameter a which characterizes the rate of
the decay of the Fourier coefficients of the error density ϕ. Since a smaller value
of a leads to faster rates of convergence, this parameter is often called degree
of ill-posedness (cf. Natterer (1984)).
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3.3 Adaptive estimation
Our objective is to construct an adaptive estimator of the deconvolution den-
sity f . Adaptation means that in spite of an unknown error density in Edλ, the
estimator should attain the optimal rate of convergence max(ψn, κm) over the
ellipsoid Frγ for a wide range of different weight sequences γ and λ.
In a first step, we suppose that ϕ is known, but γ and r are unknown. In what

follows, the orthogonal series estimator f̂k defined in (3.4) is considered and a
procedure to choose the dimension parameter k based on a model selection
approach via penalization is constructed. This partially adaptive choice k̃ will
only involve the data and the error density ϕ. In a second step, we replace ϕ
by its empirical version and thus dispense with any knowledge about ϕ. Doing
so, we obtain a fully adaptive choice k̂ of the dimension parameter.
The construction of the adaptive estimators follows the general model reduc-

tion scheme presented in Barron et al. (1999) which we have already discussed
in the introductory example in Section 3.1. In particular, we use the same
contrast as in the example. However, the choice of the penalty term and the
number of models over which to minimize the penalized models present cannot
be performed in a deterministic manner. This is a major technical difficulty.

Partially adaptive estimation knowing ϕ

First, we introduce sequences which are used below.

Definition 3.10 For all n,m > 1 and k > 0, define

(i) ∆k := ∆k(ϕ) := max
−k6j6k

ωj∣∣|[ϕ]j |2
and δk := δk(ϕ) := 2 k∆k

log(∆k∨(k+2))∣∣ log(k+2)
;

(ii) given ω+
k := max06j6k ωj and N◦n := argmax16N6n{ω+

N 6 n}, let

Nn := Nn(ϕ) := argmin
16j6N◦n

{
|[ϕ]j |2

jω+
j

6
log(n+ 2)

n

}
− 1,

defining further bm := (8 log(log(m+ 20))−1, let

Mm := Mm(ϕ) := argmin
16j6m

{
|[ϕ]j |2 6 m−1+bm

}
− 1;

with Nn := N◦n and Mm := m when the respective set in the argmin is empty.

We can now define a partially adaptive choice of the dimension parameter k,
namely

k̃ := argmin
06k6(Nn∧Mm)

{
−‖f̂k‖2ω + 60 δk

n

}
, (3.12)
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which obviously depends on the data and on the error density ϕ only. The
fully adaptive estimator will be obtained below by introducing the empirical
versions of δ, N , and M .
However, for a fixed ϕ, one could now derive an upper risk bound for the

partially adaptive estimator f̂
k̃
, which would depend on δ, N , and M . As

we wish rather to obtain a uniform upper risk bound over the class Edλ, we
now redefine the objects above referring only to the weight sequence λ and the
constant d.

Definition 3.11 Let ω+, N◦, and b as in Definition 3.10.

(i) For all k > 0, define ∆λ
k := max−k6j6k ωj/λj and

δλk := 2 k∆λ
k

log(∆λ
k ∨ (k + 2))

log(k + 2) .

(ii) Define two sequences Nλ and Mλ as follows,

Nλ
n := argmax

16j6N◦n

{
λj

jω+
j

>
4d log(n+ 2)

n

}
,

Mλ
m := argmax

16j6m

{
λj > 4d m−1+bm

}
.

If the set in the argmax is empty, we set Nλ
n := 0 or Mλ

m := 0, respec-
tively.

(iii) Define two sequences Nu and Mu as follows,

Nu
n := Nu

n (λ) := argmin
16j6n

{
λj

jω+
j

<
log(n+ 2)

4dn

}
− 1,

Mu
m := Mu

m(λ) := argmin
16j6m

{
λj <

m−1+bm

4d

}
− 1,

If the set in the argmin is empty, we set Nu
n := n or Mu

m := m, respec-
tively.

(iv) Let Σ : R→ R be a non decreasing function such that for all C > 0∑
k>1

C ∆λ
k exp

(
− k log(∆λ

k ∨ (k + 2))
3C log(k + 2)

)
6 Σ(C) <∞.

It is easy to see that there exists always a function Σ satisfying the defining
condition. Moreover, we show in Lemma 3.25 below that the sequences defined
above satisfy Nλ

n 6 Nn 6 Nu
n and Mλ

m 6 Mm 6 Mu
m for all n,m ∈ N. In the

illustration below we compute these objects explicitly.
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Theorem 3.12 Let ζd := log(3 d)/ log(d). Under Assumption 3.2, we have for
all n,m > 1

sup
f∈Frγ

sup
ϕ∈Ed

λ

{
E‖f̂

k̃
− f‖2ω

}
6 C

{
(r + d ζd) min

06k6(Nλn∧Mλ
m)

[
max

(
ωk
γk
,
δλk
n

)]
+ r d κm

}
+ C(r, d,Λ,Σ)

[
1
m

+ 1
n

]
.

Before proving this theorem, we define and recall some notation. Given a
function u ∈ L2[0, 1] we denote by [u] the infinite vector of Fourier coefficients
[u]j := 〈u, ej〉. In particular we use the notations

f̂k =
k∑

j=−k

[̂g]j
[̂ϕ]j

1{|[̂ϕ]j |
2 > 1/m}ej , f̃k :=

k∑
j=−k

[̂g]j
[ϕ]j

ej , fk :=
k∑

j=−k

[g]j
[ϕ]j

ej ,

Φ̂u :=
∑
j∈Z

[u]j
[̂ϕ]j

1{|[̂ϕ]j |
2 > 1/m}ej , Φ̃u :=

∑
j∈Z

[u]j
[ϕ]j

ej .

Furthermore, let ĝ be the function with Fourier coefficients [ĝ]j := [̂g]j . Given
0 6 k 6 k′ we have then for all t ∈ Sk := span{e−k, . . . , ek}

〈t, fk′〉ω = 〈t, Φ̃g〉ω =
k∑

j=−k

ωj [t]j [g]j
[ϕ]j

=
k∑

j=−k
ωj [t]j [f ]j = 〈t, f〉ω,

〈t, f̃k′〉ω = 〈t, Φ̃
ĝ
〉ω = 1

n

n∑
i=1

k∑
j=−k

ej(−Yi)
ωj [t]j
[ϕ]j

= 〈t, f̃k〉ω,

〈t, f̂k′〉ω = 〈t, Φ̂
ĝ
〉ω = 1

n

n∑
i=1

k∑
j=−k

ej(−Yi)
ωj [t]j
[̂ϕ]j

1{|[̂ϕ]j |
2 > 1/m} = 〈t, f̂k〉ω.

Define the function ν = ĝ − g with Fourier coefficients [ν]j := [̂g]j − [g]j =
[̂g]j −E[̂g]j . Then we have for every t ∈ Sk

〈t, Φ̂
ĝ
− f〉ω = 〈t, Φ̂

ĝ
− Φ̃g〉ω = 〈t, Φ̃

ĝ
− Φ̃g〉ω + 〈t, Φ̂

ĝ
− Φ̃

ĝ
〉ω

= 〈t, Φ̃ν〉ω + 〈t, Φ̂
ĝ
− Φ̃

ĝ
〉ω = 〈t, Φ̃ν〉ω + 〈t, Φ̂ν − Φ̃ν〉ω + 〈t, Φ̂g − Φ̃g〉ω.

(3.13)

We are now in position to prove the result. The technical lemmas used in the
proof can be found in the auxiliary results section at the end of this chapter.
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Proof of Theorem 3.12. We define the contrast

Υ(t) := ‖t‖2ω − 2〈t, Φ̂
ĝ
〉
ω
, ∀ t ∈ L2[0, 1].

Obviously it follows for all t ∈ Sk that Υ(t) = ‖t− f̂k‖2ω − ‖f̂k‖2ω and, hence

arg min
t∈Sk

Υ(t) = f̂k, ∀ k > 0. (3.14)

Moreover, the adaptive choice of the dimension parameter from (3.12) can be
rewritten as

k̃ = argmin
06k6(Nn∧Mm)

{
Υ(f̂k) + 60δk

n

}
. (3.15)

Let pen(k) := 60δk/n, then for all 1 6 k 6 (Nn ∧Mm) we have

Υ(f̂
k̃
) + pen(k̃) 6 Υ(f̂k) + pen(k) 6 Υ(fk) + pen(k),

using first (3.15) and then (3.14). This inequality implies

‖f̂
k̃
‖2ω − ‖fk‖2ω 6 2〈f̂

k̃
− fk, Φ̂ĝ〉ω + pen(k)− pen(k̃),

and hence, using (3.13), we have for all 1 6 k 6 (Nn ∧Mm)

‖f̂
k̃
− f‖2ω 6 ‖f − fk‖2ω + pen(k)− pen(k̃)

+ 2〈f̂
k̃
− fk, Φ̃ν〉ω + 2〈f̂

k̃
− fk, Φ̂ν − Φ̃ν〉ω + 2〈f̂

k̃
− fk, Φ̂g − Φ̃g〉ω.

(3.16)

Consider the unit ball Bk := {f ∈ Sk | ‖f‖ω 6 1} and, for arbitrary τ > 0 and
t ∈ Sk, the elementary inequality

2|〈t, h〉ω| 6 2‖t‖ω sup
t∈Bk
|〈t, h〉ω|

6 τ‖t‖2ω + 1
τ

sup
t∈Bk
|〈t, h〉ω|2 = τ‖t‖2ω + 1

τ

k∑
j=−k

ωj |[h]j |2.

Combining the last estimate with (3.16) and f̂
k̃
− fk ∈ Sk̃∨k ⊂ SNn∧Mm we

obtain

‖f̂
k̃
− f‖2ω 6 ‖f − fk‖2ω + 3τ ‖f̂

k̃
− fk‖2ω + pen(k)− pen(k̃)

+ 1
τ

sup
t∈B

k∨̃k

|〈t, Φ̃ν〉ω|2 + 1
τ

sup
t∈B(Nn∧Mm)

|〈t, Φ̂ν − Φ̃ν〉ω|2

+ 1
τ

sup
t∈B(Nn∧Mm)

|〈t, Φ̂g − Φ̃g〉ω|2.
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Notice that ‖f̂
k̃
−fk‖2ω 6 2‖f̂

k̃
−f‖2ω+2‖fk−f‖2ω and that ‖f−fk‖2ω 6 rωk/γk

for all f ∈ Frγ because ω/γ is non increasing. Setting τ := 1/8, we obtain

1
4‖f̂k̃ − f‖

2
ω 6

7
4 (rωk/γk) + pen(k)− pen(k̃)

+ 8 sup
t∈B

k∨̃k

|〈t, Φ̃ν〉ω|2 + 8 sup
t∈B(Nn∧Mm)

|〈t, Φ̂ν − Φ̃ν〉ω|2 (3.17)

+ 8 sup
t∈B(Nn∧Mm)

|〈t, Φ̂g − Φ̃g〉ω|2.

Defining the event

Ωq :=
{
∀ 0 6 |j| 6Mu

m

∣∣∣∣ ∣∣∣ 1
[̂ϕ]j
− 1

[ϕ]j

∣∣∣ 6 1
2|[ϕ]j |

∧ |[̂ϕ]j |
2 > 1/m

}
, (3.18)

consider the following decomposition of the risk:

E‖f̂
k̃
− f‖2ω = E‖f̂

k̃
− f‖2ω1Ωq + E‖f̂

k̃
− f‖2ω1Ωcq . (3.19)

We bound these two terms separately. Consider the first term. By Lemma 3.25
below and 1[| ̂[ϕ]j |2>1/m]1Ωq = 1Ωq , it follows that for all 1 6 |j| 6 (Nn ∧Mm),

(
[ϕ]j
[̂ϕ]j

1[| ̂[ϕ]j |2>1/m] − 1
)2

1Ωq = |[ϕ]j |2 1Ωq

∣∣∣∣ 1
[̂ϕ]j
− 1

[ϕ]j

∣∣∣∣2 6 1
4 .

Hence, supt∈Bk |〈t, Φ̂ν − Φ̃ν〉ω|2 1Ωq 6
1
4 supt∈Bk |〈t, Φ̃ν〉ω|

2 for all 0 6 k 6
(Nn ∧Mm), and (3.17) implies

1
4‖f̂k̃ − f‖

2
ω1Ωq 6

7
4 (rωk/γk) + 10

(
sup

t∈B
k∨̃k

|〈t, Φ̃ν〉ω|2 − (6 δ
k∨k̃)/n

)
+

+
(

60 δ
k∨k̃

)
/n+ pen(k)− pen(k̃) + 8 sup

t∈B(Nn∧Mm)

|〈t, Φ̂g − Φ̃g〉ω|2. (3.20)

Moreover, we have that 60 δ
k∨k̃/n = pen(k ∨ k̃) 6 pen(k) + pen(k̃). Notice

further that

∆k 6 d∆λ
k , δk 6 d ζd δ

λ
k , and δk/∆k > 2 k ζ−1

d

log(∆λ
k ∨ (k + 2))

log(k + 2)
(3.21)
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with ζd = log(3d)/ log d. From Lemma 3.25 it follows that

sup
f∈Frγ

sup
ϕ∈Ed

λ

E‖f̂
k̃
− f‖2ω1Ωq 6 480 (r + d ζd) min

06k6Nλn∧Mλ
m

[max(ωk/γk, δλk/n)]

+40 sup
f∈Frγ

sup
ϕ∈Ed

λ

∑
06k′6(Nun∧Mu

m)

E
(

sup
t∈Bk′

|〈t, Φ̃ν〉ω|2 − (6 δk′)/n
)

+

+32 sup
f∈Frγ

sup
ϕ∈Ed

λ

E
[

sup
t∈B(Nun∧M

u
m)

|〈t, Φ̂g − Φ̃g〉ω|2
]
.

In order to bound the second term, we apply Lemma 3.27 setting δ∗k = δk and
∆∗k = ∆k. By virtue of (3.21), we have for all k > 0

E
(

sup
t∈Bk
|〈t, Φ̃ν〉ω|2 − 6 δk

n

)
+
6 C

{
1
n2 exp

(
−K2

√
n
)
d ζd δ

λ
k

+ ‖ϕ‖
2 ‖f‖2

n
d∆λ

k exp
(
− k

3 ‖ϕ‖2 ‖f‖2 ζd
log(∆λ

k ∨ (k + 2))
log(k + 2)

)}
.

Due to Lemmas 3.25 and 3.26 (i) and to the properties of the function Σ from
Definition 3.11, we have

Nun∑
k=0

E
(

sup
t∈Bk
|〈t, Φ̃ν〉ω|2 − 6 δk

n

)
+
6
C

n
d Σ(‖ϕ‖2 ‖f‖2 ζd).

It is readily verified that ‖ϕ‖2 6 dΛ for all ϕ ∈ Edλ and ‖f‖2 6 r for all f ∈ Frγ .
The remaining term can be controlled by virtue of Lemma 3.28, which shows

sup
f∈Frγ

sup
ϕ∈Ed

λ

E‖f̂
k̃
− f‖2ω1Ωq 6 C

{
(r + d ζd) min

06k6(Nλn∧Mλ
m)

[max(ωk/γk, δλk/n)]

+ r d κm + dΣ(r dΛ ζd)n−1
}
. (3.22)

Consider the second term from (3.19). Let

f̆k := 1 +
∑

0<|j|6k

[f ]j1{|[̂ϕ]j |
2 > 1/m}ej .

It is easy to see that ‖f̂k−f̆k‖2 6 ‖f̂k′−f̆k′‖2 for all k 6 k′ and ‖f̆k−f‖2 6 ‖f‖2
for all k > 0. Thus, using that 0 6 k̃ 6 (N◦n ∧m), we can write

E‖f̂
k̃
− f‖2ω1Ωcq 6 2{E‖f̂

k̃
− f̆

k̃
‖2ω1Ωcq + E‖f̆

k̃
− f‖2ω1Ωcq}

6 2
{

E‖f̂(N◦n∧m) − f̆(N◦n∧m)‖2ω1Ωcq + ‖f‖2ω P[Ωcq]
}
.
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Moreover, applying Theorem A.3 from the appendix,

E‖f̂(N◦n∧m) − f̆(N◦n∧m)‖2ω1Ωcq

6 2m
∑

0<|j|6(N◦n∧m)

ωj

{
E([̂g]j − [ϕ]j [f ]j)21Ωcq + E([ϕ]j [f ]j − [̂ϕ]j [f ]j)21Ωcq

}
6 2m

{ ∑
0<|j|6(N◦n∧m)

ωj

[
E
(

[̂g]j − [g]j
)4]1/2

P[Ωcq]1/2

+
∑

0<|j|6(N◦n∧m)

ωj |[f ]j |2[E([̂ϕ]j − [ϕ]j)4]1/2P[Ωcq]1/2
}

6 2m
{

2m( max
16j6N◦n

ωj)(Cn−1) + (Cm−1)‖f‖2ω
}

P[Ωcq]1/2,

which implies, using Definition 3.10 (ii),

E‖f̂
k̃
− f‖2ω1Ωcq 6 4C

(
m2 + ‖f‖2ω

)
P[Ωcq]1/2 + 2‖f‖2ω P[Ωcq]

6 6Cm2(1 + ‖f‖2ω)P[Ωcq]1/2.
(3.23)

It follows by Lemma 3.29 that for all m ∈ N

sup
f∈Frγ

sup
ϕ∈Ed

λ

E‖f̂
k̂
− f‖2ω1Ωcp 6 C(d)(1 + r)m−1. (3.24)

The result of the theorem follows by combination of the last estimate with the
bound from (3.22). �

A comparison with the lower bound from Corollary 3.6 shows that this upper
bound ensures minimax optimality of the estimator f̂

k̃
only if

ψ�n,m := min
06k6(Nλn∧Mλ

m)

[
max

(
ωk
γk
,
δλk
n

)]
is in the same order as ψn = mink∈N

{
max

(
ωk
γk
,
∑

0<|j|6k
ωj
nλj

)}
. Note that, by

construction, δλk >
∑

0<|j|6k ωjλ
−1
j for all k > 1. Also, δλ is direcly related

to the penalty function. The next assertion is a immediate consequence of
Theorem 3.12 and we omit its proof.

Corollary 3.13 Under Assumption 3.2 and if additionally

η� := sup
n,m>1

{ψ�n,m/ψn} <∞,

we have for all n,m > 1

sup
f∈Frγ

sup
ϕ∈Ed

λ

{
E‖f̂

k̃
− f‖2ω

}
6 C(η�,Σ, r, d,Λ) max(ψn, κm).
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In Theorem 3.7, we have shown the minimax optimality of the orthogonal series
estimator under the optimal choice k∗n of the dimension parameter. Compar-
ing Corollary 3.13 to this theorem, it is noteworthy that the only additional
assumption needed to ensure minimax optimality of the partially adaptive es-
timator is η� <∞.

Remark 3.14 The partially adaptive choice k̃ still depends on ϕ ∈ Edλ. How-
ever, we can already define a procedure depending only on the sequence λ and
the constant d, namely

k̃λ := argmin
16k6(Nλn∧Mλ

m)

{
−‖f̂k‖2ω + 60 d δλk

n

}
.

Roughly speaking, this choice requires knowledge of the degree of ill-posedness
of the underlying inverse problem only. It is straightforward to derive an upper
risk bound for f̂

k̃λ
, which is, up to minor changes in the constants, the same as

the one in Theorem 3.12. Its proof follows the lines of the proof of Theorem 3.12,
using the new penalty term pen(k) = 60 d δλk . The only change occurs when
applying Lemma 3.27, where one uses δ∗k = d δλk and ∆∗k = d∆λ

k rather than
δ∗k = δk and ∆∗k = ∆k. �

Fully adaptive estimation
We begin by defining empirical versions of the sequences from Definition 3.10.

Definition 3.15 For all n,m > 1 and k > 0, define

(i) ∆̂k := max
−k6j6k

ωj∣∣| ̂[ϕ]j |2
1[| ̂[ϕ]j |2>1/m] and δ̂k := k∆̂k

log(∆̂k∨(k+2))∣∣ log(k+2)
;

(ii) given N◦n, ω+, and b from Definition 3.10,

N̂n := argmin
16j6N◦n

{min(|[̂ϕ]j |2, |[̂ϕ]−j |2)
jω+

j

<
log(n+ 2)

n

}
− 1,

M̂m := argmin
16j6m

{
min(|[̂ϕ]j |

2, |[̂ϕ]−j |
2) < m−1+bm

}
− 1,

with N̂n := N◦n and M̂m := m if the respective sets in the argmin are
empty.

We can now define a data-driven choice of k which, in contrast to k̃, does not
depend on the sequences δ, N , or M , but only on δ̂, N̂ , and M̂ :

k̂ := argmin
06k6(N̂n∧M̂m)

{
− ‖f̂k‖2ω + 600 δ̂k

n

}
. (3.25)
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The constant 600 arising in the definition of k̂, though convenient for deriving
the theory, may be far too large in practice and instead be determined by means
of a simulation study as in Comte et al. (2007), for example.
In the proof of Theorem 3.12, we have used the inequalities

(Nλ
n ∧Mλ

m) 6 (Nn ∧Mm) 6 (Nu
n ∧Mu

m)

which hold by Lemma 3.25. In the proof of the next theorem, we consider the
event {(Nλ

n ∧ Mλ
m) 6 (N̂n ∧ M̂m) 6 (Nu

n ∧ Mu
m)} on which we can imitate

the proof of Theorem 3.12. In order to control the risk on the complement of
this event, we need to bound its probability. This necessitates the following
assumption.

Assumption 3.16 Suppose m6 exp
(
−mλMu

m+1/(72 d)
)
6 C(λ, d) for m > 1.

Theorem 3.17 Under Assumptions 3.2 and 3.16 we have for all n,m > 1

sup
f∈Frγ

sup
ϕ∈Ed

λ

{
E‖f̂

k̂
− f‖2ω

}
6 C

{
(r + d ζd) min

06k6(Nλn∧Mλ
m)

[
max

(
ωk
γk
,
δλk
n

)]
+ r d κm

}
+ C(r, d, λ,Σ)

[
1
m

+ 1
n

]
.

Remark 3.18 Up to a change in the constant of the negligible terms, we ob-
tain the same bound as for the partially adaptive estimator in Theorem 3.12.
In comparison to the latter theorem, the only additional condition is Assump-
tion 3.16. Note that the number 6 appearing in this assumption is just the
exponent needed in order to show that the remainder term in the proof of the
upper bound is in fact of negligible order: see (3.30) and Lemmas 3.29 and 3.30.
Note that in Lemma 3.26 (ii) we show that

m6 exp
(
−mλMu

m
/(72 d)

)
6 C(d)

for all m > 1 using only Assumption 3.2. It is however not obvious to us
that Assumption 3.2 implies m6 exp

(
−mλMu

m+1/(72 d)
)
6 C(d) for sufficiently

large m. Though, in the illustrations below we show that Assumption 3.16 is
satisfied. �

Proof of Theorem 3.17. We begin the proof by defining the event Ωqp := Ωq∩Ωp
where Ωq is given in (3.18) and

Ωp :=
{

(Nλ
n ∧Mλ

m) 6 (N̂n ∧ M̂m) 6 (Nu
n ∧Mu

m)
}
. (3.26)
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Observe that on Ωq we have (1/2)∆k 6 ∆̂k 6 (3/2)∆k for all 0 6 k 6Mu
m and

hence (1/2)[∆k ∨ (k+ 2)] 6 [∆̂k ∨ (k+ 2)] 6 (3/2)[∆k ∨ (k+ 2)], which implies

(1/2)k∆k

( log[∆k ∨ (k + 2)]
log(k + 2)

)(
1− log 2

log(k + 2)
log(k + 2)

log(∆k ∨ [k + 2])

)
6 δ̂k 6 (3/2)k∆k

( log(∆k ∨ [k + 2])
log(k + 2)

)(
1 + log 3/2

log(k + 2)
log(k + 2)

log(∆k ∨ [k + 2])

)
.

Using log(∆k ∨ (k + 2))/log(k + 2) > 1, we conclude from the last estimate
that

δk/10 6(log 3/2)/(2 log 3)δk 6 (1/2)δk[1− (log 2)/ log(k + 2)] 6 δ̂k
6 (3/2)δk[1 + (log 3/2)/ log(k + 2)] 6 3δk.

Letting pen(k) := 60 δkn−1 and p̂en(k) := 600 δ̂kn−1, it follows that on Ωq

pen(k) 6 p̂en(k) 6 30 pen(k) ∀ 0 6 k 6Mu
m.

On Ωqp = Ωq ∩ Ωp, we have k̂ 6Mu
m. Thus,(

pen(k ∨ k̂) + p̂en(k)− p̂en(k̂)
)

1Ωqp

6
(

pen(k) + pen(k̂) + p̂en(k)− p̂en(k̂)
)

1Ωqp

6 31 pen(k) ∀ 0 6 k 6Mu
m. (3.27)

Now consider the decomposition

E‖f̂
k̂
− f‖2ω = E‖f̂

k̂
− f‖2ω1Ωqp + E‖f̂

k̂
− f‖2ω1Ωcqp . (3.28)

We bound the two terms separately. Consider the first term. Following the
proof of (3.20) line by line, one sees that we have for all for 0 6 k 6 (Nλ

n ∧Mλ
m)

(1/4)‖f̂
k̂
− f‖2ω1Ωqp 6 (7/4)(rωk/γk) + 10

Nun∑
j=0

(
sup
t∈Bj
|〈t, Φ̃ν〉ω|2 − 6δj

n

)
+

+ 8 sup
t∈BNun∧Mum

|〈t, Φ̂g − Φ̃g〉ω|2 +
(

pen(k ∨ k̂) + p̂en(k)− p̂en(k̂)
)

1Ωqp

6 (7/4)(rωk/γk) + 10
Nun∑
j=0

(
sup
t∈Bj
|〈t, Φ̃ν〉ω|2 − 6δj

n

)
+

+ 8 sup
t∈BNun∧Mum

|〈t, Φ̂g − Φ̃g〉ω|2 + 31 pen(k),
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where the last inequality follows from (3.27). The second and the third term
are controlled by Lemmas 3.27 and 3.28, respectively (cf. proof of (3.22)).
Consequently,

sup
f∈Frγ

sup
ϕ∈Ed

λ

E‖f̂
k̂
− f‖2ω1Ωqp 6 C

{
(r + d ζd) min

06k6(Nλn∧Mλ
m)

[max(ωk/γk, δλk/n)]

+ r d κm + dΣ(r dΛ ζd)n−1
}
. (3.29)

Consider the second term from (3.28). Following the proof of (3.23), and re-
placing Ωcq by Ωcqp therein, we obtain

E‖f̂
k̂
− f‖2ω1Ωcqp 6 Cm

2(1 + ‖f‖2ω)P[Ωcqp]1/2. (3.30)

It follows by Lemmas 3.29 and 3.30 that for all m > 1,

sup
f∈Frγ

sup
ϕ∈Ed

λ

E‖f̂
k̂
− f‖2ω1Ωcqp 6 C(λ, d)(1 + r)m−1.

The theorem follows combining the last estimate with (3.24) and (3.29). �

A comparison of Theorem 3.17 with the lower bound from Corollary 3.6 shows
that this upper bound does not necessarily ensure minimax optimality of the
estimator f̂

k̂
. However, as in the partially adaptive case (cf. Corollary 3.13),

under the additional assumption η� < ∞, the next assertion establishes its
optimality.

Corollary 3.19 Under Assumptions 3.2 and 3.16 and the additional condition
η� := supn,m>1{ψ�n,m/ψn} <∞, we have for all n,m > 1

sup
f∈Frγ

sup
ϕ∈Ed

λ

{
E‖f̂

k̂
− f‖2ω

}
6 C(η�,Σ, r, d,Λ) max(ψn, κm).

Illustration: estimation of derivatives
Let us continue with the example from Section 3.2. The following result shows
that without any prior knowledge on the error density ϕ, the adaptive penalized
estimator automatically attains the optimal rate in the cases [o-s] and [s-o]
and in the case [o-o] if p−s > a. Recall that the computation of the dimension
parameter k̂ given in (3.25) involves the sequence N◦, which in our illustration
satisfies N◦n ∼ n1/(2s).
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Proposition 3.20 Let (mn)n>1 a non decreasing sequence of integers.

[o-o] We have that

∆λ
k ∼ k2a+2s, δλk ∼ k2a+2s+1, ψ�n,mn ∼ (k∗n ∧Mλ

mn)−2(p−s)

Nλ
n ∼ (n/ logn)1/(2a+2s+1), Mλ

mn ∼ m
(1−bm)/(2a)
n .

In the case p−s > a the adaptive estimator f̂ (s)
k̂

attains the optimal rates.
In the case p− s 6 a, if n2a/(2p+2a+1) = O(mn), we have

sup
f∈Frγ

sup
ϕ∈Ed

λ

{
E‖f̂ (s)

k̂
− f (s)‖2

}
=
{
O(n−2(p−s)/(2p+2a+1)) if n2a/(2p+2a+1) = O(m1−bmn

n )
O(m−(p−s)/a

n m
bmn
n ) otherwise,

while if mn = o(n2a/(2p+2a+1)) we have

sup
f∈Frγ

sup
ϕ∈Ed

λ

{
E‖f̂ (s)

k̂
− f (s)‖2

}
= O(m−(p−s)/a

n m
bmn
n ).

[s-o] The sequences ∆λ, δλ, Nλ, and Mλ are the same as above. We have that
ψ�n,mn ∼ (k∗n ∧Mλ

mn)2s exp(−(k∗n ∧Mλ
mn)2p), and f̂ (s)

k̂
attains the optimal

rates.

[o-s] We have that

∆λ
k = k2s exp(k2a), δλk ∼ k2a+2s+1 exp(k2a)(log k)−1,

ψ�n,m ∼ (k∗n ∧Mλ
mn)−2(p−s),

Nλ
n ∼ (log(n/(logn)(2a+2s+1)/(2a)))1/(2a), Mλ

mn ∼ ((1− bm) logmn)1/(2a),

and the adaptive estimator f̂ (s)
k̂

attains the optimal rates.

Proof. In view of Proposition 3.8 we apply Theorem 3.17, where we only have to
check the additional Assumption 3.16. The result follows then by an evaluation
of the upper bound.
[o-o] It is easily seen that m (λMu

m+1 logm)−1 = o(1) as m → ∞. Hence,
Assumption 3.16 is satisfied in this case. Since k∗n ∼ n1/(2a+2p+1), we have
k∗n . N

λ
n . Thus, the upper bound is

(k∗n ∧Mλ
mn)−2(p−s) +m−(1∧((p−s)/a))

n . (3.31)



3.3 Adaptive estimation 77

We consider two cases. First, let p− s > a. Suppose that n2(p−s)/(2p+2a+1) =
O(mn). Then,

k∗n
Mλ
mn

∼ n1/(2a+2p+1)(
m

1−bmn
n

)(1/2a) = n1/(2a+2p+1)

m
1/2(p−s)
n

(
m
−a+(p−s)(1−bmn )
n

) 1
2(p−s)a = o(1).

This means that k∗n . Mλ
mn , so the resulting upper bound is (k∗n)−2(p−s) +

m−1
n . (k∗n)−2(p−s). Suppose now that mn = o(n2(p−s)/(2p+2a+1)). If in addi-

tion k∗n = O(Mλ
mn), then the first summand in (3.31) reduces to (k∗n)−2(p−s)

and hence the upper bound is m−1
n . On the other hand, if Mλ

mn/k
∗
n = o(1),

then the first term is (Mλ
mn)−2(p−s) ∼ (m−a+(p−s)(1−bmn )

n )1/am−1
n . m

−1
n , since

p− s > a. Combining both cases, we obtain the result in case p− s > a.

Now assume p − s 6 a. First, suppose that k∗n = O(Mλ
mn). Then, the

first summand in (3.31) reduces to (k∗n)−2(p−s) and moreover it follows that
n2a/(2p+2a+1) = O(mn). Therefore, the upper bound is (k∗n)−2(p−s). Con-
sider now Mλ

mn = o(k∗n). Then (3.31) can be rewritten as (m1−bmn
n )−(p−s)/a +

m
−(p−s)/a
n which results in the rate (m1−bm

n )−(p−s)/a. Combining both cases
gives the result. More precisely, mn = o(n2a/(2p+2a+1)) implies Mλ

mn = o(k∗n).
On the other hand, in case n2a/(2p+2a+1) = O(mn), if k∗n/Mλ

mn = O(1), then
the rate is (k∗n)−2p, while ifMλ

mn/k
∗
n = o(1), we have the rate (m1−bm

n )−(p−s)/a.

[s-o] As in case [o-o], Assumption 3.16 holds. Recall that k∗n ∼ (logn)1/(2p).
If n(logn)−(2a+2s+1)/(2p) = O(mn), then k∗n .Mλ

mn and

m−1
n . ψ

�
n,mn ∼ n

−1(logn)(2a+2s+1)/(2p).

In the opposite case, we have ψ�n,mn . m
−1
n , which proves the result.

[o-s] To see that Assumption 3.16 is satisfied in this setting, one can proceed
as follows. Define the sequence M̃u exactly as Mu but replacing bm by am =
b2
k

m . Then, M̃u satisfies assertion Lemma 3.26 (ii), the proof being similar to
the one for Mu. On the other hand, one can show that M̃u

m −Mu
m → ∞ as

m→∞, which amounts to showing Assumption 3.16.

We have k∗n ∼ (logn)1/2a. The upper bound becomes (k∗n ∧Mλ
mn)−2(p−s) +

(logmn)−(p−s)/a ∼ (k∗n ∧ Mλ
mn)−2(p−s). Distinguishing k∗n . Mλ

m and the
opposite case shows the result. �

The adaptive estimator always attains the minimal rates if n . mn. We un-
derline that these rates are still attained when mn . n except in the case [os]
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when the error density is smoother than the s-th derivative of the deconvolu-
tion density (p− s 6 a) and when at the same time mn grows far more slowly
than n. The estimation of ϕ is negligible as soon as m1−bmn

n grows at least as
fast as n2a/(2p+2a+1) in this situation, while in the non adaptive case, only mn

has to satisfy this condition. In the lossy case, the convergence rate differs from
the optimal one by a factor mbmn

n only. The exponent bmn however tends to
zero as n tends to infinity.
If one were considering the [os] case only, one could replace the bound

m−1+bm by m−1 logm in the definition of Mu (Definition 3.11). Using this
definition, Assumption 3.16 would still hold, and applying Theorem 3.17, the
adaptive estimator misses the optimal rates by a logarithmic factor in the lossy
case only. However, Assumption 3.16 is violated in the super smooth case under
this definition of Mu.

3.4 Auxiliary results
Lemma 3.21 In the context of Theorem 3.3, fθ ∈ Frγ for all θ ∈ {−1, 1}2k∗n .

Proof. The assertion is easily verified if f ∈ Frγ . In order to show that f
belongs indeed to Frγ , we first notice that f integrates to one. Moreover, f is
non negative because |

∑
0<|j|6k∗n

[f ]jej | 6 1, and ‖f‖2γ 6 r, which can be seen
as follows. By employing the condition

∑
j∈Z γ

−1
j = Γ <∞ we have

|
∑

0<|j|6k∗n

[f ]jej | 6
∑

0<|j|6k∗n

|[f ]j | =
(ζαn
n

)1/2 ∑
0<|j|6k∗n

λ
−1/2
j

6
(
ζαn

)1/2( ∑
0<|j|6k∗n

γ−1
j

)1/2( ∑
0<|j|6k∗n

γj
nλj

)1/2

6
(
ζαnΓ

)1/2( ∑
0<|j|6k∗n

γj
nλj

)1/2
.

Since ω/γ is non increasing the definition of ζ, αn and η implies

|
∑

0<|j|6k∗n

[f ]jej | 6
(
ζΓ
)1/2( γk∗n

ωk∗n
αn

∑
0<|j|6k∗n

ωj
λjn

)1/2
6
(ζΓ
η

)1/2
6 1 (3.32)

as well as ‖f‖2γ 6 1 + ζ
γk∗n
ωk∗n

αn

(∑
0<|j|6k∗n

ωj
nλj

)
6 1 + ζ/η 6 r. �
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Lemma 3.22 In the context of Theorem 3.3, we have ρ(gnθ , gnθ(j)) > 1/4.

Proof. We consider first the Hellinger distance

H2(gθ, gθ(j)) :=
∫ (√

gθ −
√
gθ(j)

)2

=
∫ ∣∣∣gθ − gθ(j)

∣∣∣2(√
g
θ

+√g
θ(j)

)2 6 4‖gθ − gθ(j)‖2 = 16|[f ]j |2|[ϕ]j |2 6
16ζd
η n

,

where we have used that αn 6 1/η, ϕ ∈ Edλ and gθ > 1/2 because the expression
|
∑

0<|j|6k∗n
[gθ]jej | is bounded by 1/2, which can be seen as follows. Using the

condition
∑
j∈Z γ

−1
j = Γ < ∞ and ϕ ∈ Edλ we obtain in analogy to the proof

of (3.32) that

|
∑

0<|j|6k∗n

[gθ]jej | 6
∑

0<|j|6k∗n

|[f ]j ||[ϕ]j |

6
(ζαnd

n

)1/2 ∑
0<|j|6k∗n

λ
−1/2
j 6

(ζdΓ
η

)1/2
6 1/2.

Therefore, the definition of ζ impliesH2(gθ, gθ(j)) 6 2/n. By using the indepen-
dence, i.e. ρ(gnθ , gnθ(j)) = ρ(gθ, gθ(j))n, together with the identity ρ(gθ, gθ(j)) =
1− 1

2H
2(gθ, gθ(j)) it follows ρ(gnθ , gnθ(j)) > (1− n−1)n > 1/4 for all n > 2. �

Lemma 3.23 In the context of Theorem 3.5, we have fθ ∈ Frγ and ϕθ ∈ Edλ for
θ ∈ {−1, 1}.

In order to show fθ ∈ Frγ , we first observe that fθ integrates to one. More-
over, fθ is non negative because |(1− θαm) 1∧

√
r−1

d1/4 γ
−1/2
k∗m
| 6 γ−1/2

k∗m
6 1 and

‖fθ‖2γ = 1 + γk∗m |[fθ]k∗m |
2 6 1 + γk∗n |(1− θαm)1 ∧

√
r − 1

d1/4 γ
−1/2
k∗m
|2 6 r.

Consider now ϕθ. Obviously, it integrates to one. Furthermore, as ϕ > 1/2,
the function ϕθ = ϕ+ θαm[ϕ]k∗mek∗m is non negative since

|θαm[ϕ]k∗mek∗m | 6 αmλ
1/2
k∗m
d1/2 6 ζm−1/2

√
d 6 1/2

using the definition of αm and ζ. To check that ϕθ ∈ Edλ, it remains to show
that 1/d 6 [ϕθ]2j/λj 6 d for all |j| > 0. Since ϕ ∈ E

√
d

λ , it follows from the
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definition of ϕθ that these inequalities are satisfied for all j 6= k∗m and moreover
that

1/d 6
|[ϕ]k∗m |

2
√
dλk∗m

6
(1 + θαm)2|[ϕ]k∗m |

2

λk∗m
6

√
d|[ϕ]k∗m |

2

λk∗m
6 d,

which completes the proof. �

Lemma 3.24 In the context of Theorem 3.5, ρ(p1, p−1) > 1/4 for all m > 2.

From the independence and the fact that g1 = g−1, it is easily seen that
Hellinger affinity satisfies

ρ(p1, p−1) = ρ(g1, g−1)nρ(ϕ1, ϕ−1)m = ρ(ϕ1, ϕ−1)m =
(

1− 1
2H

2(ϕ1, ϕ−1)
)m

.

Hence, we conclude ρ(p1, p−1) > (1− 1/m)m > 1/4, for all m > 2, since

H2(ϕ1, ϕ−1) 6
∫ ∣∣∣ϕ1 − ϕ−1

∣∣∣2
ϕ1 + ϕ−1

=
∫ ∣∣∣ϕ1 − ϕ−1

∣∣∣2
ϕ

6 2
∫
|ϕ1 − ϕ−1|2

6 2
∫

4α2
m|[ϕ]k∗m |

2e2
k∗m
6 8dα2

mλk∗m = 8dζ2m−1 6 2m−1

where we have used that ϕ > 1/2 and the definition of αm and ζ. �

Lemma 3.25 Under Assumption 3.2, we have for all n,m ∈ N

Nλ
n 6 Nn 6 N

u
n and Mλ

m 6Mm 6M
u
m.

Proof. First, we prove that Nλ
n 6 Nn. If Nλ

n = 0 or Nn = N◦n, there is nothing
to show. Noting that

Nλ
n = 0 ⇐⇒ max

16j6N◦n

λj

jω+
j

<
4d log(n+ 2)

n

and Nn = 0 ⇐⇒ max
16j6N◦n

λj

jω+
j

<
d log(n+ 2)

n
,

we deduce that in case Nn = 0, we also have Nλ
n = 0. It remains the case where

Nλ
n > 0 and N◦n > Nn > 0, which implies

min
16j6Nλn

λj

jω+
j

>
4d log(n+ 2)

n
and log(n+ 2)

n
>
|[ϕ]Nn+1|2

Nn ωNn+1
>

λNn+1

dNnω
+
Nn+1

and therefore Nn + 1 > Nλ
n , which proves the claim.
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Let us now prove Nn 6 Nu
n . If Nn = 0 or Nu

n = n, this is trivial. On the
other hand, if n > Nu

n > 0 and N◦n > Nn > 0, it follows from the definitions
that

min
16j6Nn

dλj

jω+
j

> min
16j6Nn

|[ϕ]j |2

jω+
j

>
log(n+ 2)

n

and
λN◦n+1

(N◦n + 1)ω+
N◦n+1

<
log(n+ 2)

4dn ,

which implies N◦n + 1 > Nn and hence the claim. Similar arguments show the
corresponding estimates in m. �

Lemma 3.26 Under Assumption 3.2, we have for all n,m > 3 that

(i) δNun /n 6 32 d2

(ii) m7 exp
(
−mλM

u
m

72 d

)
6 C(d)

and for m > exp(512 log(3d)2) that

(iii) min16j6Mu
m
|[ϕ]j |2 > 2

m .

Proof. (i) For Nu
n = 0, we have δNun = 0 and there is nothing to show. If

0 < Nu
n 6 n, one can show that ω+

Nun
/λNun 6 4dn/(Nu

n log(n + 2)), which we
use in the following computation:

δNun = Nu
n

ω+
Nun

λNun

log((ω+
Nun
/λNun ) ∨ (Nu

n + 2))
log(Nu

n + 2)

6
4dn

log(n+ 2)

log
(

4dn
Nun log(n+2) ∨ (Nu

n + 2)
)

log(Nu
n + 2)

6 n

{
4d (log(n+ 2) > 4d)
4d(4d+ log(4d))/(log(n+ 2)) (otherwise),

which implies δNun /n 6 4d(4d+ log(4d)) 6 32d2 for all n > 1.

(ii) For 0 < Mu
m 6 m, we have λMu

m
> m−1+bm (4d)−1. Hence,

m7 exp
(
−
mλMu

m

72d

)
6 exp

(
− mbm

288d2 + 7 logm
)
.

This proves the claim, because logm . mbm . Note that Mu
m = 0 cannot occur

as we suppose λ1 = 1.
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(iii) We have that

min
16j6Mu

m

|[ϕ]j |2 > min
16j6Mu

m

λj
d
>

mbm

4d2m
>

2
m
,

where the last step holds for m > exp(512 log(3d)2) as some algebra shows. �

Lemma 3.27 Let δ∗ and ∆∗ be sequences such that for all k > 1

δ∗k >
∑

−k6j6k

ωj
|[ϕ]j |2

and ∆∗k > max
06|j|6k

ωj
|[ϕ]j |2

and let K2 := (
√

2− 1)/(21
√

2). Then, for all k > 1,

E
[(

sup
t∈Bk
|〈t, Φ̃ν〉ω|2 −

6 δ∗k
n

)
+

]
6 C

{
‖ϕ‖2 ‖f‖2

n
∆∗k exp

(
− 1

6 ‖ϕ‖2 ‖f‖2 (δ∗k/∆∗k)
)

+ 1
n2 exp

(
−K2

√
n
)
δ∗k

}
.

Proof. For t ∈ Sk define the function rt :=
∑
k6j6k ωj [t]j [ϕ]

−1
j ej , then it

is readily seen that 〈t, Φ̃ν〉ω = 1
n

∑n
k=1 rt(Yk) − E[rt(Yk)]. Next, we compute

constants H1, H2, and v verifying the three inequalities required in Talagrand’s
inequality (Theorem A.5), which then implies the result. Consider H1 first:

sup
t∈Bk
‖rt‖2∞ = sup

y∈R

∑
−k6j6k

ωj |[ϕ]j |
−2 |ej(y)|2 =

∑
−k6j6k

ωj |[ϕ]j |−2 6 δ∗k =: H2
1 .

Next, find H2. Notice that

E[ sup
t∈Bk
|〈t, Φ̃ν〉ω|2] = 1

n

∑
−k6j6k

ωj |[ϕ]j |−2 Var(ej(Y1)).

As Var(ej(Y1)) 6 E[| ej(Y1) |2] = 1, we have E[supt∈Bk |〈t, Φ̃ν〉|
2] 6 δ∗k/n and

we set H2 := δ∗k/n.
Finally, consider v. Given t ∈ Bk, let [t] := ([t]−k, . . . , [t]k)t and for a sequence
(zj)j∈Z denote by Dk(z) := diag[z−k, . . . , zk] the corresponding diagonal ma-
trix. Define the Hermitian matrix

Ak :=
(

[ϕ]
−1
j [ϕ]−1

j′ [ϕ]j−j′ [f ]j−j′
)
j,j′=−k,...,k

.

Straightforward algebra shows

sup
t∈Bk

Var(rt(Y1)) 6 sup
t∈Bk
〈AkDk(ω) [t], Dk(ω)[t]〉C2k+1
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and hence, by the Cauchy-Schwarz inequality,

sup
t∈Bk

1
n

n∑
k=1

Var(rt(Yk)) 6 ‖Dk(
√
ω)AkDk(

√
ω)‖C2k+1 .

We have Ak = Dk([ϕ]−1) Bk Dk([ϕ]
−1

), where Bk :=
(
[ϕ]j−k [f ]j−k

)
j,k=−k,...,k.

Consequently,

sup
t∈Bk

1
n

n∑
k=1

Var(rt(Yk)) 6 ‖Dk(
√
ω [ϕ]−1)‖2C2k+1 ‖Bk‖C2k+1 .

We have that ‖Dk(
√
ω [ϕ]−1)‖2C2k+1 = max06|j|6k ωj |[ϕ]j |−2 6 ∆∗k. It re-

mains to show the boundedness of ‖Bk‖C2k+1 . Let `2 be the space of square-
summable sequences in C and define the operator B : `2 → `2 by (Bz)k :=∑
j∈Z[ϕ]j−k [f ]j−kzj , k ∈ Z. Then it is easily verified that for any z ∈ `2 with

‖z‖`2 = 1, the Cauchy-Schwarz inequality yields ‖Bz‖2`2 6 ‖ϕ‖2 ‖f‖2, and
hence ‖B‖2`2 6 ‖ϕ‖2 ‖f‖2. Given the orthogonal projection Πk in `2 onto Sk
the operator Πk BΠk : Sk → Sk has the matrix representation Bk via the
isomorphism Sk ∼= C2k+1 and hence ‖Πk BΠk‖`2 = ‖Bk‖C2k+1 . Orthogonal
projections having a norm bounded by 1, we conclude that ‖Bk‖C2k+1 6 ‖B‖`2
for all k ∈ N, which implies

sup
t∈Bk

1
n

n∑
k=1

Var(rt(Yk)) 6 ‖ϕ‖2 ‖f‖2 ∆∗k =: v

and thus completes the proof. �

Lemma 3.28 For every m > 1 and k > 0 we have

sup
f∈Frγ

E
[

sup
t∈Bk
|〈t, Φ̂g − Φ̃g〉ω|2

]
6 C r max

j∈N

{ωj
γj

min
(

1, 1
m[ϕ]2j

)
)}

6 C d r κm(γ, λ, ω).

Proof. Firstly, as f ∈ Frγ , it is easily seen that

E
[

sup
t∈Bk
|〈t, Φ̂g − Φ̃g〉ω|2

]
6 r sup

−k6j6k

ωj
γj

E[|Rj |2],

where Rj is defined by

Rj :=
(

[ϕ]j
[̂ϕ]j

1[| ̂[ϕ]j |2>1/m] − 1
)
.
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The result then follows from E[|Rj |2] 6 C min
{

1, 1
m|[ϕ]j |2

}
, which can be

shown as follows. Consider the identity

E|Rj |2 = E
[ ∣∣∣∣ [ϕ]j

[̂ϕ]j
− 1
∣∣∣∣21[| ̂[ϕ]j |2>1/m]

]
+ P[|[̂ϕ]j |

2 < 1/m] =: RIj +RIIj .

Trivially, RIIj 6 1. If 1 6 4/(m |[ϕ]j |2), then RIIj 6 4 min
{

1, 1
m|[ϕ]j |2

}
. Other-

wise, we have 1/m < |[ϕ]j |2/4 and hence, using Chebychev’s inequality,

RIIj 6 P[|[̂ϕ]j − [ϕ]j | > |[ϕ]j | /2 ] 6
4 Var([̂ϕ]j)
|[ϕ]j |2

6 4 min
{

1, 1
m|[ϕ]j |2

}
,

where we have used that Var([̂ϕ]j) 6 m−1 for all j. Now consider RIj . We find
that

RIj = E
[ |[̂ϕ]j − [ϕ]j |2

|[̂ϕ]j |2
1[| ̂[ϕ]j |2>1/m]

]
6 mVar(|[̂ϕ]j) 6 1. (3.33)

On the other hand, using that E[|[̂ϕ]j − [ϕ]j |4] 6 C/m2 (cf. Theorem A.3 in
the appendix), we obtain

RIj 6 E
[ |[̂ϕ]j − [ϕ]j |2

|[̂ϕ]j |2
1[| ̂[ϕ]j |2>1/m] 2

{ |[̂ϕ]j − [ϕ]j |2

|[ϕ]j |2
+
|[̂ϕ]j |2

|[ϕ]j |2

}]

6
2mE[|[̂ϕ]j − [ϕ]j |4]

|[ϕ]j |2
+

2 Var([̂ϕ]j)
|[ϕ]j |2

6
2C

m |[ϕ]j |2
+ 2
m |[ϕ]j |2

.

Combining with (3.33) yields RIj 6 2(C+1) min
{

1, 1∣∣m|[ϕ]j |2

}
, which completes

the proof. �

Lemma 3.29 Under Assumption 3.2, P[Ωcq] 6 C(d)m−6 for all m > 1.

Proof. The estimate is obvious for m < exp(512 log(3d)2) =: m0. Consider the
complement of Ωq given by

Ωcq =
{
∃ 0 < |j| 6Mu

m

∣∣∣∣ ∣∣∣ [ϕ]j
[̂ϕ]j
− 1
∣∣∣ > 1

2 ∨ |[̂ϕ]j |
2 < 1/m

}
.

Due to Lemma 3.26 (iii), we have |[ϕ]j |2 > 2/m for all m > m0 and for all
0 < |j| 6Mu

m. This yields

Ωcq ⊆
{
∃ 0 <|j| 6Mu

m

∣∣∣∣ ∣∣∣∣ [̂ϕ]j
[ϕ]j
− 1
∣∣∣∣ > 1

3

}
.
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By Hoeffding’s inequality (Theorem A.4), for all 0 < |j| 6Mu
m

P[|[̂ϕ]j/[ϕ]j − 1| > 1/3] 6 2 exp
(
− m |[ϕ]j |2

72

)
6 2 exp

(
−
mλMu

m

72d

)
(3.34)

which implies the result by Lemma 3.26 (ii). �

Lemma 3.30 Under Assumptions 3.2 and 3.16, the event Ωp defined in (3.26)
satisfies

P(Ωcp) 6 C(λ, d)m−6 ∀ n,m > 1.

Proof. Let ΩI := {(Nλ
n ∧Mλ

m) > (N̂n ∧ M̂m)} and ΩII := {(N̂n ∧ M̂m) >
(Nu

n ∧Mu
m)}. Then we have Ωcp = ΩI ∪ ΩII . Consider

ΩI = {N̂n < (Nλ
n ∧Mλ

m)} ∪ {M̂m < (Nλ
n ∧Mλ

m)}

first. By definition of Nλ
n , we have that min16|j|6Nλn

|[ϕ]j |2

|j|ω+
j

> 4(log(n+2))
n , which

implies

{N̂n < (Nλ
n ∧Mλ

m)} ⊂
{
∃1 6 |j| 6 (Nλ

n ∧Mλ
m)
∣∣∣∣ |[̂ϕ]j |2

|j|ω+
j

<
log(n+ 2)

n

}

⊂
⋃

16|j|6Nλn∧Mλ
m

{ |[̂ϕ]j |
|[ϕ]j |

6 1/2
}
⊂

⋃
16|j|6Nλn∧Mλ

m

{ ∣∣∣∣∣ [̂ϕ]j
[ϕ]j
− 1

∣∣∣∣∣ > 1/2
}
.

One can see that from min16|j|6Mλ
m
|[ϕ]j |2 > 4m−1+bm it follows in the same

way that

{
M̂m < (Nλ

n ∧Mλ
m)
}
⊂

⋃
16|j|6Nλn∧Mλ

m

{ ∣∣∣∣∣ [̂ϕ]j
[ϕ]j
− 1

∣∣∣∣∣ > 1/2
}
.

Therefore, ΩI ⊂
⋃

16|j|6Mu
m

{
|[̂ϕ]j/[ϕ]j − 1| > 1/2

}
, since Mλ

m 6 Mu
m. Hence,

applying Hoeffding’s inequality and Lemma 3.26 (ii) as in (3.34) yields

P[ΩI ] 6
∑

16|j|6Mu
m

2 exp
(
− m |[ϕ]j |2

72

)
6 C(d)m−6. (3.35)
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Consider ΩII = {N̂n > (Nu
n∧Mu

m)}∩{M̂m > (Nu
n∧Mu

m)}. In case (Nu
n∧Mu

m) =
Nu
n , use

log(n+2)
4n > max|j|>Nun+1

|[ϕ]j |2

|j|ω+
j

, such that

ΩII ⊂ {N̂n > Nu
n} ⊂

{
∀1 6 |j| 6 Nu

n + 1
∣∣∣∣ |[̂ϕ]j |2

|j|ω+
j

>
log(n+ 2)

n

}

⊂
{ |[̂ϕ]Nun+1|
|[ϕ]Nun+1|

> 2
}
⊂
{
|[̂ϕ]Nun+1/[ϕ]Nun+1 − 1| > 1

}
.

In case (Nu
n ∧Mu

m) = Mu
m, it follows from m−1+bm > 4 max|j|>Mu

m+1 |[ϕ]j |2
that

ΩII ⊂ {M̂m > Mu
m} ⊂

{
|[̂ϕ]Mu

m+1/[ϕ]Mu
m+1 − 1| > 1

}
.

Therefore, we have ΩII ⊂
{
|[̂ϕ](Nun∧Mu

m)+1/[ϕ](Nun∧Mu
m)+1 − 1| > 1

}
. Applying

Hoeffding’s inequality as in (3.34) and using Assumption 3.16, we obtain for
all m > 1

P[ΩII ] 6 2 exp
(
−
m |[ϕ]Mu

m+1|2

72

)
6 C(λ, d)m−6. (3.36)

Combining (3.35) and (3.36) implies the result. �

3.5 Conclusion
In this chapter, we have developed a minimax theory for the circular deconvo-
lution problem with two independent samples. In particular, we have shown
lower risk bounds in each of the two sample sizes. We have defined an orthog-
onal series estimator that can attain the lower risk bounds and we have shown
its minimax optimality under an appropriate choice of the regularization pa-
rameter. Finally, we have defined a data-driven choice of this parameter and
we have proved that the resulting adaptive estimator is still minimax optimal
for a wide range of deconvolution and error density classes.
Minimax optimality means that the lower bound for the maximal risk is at-

tained up to a numerical constant. While our results are exact and not asymp-
totic, this constant is however fairly large. Although some constant-tuning
might be possible in order to optimize the results, there is probably not very
much room for substantial improvement. It seems that the adaptation over a
wide range of density classes, including both ordinary and super smooth func-
tions, has to be paid for in terms of constants. It could be interesting, however,
to consider the results in the ordinary smooth case only and to compare the
resulting constants in the results with those in Cavalier and Hengartner (2005).
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As far as the size mn of the ε-sample is concerned, a natural question is
how to choose it in advance. The illustrations in this chapter show that in
some cases, mn has to grow sufficiently fast in n in order to obtain the same
optimal rates as if the error density were known. However, the necessary rate
of divergence for mn depends on the classes Frγ and Edλ. If no information at all
about the classes is available, the choice mn = n will yield the desired result.
However, one might want to reduce the size of the error sample by devising a
procedure to estimate the required sample size. For instance, one could start
with a small m and perform additional calibration measurements successively
until the resulting estimator does not change much anymore by adding further
measurements. It is however not obvious what stopping criterion could yield
satisfactory results.
Another interesting question is how identification could be preserved if the

variable X is not supported on the circle, but on an unknown compact interval
of the real line. Due to the compactness of the support, the density f would still
have a series representation, but the basis obviously depends on the support.
Moreover, as in the case of Chapter 1, an interesting problem would be the

renunciation of the independence between X and ε and an investigation of
identifiability conditions in this case. Finally, one could ask if the methods pre-
sented in this chapter still work when the two samples are dependent or when
there is a time series structure in the observations. The following proofs would
be affected: In the proof of the lower bound in the case of a known error density
in Theorem 3.3, we have used the iid. structure of the observations when con-
trolling the Hellinger affinity of the candidate models in Lemma 3.21. The same
remark holds for the proof of the second lower bound in Theorem 3.5 where we
need the independence of the two samples in addition. We would therefore need
new technical tools in order to control the Hellinger affinity of dependent vari-
ables. In the proof of the upper bounds, we have used the independence of the
two samples when applying Petrov’s and Talagrand’s inequalities. Again, new
technical results would be needed in order to obtain similar results. Additional
assumptions such as mixing conditions would probably be required.
Finally, let us consider the case where some Fourier coefficients of the error

density are zero, that is [ϕ]j = 0 for j ∈ J0 for some unknown set J0 ⊂ Z.
Note that −j ∈ J0 if and only if j ∈ J0. Suppose that the other coefficients
of ϕ still follow the decay imposed by the class Edλ, that is

d−1 6
|[ϕ]j |2

λj
6 d ∀ j ∈ Z \ J0.

The convolution theorem states that [g]j = [ϕ]j [f ]j for all j ∈ Z. As a conse-
quence, the solution’s coefficients [f ]j with j ∈ J0 are not identifiable. We can
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thus only identify the function

f+ = 1 +
∑
0<|j|
j 6∈J0

[f ]j ej .

Consequently, we cannot expect the risk E‖f̂k − f‖2ω to tend to zero. Let us
therefore rather consider the risk corresponding to the identified part of the
solution, that is E‖f̂k − f+‖2ω. In order to compute this risk, decompose the
estimator f̂k according to the set J0, that is

f̂+
k := 1 +

∑
0<|j|6k
j 6∈J0

[̂g]j
[̂ϕ]j

1[| ̂[ϕ]j |2>1/m]ej f̂◦k :=
∑

0<|j|6k
j∈J0

[̂g]j
[̂ϕ]j

1[| ̂[ϕ]j |2>1/m]ej .

Obviously, we have f̂k = f̂+
k + f̂◦k , but note that we cannot compute the parts

of the estimator in practice as we do not know the set J0. The risk can be
written as

E‖f̂k − f+‖2ω = E‖f̂+
k − f

+‖2ω + E‖f̂◦k‖2ω.

The control of the first term follows immediately from Theorem 3.7. It remains
to show that the second term is of negligible order. It can be written as

E‖f̂◦k‖2ω =
∑

0<|j|6k
j∈J0

ωjE[|[̂g]j |
2] E[|[̂ϕ]j |

−21[| ̂[ϕ]j |2>1/m]].

Noting that E[|[̂g]j |2] 6 n−1 and, by Hoeffding’s inequality (cf. Theorem A.4),
E[|[̂ϕ]j |−21[| ̂[ϕ]j |2>1/m]] 6 Cm

−1, we conclude that the remainder term E‖f̂◦k‖2ω
is of negligible order. Thus, even if some coefficients of the error density are
zero, the results of this chapter still hold for the identifiable part of the solution.



Chapter 4

Non parametric instrumental regression

N on parametric instrumental regression models have attracted increasing at-
tention in the econometrics and statistics literature (e.g. Florens, 2003;

Darolles et al., 2001; Newey and Powell, 2003; Hall and Horowitz, 2007; Blundell
et al., 2007). In instrumental regression, the dependence of a response Y to the
variation of an endogenous vector Z of explanatory variables is characterized
by

Y = ϕ(Z) + U (4.1a)

for some error term U . Endogenous means that that Z and U are not stochasti-
cally independent (Z 6⊥ U). Additionally, a vector of exogenous instrumentsW
(meaning that W ⊥ U) such that

E[U |W ] = 0 (4.1b)

is supposed to be observed. The non parametric relationship is hence mod-
eled by the regression function ϕ, which is also called structural function in
this context. Typical examples of such settings are error-in-variable models,
simultaneous equations or treatment models with endogenous selection. It is
worth noting that in the presence of instrumental variables, the model equa-
tions (4.1a–4.1b) are the natural generalization of a standard parametric model
(eg. Amemiya, 1974) to the non parametric situation. This extension has first
been introduced by Florens (2003) and Newey and Powell (2003), while its
identification has been studied e.g. in Carrasco et al. (2007), Darolles et al.
(2001) and Florens et al. (2011). Recent applications and extensions of this
approach include non parametric tests of exogeneity (Blundell and Horowitz,
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2007), quantile regression models (Horowitz and Lee, 2007), or semi-parametric
modeling (Florens et al., 2009), for example.
There is a vast literature on the non parametric estimation of the structural
function ϕ based on a sample of (Y,Z,W ). For example, Ai and Chen (2003),
Blundell et al. (2007) or Newey and Powell (2003) consider sieve minimum
distance estimators, while Darolles et al. (2001), Gagliardini and Scaillet (2006)
or Florens et al. (2011) consider penalized least squares estimators. The optimal
estimation in a minimax sense has been worked on by Hall and Horowitz (2005)
and Chen and Reiss (2011). The authors prove a lower bound for the mean
integrated squared error (MISE) and propose an estimator which can attain
optimal rates. In the present chapter, we extend this result by considering not
only the MISE of the estimation of ϕ but, more generally, a risk defined with
respect to the weighted norm ‖·‖ω that we have already defined in (3.3) in the
previous chapter. This allows us for example to consider the estimation of the
derivatives of ϕ, too.
It has been noticed by Newey and Powell (2003) and Florens (2003) that the

non parametric estimation of the structural function ϕ leads to an ill-posed
inverse problem in general. Consider the model equations (4.1a–4.1b). Taking
the conditional expectation with respect to the instruments W on both sides
in equation (4.1a) yields the conditional moment equation

E[Y |W ] = E[ϕ(Z)|W ]. (4.2)

Therefore, the estimation of the structural function ϕ is linked to the inver-
sion of equation (4.2), which is not stable in general and hence an ill-posed
inverse problem (for a comprehensive review of inverse problems in economet-
rics, see Carrasco et al. (2007)). This instability is generally accounted for by
the application of regularization techniques which however involve the choice of
a smoothing parameter. It is well known that the resulting estimation proce-
dure can attain optimal rates only if this parameter is chosen in an appropriate
way. In general, this choice requires knowledge of characteristics of the struc-
tural function, such as the number of its derivatives, which are not known in
practice. Thus, an essential problem in this theoretical framework is the data
driven choice of smoothing parameters. In this chapter, an adaptive method
is proposed which indeed does not depend on any properties of ϕ. However, it
still necessitates that some characteristics of the underlying operator be known.
One objective in this chapter is the minimax optimal non parametric esti-

mation of the structural function ϕ based on an iid. sample of (Y,Z,W ) sat-
isfying the model equations (4.1a–4.1b). For the moment being, suppose that
the structural function can be represented as ϕ =

∑k
j=1[ϕ]jej using only k

pre-specified basis functions e1, . . . , ek, and that only the coefficients [ϕ]j with
respect to that base are unknown. In this situation, the conditional moment
equation (4.2) reduces to a multivariate linear conditional moment equation,
that is, E[Y |W ] =

∑k
j=1[ϕ]jE[ej(Z)|W ]. Solving this equation is a classical
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textbook problem in econometrics (cf. Pagan and Ullah, 1999). A popular
approach consists in replacing the conditional moment equation by an uncon-
ditional one: given k functions f1, . . . , fk, one can consider k unconditional
moment equations instead of the multivariate conditional moment equation,
that is, E[Y fl(W )] =

∑k
j=1[ϕ]jE[ej(Z)fl(W )], l = 1, . . . , k. Notice that once

the functions {fl}kl=1 are chosen, all the unknown quantities in the uncondi-
tional moment equations can be estimated by simply substituting empirical
versions for the theoretical expectation. Moreover, a least squares solution of
the estimated equation leads to a consistent and asymptoticly normal estimator
of the parameter vector ([ϕ]j)kj=1 under mild assumptions. The choice of the
functions {fl}kl=1 directly influences the asymptotic variance of the estimator
and thus the question of optimal instruments arises (cf. Newey, 1990). One
advantage of this approach is that estimator is easily computable. However, in
many situations an infinite number of functions {ej}j>1 and associated coeffi-
cients ([ϕ]j)j>1 is needed to represent the structural function ϕ. Considering an
infinite number of functions {fl}l>1 then for each k > 1 we could still consider
the finite dimensional least squares estimator described above. The choice of
the basis functions {ej}j>1 reflects a priori information about the structural
function ϕ, such as smoothness.
Notice that the dimension k plays the role of a smoothing parameter and

one might expect that the estimator of the structural function ϕ is consistent
as k tends to infinity at a suitable rate. Unfortunately, this is not true in
general. Let ϕk :=

∑k
j=1[ϕk]jej denote a least squares solution of the reduced

unconditional moment equations. This means that the vector of coefficients
([ϕk]j)kj=1 minimizes the quantity

∑k
l=1{E[Y fl(W )]−

∑k
j=1 βjE[ej(Z)fl(W )]}2

over all vectors (βj)kj=1. Then, ϕk converges to the true structural function
as k tends to infinity only under an additional assumption (the «extended link
condition» introduced below) on the basis {fj}j>1. We are going to develop a
least squares estimator ϕ̂k of ϕ based on dimension reduction and thresholding,
and we show that it can attain optimal rates of convergence in terms of a
weighted risk – provided the choice of the dimension parameter k is made in
the optimal way. It is worth to note that all the results in this chapter are
obtained without any additional smoothness assumption on the joint density
of (Y, Z,W ). In fact, such a density need not even exist.
Our main contribution is the development of a method to choose the di-

mension parameter k in a fully data driven way, that is, not depending on
characteristics of ϕ, and assuming only that the underlying conditional expec-
tation operator is «smoothing» in a sense to be made precise below. The central
result of the present chapter states that for this automatic choice k̂, the least
squares estimator ϕ̂

k̂
can attain the lower bound up to a constant, and is thus

minimax-optimal. The adaptive choice of k is made following the same general
model selection methodology which we have used in Chapter 3 and which has
been developed in Barron et al. (1999). More specifically, k̂ is again the mini-
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mizer of a penalized contrast. We illustrate all of our results by considering the
estimation of derivatives of the structural function under a smoothing condi-
tional expectation operator. Typically, one distinguishes finitely and infinitely
smoothing such operators. Loubes and Marteau (2009) propose an adaptive
estimator for the case where the operator is known to be finitely smoothing.
They derive oracle inequalities and obtain convergence rates which differ from
the optimal ones by a logarithmic factor. In contrast to this, we provide a uni-
fied estimation procedure which can attain minimax-optimal rates in either of
the both cases. In other words, our estimation procedure attains optimal rates
without knowing in advance if the operator is finitely or infinitely smoothing.
This chapter, which is based on Johannes and Schwarz (2010), is organized

as follows. As in the last chapter, we begin by discussing a basic example in
the first section, namely a non parametric regression model with exogenous
regressors, and thus without the need for instrumental variables. This example
allows us to discuss in a simplified framework how the adaptation techniques
we have elaborated on in Chapter 3 can be applied in the context of a regression
model. In Section 4.2, we develop the minimax theory for the non parametric
instrumental regression model with respect to the weighted risk. We derive, as
an illustration, the optimal convergence rates for the estimation of derivatives
in the finitely and in the infinitely smoothing case. Finally, in Section 4.3, we
construct the adaptive estimator. An upper risk bound is shown and conver-
gence rates for the finitely and infinitely smoothing case are found to coincide
with minimax optimal ones. Some auxiliary results are deferred to the end of
the chapter.

4.1 An introductory example
As in Chapter 3, in order to give an account of the techniques to be used further
on, we begin with a basic example. Consider the non parametric regression
model

Y = ϕ(X) + U,

where ϕ ∈ L2[0, 1] is the real-valued regression function, X ∼ U [0, 1] the uni-
formly distributed exogenous regressor, and U ∼ N (0, 1) a normally distributed
error. Suppose that we observe an iid. sample (Yj , Xj)j=1,...,n. As in Sec-
tion 3.1, let (ej)j∈N denote the exponential basis of the Hilbert space L2[0, 1].
For every j ∈ N, a natural and unbiased estimator of the coefficient [ϕ]j is given
by [̂ϕ]j := n−1∑n

k=1 Ykej(−Xk). An orthogonal series estimator of ϕ can then
be defined by ϕ̂k =

∑k
j=1 [̂ϕ]j ej .

As we want to develop minimax theory again, consider the case where the
regression function ϕ lies in the class Fργ defined below in (4.4). In this intro-
ductory section, we only consider the special case where γ0 = 1 and γj = j2p
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for |j| > 1. As in the case of the deconvolution model considered in Section 3.1,
the maximal risk over this class is bounded by

sup
ϕ∈Fργ

E‖ϕ̂k − ϕ‖2 6 kn−1 + ρk−2p.

The optimal choice for k is k = k∗n = n1/(2p+1), and the resulting upper bound

sup
ϕ∈Fργ

E‖ϕ̂k∗n − ϕ‖
2 6 C n−2p/(2p+1),

which is known to be the optimal minimax risk (c.f. Tsybakov, 2004). The
optimal choice k∗n still depends on the parameter p. Therefore, as in Section 3.1
of the previous chapter, we define the data driven choice

k̆ := argmin
k=1,...,n

{−‖ϕ̂k‖2 + c k n−1}

for some constant c. Letting Φ
ϕ̂

:=
∑
j∈N [̂ϕ]j ej and following exactly the lines

of the argument explained in Section 3.1, one shows that

‖ϕ̂k̆ − ϕ‖
2 6 ‖ϕ− ϕk‖2 + pen(k)− pen(k̆) + 2〈ϕ̂k̆ − ϕk,Φϕ̂ − ϕ〉

and then

sup
ϕ∈Fργ

E‖ϕ̂k̆ − ϕ‖
2 6C n−2p/(2p+1) (4.3)

+ C E
[ n∑
k′=1

(
sup
t∈Bk′

|〈t,Φ
ϕ̂
− ϕ〉|2 − c (k′)/n

)
+

]
.

The remainder term can be controlled by a concentration inequality for the
normal distribution. Let us roughly outline the next step in the development
of the model. Unlike in this example, we consider an endogenous regressor Z,
but we assume that instrumental variables W with E[U |W ] = 0 are available.
The set of observations consists of n iid. copies of (Y, Z,W ). Furthermore,
we will not suppose the error U to be normally distributed; instead, we will
define general classes of error distributions. Thus, the maximal risk not only
depends on a class of solutions, but also on classes of error distributions and of
conditional expectation operators.
In this more general setting, the remainder term in (4.3) cannot be controlled

by standard concentration inequalities anymore. We need rather to apply Tala-
grand’s inequality, which unlike in Section 3.1 is not possible directly, because
the [̂ϕ]j are not bounded almost surely – a finer decomposition of the term is
required. The result however remains the same in the sense that the remainder
term is of order n−1 and hence negligible with respect to the minimax rate.
The optimality of the adaptive estimator is thus established.
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4.2 Minimax optimal estimation
In this section, we develop a minimax theory for the estimation of the structural
function and its derivatives in nonparametric instrumental regression models.

4.2.1 Basic model assumptions
It is convenient to rewrite the moment equation (4.2) in terms of an operator
between Hilbert spaces. Therefore, let us first introduce the Hilbert spaces

L2
Z =

{
ϕ : Rp → R

∣∣ ‖ϕ‖2Z := E[ϕ2(Z)] <∞
}
,

L2
W =

{
ψ : Rq → R

∣∣ ‖ψ‖2W := E[ψ2(W )] <∞
}
,

endowed with the inner products 〈ϕ, ϕ̃〉Z = E[ϕ(Z)ϕ̃(Z)], ϕ, ϕ̃ ∈ L2
Z , and

〈ψ, ψ̃〉W = E[ψ(W )ψ̃(W )], ψ, ψ̃ ∈ L2
W , respectively. Then the conditional

expectation of Z given W defines a linear operator Tϕ := E[ϕ(Z)|W ], ϕ ∈ L2
Z ,

which maps L2
Z to L2

W . The moment equation (4.2) can be rewritten as

g := E[Y |W ] = E[ϕ(Z)|W ] =: Tϕ,

where the function g belongs to L2
W . The estimation of the structural func-

tion ϕ is thus linked to the inversion of the conditional expectation operator T .
Moreover, we suppose throughout this chapter that the operator T is com-
pact, which is the case under fairly mild assumptions. For example, if the
triple (Y,Z,W ) has a joint density, it is sufficient to demand that it be square
integrable – or continuous, if its support is compact – in order for T to be com-
pact (c.f. Carrasco et al., 2007). Consequently, unlike in a multivariate linear
instrumental regression model, a continuous generalized inverse of T does not
exist as long as the range of the operator T is an infinite dimensional subspace
of L2

W . This corresponds to the setup of statistical ill-posed inverse problems
with unknown operator outlined in the introduction to this thesis. For a de-
tailed discussion in the context of inverse problems see Chapter 2.1 in Engl et al.
(1996), while in the special case of a nonparametric instrumental regression we
refer to Carrasco et al. (2007). In what follows, we always assume that the
joint distribution of (Y, Z,W ) is such that g = E[Y |W ] lies in the range of T
and that T is injective. Thus, the first two Hadamard conditions are satisfied.
Note that this assumption does not imply that every g ∈ L2

W has a preimage
under T .

4.2.2 Complexity of the problem: a lower bound
In this section we show that the obtainable accuracy of any estimator of the
structural function ϕ is essentially determined by additional regularity condi-
tions imposed on ϕ and the conditional expectation operator T . In this chapter,
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these conditions are characterized through different weighted norms in L2
Z with

respect to a pre-specified orthonormal basis {ej}j>1 of L2
Z . We formalize these

conditions as follows.

Minimal regularity conditions

As in (3.3) in the previous chapter, given a strictly positive sequence of weights
ω := (ωj)j>1, we denote by ‖·‖ω the weighted norm given by

‖f‖ω :=
∞∑
j=1

ωj |〈f, ej〉Z |2, ∀f ∈ L2
Z .

We shall measure the accuracy of any estimator ϕ̂ of the unknown structural
function in terms of a weighted risk, that is E‖ϕ̂− ϕ‖2ω, for a pre-specified se-
quence of weights ω := (ωj)j>1. This general approach allows as to consider not
only the estimation of the structural function itself but also of its derivatives,
as we have already discussed in the illustration section of the previous chapter
(cf. p. 61). Moreover, given a sequence of weights γ := (γj)j>1 we suppose,
here and subsequently, that for some constant ρ > 0 the structural function ϕ
belongs to the ellipsoid

Fργ :=
{
f ∈ L2

Z

∣∣ ‖f‖2γ 6 ρ}, (4.4)

which captures all the prior information (such as smoothness) about the un-
known structural function ϕ. Furthermore, as usual in the context of ill-posed
inverse problems, we specify the mapping properties of the conditional ex-
pectation operator T . Therefore, consider the sequence (‖Tej‖W )j>1, which
converges to zero since T is compact. In what follows, we impose restrictions
on the decay of this sequence. Denote by T the set of all injective compact
operator mapping L2

Z to L2
W . Given a strictly positive sequence of weights

λ := (λj)j>1 and a constant d > 1, we define the subset T dλ of T by

T dλ :=
{
T ∈ T

∣∣ ‖f‖2λ/d 6 ‖Tf‖2W 6 d ‖f‖2λ, ∀f ∈ L2
Z

}
. (4.5)

Notice that for all T ∈ T dλ it follows that d−1 6 ‖Tej‖2W /λj 6 d. Fur-
thermore, let us denote by T ∗ : L2

W → L2
Z the adjoint of T which satisfies

T ∗ψ = E[ψ(W )|Z] for all ψ ∈ L2
W . Let T ∈ T . Considering the case where

{ej}j>1 are the eigenfunctions of T ∗T , one sees immediately that the sequence λ
specifies the decay of the eigenvalues of T ∗T . All results of this work are de-
rived under regularity conditions on the structural function ϕ and the condi-
tional expectation operator T described by the sequences γ and λ, respectively.
However, below we provide illustrations of these conditions by assuming a «reg-
ular decay» of these sequences. The next assumption summarizes our minimal
regularity conditions on these sequences.
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Assumption 4.1 Let γ := (γj)j∈N, ω := (ωj)j∈N and λ := (λj)j∈N be strictly
positive sequences of weights with γ0 = ω0 = λ0 = 1 and Γ :=

∑
j∈N γ

−1
j <∞,

such that (ω/γ), (λ/ω), and λ are non-increasing, respectively.

As in the case of the analogue Assumption 3.2 in Chapter 3, it is worth noting
that the monotonicity assumption on (ω/γ) only ensures that ‖ϕ‖ω is finite for
all ϕ ∈ Fργ , and hence the weighted risk is a well-defined measure of accuracy
for estimators of ϕ. Heuristically, this reflects the fact that we cannot estimate
the (s+1)-th derivative if the structural function has only s derivatives. In the
illustration in Section 4.2.3, the additional assumption Γ :=

∑
j∈N γ

−1
j < ∞

can be interpreted as a continuity assumption on ϕ.

The lower bound

The next assertion provides a lower bound for the risk with respect to the
weighted norm. Thus, we extend the result of Chen and Reiss (2011), who
show a lower bound for the mean integrated squared error.

Theorem 4.2 Suppose that the iid. (Y,Z,W )-sample of size n obeys the model
(4.1a–4.1b), that the distribution of the error term U belongs to the class

Uσ := {PU | E[U |W ] = 0 and E[U4|W ] 6 σ4}

with σ > 0 and that supj>1 E[e4
j (Z)|W ] 6 η, η > 1. Consider sequences

γ, ω and λ satisfying Assumption 4.1 such that the conditional expectation
operator T associated to (Z,W ) belongs to T dλ , d > 1. Define for all n > 1

k∗n := k∗n(γ, λ, ω) := argmin
k∈N

{
max

(ωk
γk
,

k∑
j=1

ωj
nλj

)}
and

R∗n := R∗n(γ, λ, ω) := max
(ωk∗n
γk∗n

,

k∗n∑
j=1

ωj
nλj

)
. (4.6)

If in addition κ := infn>1{(R∗n)−1 min(ωk∗nγ
−1
k∗n
,
∑k∗n
l=1 ωl(nλl)−1)} > 0 and σ4 >

8(3 + 2ρ2Γ2), then for all n > 1 and for any estimator ϕ̃ of ϕ, we have

sup
PU∈Uσ

sup
ϕ∈Fργ

E‖ϕ̃− ϕ‖2ω >
κ

4 min
(
ρ,

1
2d

)
R∗n.

Remark 4.3 As the proofs of the lower bounds in the previous chapter, the
proof of the last assertion is based on Assouad’s cube technique (c.f. Koros-
tolev and Tsybakov, 1993; Tsybakov, 2004), which consists in constructing 2k∗n
candidates of structural functions which have the largest possible ‖·‖ω-distance
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but are still statistically non distinguishable. In the last theorem, the addi-
tional moment condition supj>1 E[e4

j (Z)|W ] 6 η is obviously satisfied if the
basis functions {ej} are uniformly bounded (e.g. the trigonometric basis con-
sidered in Section 4.2.3). However, if V denotes a Gaussian random variable
with mean zero and variance one, which is moreover independent of (Z,W ),
then the additional condition σ4 > 8(1+2ρ2Γ2η) ensures that for all structural
functions ϕ ∈ Frγ , the distribution of the error term U := V −ϕ(Z) + [Tϕ](W )
belongs to Uσ. This specific case is only needed to simplify the calculation of the
distance between distributions corresponding to different structural functions.
A similar assumption has been used by Chen and Reiss (2011).
On the other hand, below we derive an upper bound assuming that the

distribution of error term U belongs to Uσ and that the joint distribution of
(Z,W ) satisfies additional moment conditions. In this situation, Theorem 4.2
provides a lower bound for any estimator as long as σ is sufficiently large.
Note further that this lower bound tends only to zero if ω/γ is a vanishing
sequence. In other words, in case γ ≡ 1, uniform consistency over all ϕ with
‖ϕ‖2Z 6 ρ can only be achieved with respect to a weighted norm weaker than
the L2

Z-norm, that is, if ω is a sequence tending to zero. This reflects the fact
that the ill-posedness of the underlying inverse problem could be redeemed by
changing the topological structure of the spaces as we have discussed in the
introduction of this thesis. Finally, it is important to note that the regularity
conditions imposed on the structural function ϕ and the conditional expectation
operator T involve only the basis {ej}j>1 in L2

Z . Therefore, the lower bound
derived in Theorem 4.2 does not capture the influence of the basis {fl}l>1
in L2

W used to construct the estimator. In other words, the proposed estimator
of ϕ can only attain this lower bound if {fl}l>1 is appropriately chosen. �

Proof of Theorem 4.2. Consider a pair (Z,W ) with associated conditional
expectation operator T ∈ T λd . Let

ζ := κmin(ρ, 1/(2d)) and αn := R∗n(
k∗n∑
j=1

ωj/(λjn))−1.

Then, the function ϕ := (ζαn/n)1/2∑k∗n
j=1 λ

−1/2
j ej belongs to the class Fργ ,

because the monotonicity of (γ/ω) implies ‖ϕ‖2γ 6 ρκ(γk∗n/ωk∗n)R∗n 6 ρ, using
successively the definitions of αn and κ. Based on ϕ, the candidates for the
structural function are defined as

ϕθ :=
k∗n∑
j=1

θj [ϕ]jej

for every θ := (θj) ∈ {−1, 1}k∗n . These functions obviously belong to Fργ ,
too. Let V ∼ N (0, 1) be a random variable independent of (Z,W ). For every
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θ := (θj) ∈ {−1, 1}k∗n , the distribution of the random variable

Uθ := [Tϕθ](W )− ϕθ(Z) + V

then belongs to Uσ for all σ4 > 8(3 + 2ρ2Γ2η): Firstly, E[Uθ|W = 0]. Secondly,
we have

|E[f(Z)|W ]|4 6 ρ2Γ
∑
j∈N

γ−1
j E[e4

j (Z)|W ] 6 ρ2Γ2η

for all all f ∈ Fργ , which follows from the condition Γ =
∑
j∈N γ

−1
j < ∞

together with supj E[e4
j (Z)|W ] 6 η, applying the Cauchy-Schwarz inequality

twice. From this estimate we conclude E[ϕ4
θ(Z)|W ] 6 ηρ2Γ2 and |[Tϕθ](W )|4 6

E[ϕ4
θ(Z)|W ] 6 ηρ2Γ2. By combination of the last two bounds we obtain

E[U4
θ |W ] 6 8{2ηρ2Γ2 + 3}.

Consequently, for any θ, the tuple (Y, Z,W ) defined by Y := ϕθ(Z)+Uθ obeys
the model (4.1a–4.1b). Let (Yi, Zi,Wi)i=1,...,n be n iid. copies of (Y,Z,W ) and
denote their joint distribution by Pθ.
Under the law Pθ, the conditional distribution of Yi givenWi is then Gaussian

with mean [Tϕθ](Wi) and variance 1. Furthermore, for j = 1, . . . , k∗n and for
each θ we introduce θ(j) by θ(j)

l = θl for j 6= l and θ(j)
j = −θj . Then, it is easily

seen that the log-likelihood of Pθ with respect to Pθ(j) is given by

log
( dPθ
dPθ(j)

)
=

n∑
i=1

2(Yi − [Tϕθ](Wi))θj [ϕ]j [Tej ](Wi) + 2[ϕ]2j
n∑
i=1
|[Tej ](Wi)|2.

Its expectation with respect to Pθ satisfies

EPθ [log(dPθ/dPθ(j))] = 2n[ϕ]2j‖Tej‖2W 6 2nd[ϕ]2jλj ,

because T ∈ T λd . In terms of the Kullback-Leibler divergence, this means

KL(Pθ, Pθ(j)) 6 2 dn [ϕ]2jλj .

Since the Hellinger distance satisfies H2(Pθ, Pθ(j)) 6 KL(Pθ, Pθ(j)), we can use
the definition of ϕ, the property αn 6 κ−1, and the definition of ζ successively
and obtain that

H2(Pθ, Pθ(j)) 6 2 dn [ϕ]2jλj 6 2d ζ αn 6 1. (4.7)

Considering the Hellinger affinity ρ(Pθ, Pθ(j)) =
∫ √

dPθdPθ(j) , we can write for
any estimator ϕ̃ of ϕ that

ρ(Pθ, Pθ(j)) 6
∫
|[ϕ̃− ϕθ(j) ]j |
|[ϕθ − ϕθ(j) ]j |

√
dPθdPθ(j) +

∫
|[ϕ̃− ϕθ]j |
|[ϕθ − ϕθ(j) ]j |

√
dPθdPθ(j)

6
(∫ |[ϕ̃− ϕθ(j) ]j |2

|[ϕθ − ϕθ(j) ]j |2
dPθ(j)

)1/2
+
(∫ |[ϕ̃− ϕθ]j |2

|[ϕθ − ϕθ(j) ]j |2
dPθ

)1/2
.
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Rewriting the last estimate using the identity ρ(Pθ, Pθ(j)) = 1− 1
2H

2(Pθ, Pθ(j))
and (4.7), we obtain{

Eθ|[ϕ̃− ϕθ]j |2 + Eθ(j) |[ϕ̃− ϕθ(j) ]j |2
}
>

1
8 |[ϕθ − ϕθ(j) ]j |2 = 1

2[ϕ]2j .

We combine the last estimate with the following reduction scheme, which is the
key argument of this proof:

sup
PU∈Uσ

sup
ϕ∈Fργ

EPθ‖ϕ̃− ϕ‖2ω > sup
θ∈{−1,1}k∗n

EPθ‖ϕ̃− ϕθ‖2ω

>
1

2k∗n
∑

θ∈{−1,1}k∗n

k∗n∑
j=1

ωjEPθ |[ϕ̃− ϕθ]j |2

= 1
2k∗n

∑
θ∈{−1,1}k∗n

k∗n∑
j=1

ωj
2

{
EPθ |[ϕ̃− ϕθ]j |2 + EP

θ(j)
|[ϕ̃− ϕθ(j) ]j |2

}

>
1

2k∗n
∑

θ∈{−1,1}k∗n

k∗n∑
j=1

ωj
4 [ϕ]2j = ζαn

4

k∗n∑
j=1

ωj
nλj

.

Hence, from the definition of ζ and αn we obtain the lower bound given in the
theorem. �

4.2.3 Minimax-optimal Estimation by dimension reduction
and thresholding

In addition to the basis {ej}j>1 of L2
Z considered in the last section, we in-

troduce now a basis {fl}l>1 in L2
W . In this section we derive the asymptotic

properties of the least squares estimator under minimal assumptions on these
two bases. More precisely, we suppose that the structural function ϕ belongs
to some ellipsoid Frγ and that the conditional expectation satisfies a link condi-
tion, i.e., T ∈ T λd . Furthermore, we introduce an additional condition linked to
the basis {fl}l>1. Then, under slightly stronger moment conditions, we show
that the proposed estimator attains the lower bound derived in the last section.
All these results are illustrated under classical smoothness assumptions at the
end of this section.

Matrix and operator notations

Given k > 1, let Ek and Fk denote the subspace of L2
Z and L2

W spanned by
the functions {ej}kj=1 and {fl}kl=1, respectively. Ek and E⊥k (resp. Fk and F⊥k )
denote the orthogonal projection mappings on Ek (resp. Fk) and its orthogonal
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complement E⊥k (resp. F⊥k ), respectively. Given a matrix K, its inverse is
denoted by K−1 and its transposed matrix by Kt. Let [ϕ], [ψ] and [K] denote
the (infinite) vector and matrix of the function ϕ ∈ L2

Z , ψ ∈ L2
W and the

operator K : L2
Z → L2

W with the entries [ϕ]j = 〈ϕ, ej〉, [ψ]l = 〈ψ, fl〉 and
[K]lj = 〈Kej , fl〉, respectively. The upper k-sub-vector and (k× k)-sub-matrix
of [ϕ], [ψ] and [K] are denoted by [ϕ]k, [ψ]k and [K]k, respectively. Note that
[K∗]k = [K]tk. The diagonal matrix with entries v is denoted by diag(v) and
the identity matrix is denoted by I. Clearly, [Ekϕ]k = [ϕ]k and if we restrict
FkKEk to an operator from Ek into Fk, then it has the matrix [K]k. Moreover,
if v ∈ Rk then ‖v‖ denotes the Euclidean norm of v, and given a (k × k)-
matrix M , let ‖M‖ := sup‖v‖61‖Mv‖ denote its spectral-norm and tr(M) its
trace.
Consider the conditional expectation operator T associated to the regressor Z

and the instrument W . If [e(Z)] and [f(W )] denote the infinite random vector
with entries ej(Z) and fj(W ) respectively, then [T ]k = E[f(W )]k[e(Z)]tk which
is, throughout the chapter, assumed to be non singular for all k > 1 (or, at
least for sufficiently large k), such that [T ]−1

k always exists. Note that it is
a nontrivial problem to determine in under what precise conditions such an
assumption holds (see e.g. Efromovich and Koltchinskii (2001) and references
therein).

Definition of the estimator

Let (Y1, Z1,W1), . . . , (Yn, Zn,Wn) be an iid. sample of (Y,Z,W ). Since [T ]k =
E[f(W )]k[e(Z)]tk and [g]k = EY [f(W )]k can be written as expectations, we
can construct estimators by using their empirical counterparts, that is,

[̂T ]k := (1/n)
n∑
i=1

[f(Wi)]k[e(Zi)]tk and [̂g]k := (1/n)
n∑
i=1

Yi[f(Wi)]k.

Then the estimator of the structural function ϕ is defined by

ϕ̂k :=
k∑
j=1

[ϕ̂k]jej with [ϕ̂k]k :=


[̂T ]
−1
k [ĝ]k,

if [̂T ]k is nonsingular

and ‖[̂T ]
−1
k ‖ 6

√
n,

0, otherwise,

(4.8)

where the dimension parameter k = k(n) has to tend to infinity as the sample
size n increases. This estimator ϕ̂k takes its inspiration from the linear Galerkin
approach (c.f. Efromovich and Koltchinskii, 2001; Hoffmann and Reiss, 2008).
One could also consider other regularization techniques in this context, for
example the Tikhonov regularization which has been briefly discussed in the
introduction. But the Tikhonov method has a great disadvantage, namely the
so called saturation effect which is an absolute upper bound on the convergence
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speed of the regularized solution. This limitation prevents the estimator from
attaining optimal convergence rates for a wide range of functional classes Fργ .
For a more detailed discussion of this phenomenon see for example Engl et al.
(1996).
Note that the estimator [T̂ ]k only depends on the observations of the cou-

ple (Z,W ) and the estimator [ĝ]k only on (Y,W ). Instead of supposing iid.
observations of the triple (Y, Z,W ), one could therefore work as well with two
separated samples of the couples just mentioned. These two samples could even
be of different size. This case may possibly be handled taking into account the
theoretical framework of the previous chapter. In this chapter, however, we
base our estimation on iid. observations of (Y,Z,W ), which corresponds to the
case where we have two samples of equal size.

Extended link condition

Consistency of this estimator is only possible if the least squares solution ϕk =∑k
j=1[ϕk]jej with [ϕk]k = [T ]−1

k [g]k converges to ϕ as k → ∞, which is not
true in general. However, the condition supk∈N‖[T ]−1

k [TE⊥k ]k‖ <∞ is known to
be necessary to ensure convergence of ϕk. Notice that this condition involves
also the basis {fl}l>1 in L2

W . In what follows, we introduce an alternative
but stronger condition to guarantee the convergence, which extends the link
condition (4.5), that is, T ∈ T λd . We denote by T λd,D for some D > d the subset
of T λd given by

T λd,D :=
{
T ∈ T λd

∣∣ sup
k∈N
‖[diag(λ)]1/2k [T ]−1

k ‖
2 6 D

}
. (4.9)

Remark 4.4 The link condition (4.5) implies the extended link condition (4.9)
for a suitable D > 0 if {ej} and {fj} are the singular functions of T and
if [T ] is only a small perturbation of diag(λ1/2), or if T is strictly positive
(for a detailed discussion we refer to Efromovich and Koltchinskii (2001) and
Cardot and Johannes (2010)). We underline that once both bases {ej}j>1 and
{fl}l>1 are specified, the extended link condition (4.9) restricts the class of joint
distributions of (Z,W ) to those for which the least squares solution ϕk is L2-
consistent. Moreover, we show below that under the extended link condition
the least squares estimator of ϕ given in (4.8) can attain minimax-optimal
rates of convergence. In this sense, given a joint distribution of (Z,W ), a
basis {fl}l>1 satisfying the extended link condition can be interpreted as a set
of optimal instruments. Furthermore, for each pre-specified basis {ej}j>1, we
can theoretically construct a basis {fl}l>1 of optimal instruments such that the
extended link condition is not a stronger restriction than the link condition (4.5)
(see Johannes and Breunig (2009) for more details). �
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The upper bound

The following theorem provides an upper bound under the extended link condi-
tion (4.9) and an additional moment condition on the bases or, more precisely,
on the random vectors [e(Z)] and [f(W )]. We begin this section by formalizing
this additional condition.

Assumption 4.5 There exists η > 1 such that the joint distribution of (Z,W )
satisfies

(i) supj∈N E[e2
j (Z)|W ] 6 η2 and supl∈N E[f4

l (W )] 6 η4;

(ii) supj,l∈N Var(ej(Z)fl(W )) 6 η2 and
supj,l∈N E|ej(Z)fl(W )−E[ej(Z)fl(W )]|8 6 8!η6 Var(ej(Z)fl(W )).

This assumption restricts the set of possible joint distribution of (Z,W ). It is
however noticeable that it is satisfied for any joint distribution and for suffi-
ciently large η if the bases {ej}j>1 and {fl}l>1 are uniformly bounded. As the
bases are not pre-specified, the assumption is not too restrictive. Recall the
notation an . bn and an ∼ bn from Chapter 3 (p. 54).

Theorem 4.6 Suppose that the iid. (Y,Z,W )-sample of size n obeys the model
(4.1a–4.1b) and that the joint distribution of (Z,W ) fulfils Assumption 4.5 for
some η > 1. Consider sequences γ, ω and λ satisfying Assumption 4.1 such
that the conditional expectation operator T associated to (Z,W ) belongs to T λd,D,
where d,D > 1. Let k∗n, R∗n, and κ be as given in Theorem (4.2). If in addition
supk∈N k3/γk =: ζ <∞, then we have for all n ∈ N with (k∗n)3 > 4Dζ/κ that

sup
PU∈Uσ

sup
ϕ∈Fργ

E‖ϕ̂k∗n − ϕ‖
2
ω . Dη4 (σ2 + 4ΓDdρ)R∗n

·
{

4Dζ/κ+max
(

1,
λk∗n
ωk∗n

max
16j6k∗n

ωj
λj

)
+(k∗n)3

∣∣∣∣P(‖[T̂ ]k∗n − [T ]k∗n‖
2 >

λk∗n
4D

)∣∣∣∣1/4}
+ ρP

(
‖[T̂ ]k∗n − [T ]k∗n‖

2 >
λk∗n
4D

)
.

The proof of this theorem is given in a separate paragraph (cf. p. 104).

Remark 4.7 We emphasize that the bound in the last theorem is not asymp-
totic. Also, note that the term max

(
1, λk∗n/ωk∗n max16j6k∗n ωj/λj

)
is uniformly

bounded by a constant since ω/λ is non decreasing. �

A comparison with the lower bound from Theorem 4.2 shows that the last
assertion does not establish the minimax-optimality of the estimator. However,
the upper bound in Theorem 4.6 can be improved by imposing a moment
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condition stronger than Assumption 4.5. To be more precise, consider the
centered random variable ej(Z)fl(W )−E[ej(Z)fl(W )]. Then Assumption 4.5
(ii) imposes that its 8-th moment be uniformly bounded over j, l ∈ N. In
the next Assumption we suppose that these random variables satisfy Cramer’s
condition uniformly, which is known to be sufficient to obtain an exponential
bound for their large deviations (c.f. Bosq, 1998).

Assumption 4.8 There exists η > 1 such that the joint distribution of (Z,W )
satisfies Assumption 4.5 (i)-(ii) and in addition

(iii) supj,l∈N E|ej(Z)fl(W )−E[ej(Z)fl(W )]|k 6 ηk−2k! Var(ej(Z)fl(W )), for
all k > 3.

Obviously this assumption is stronger than Assumption 4.5 (ii). But as in
case of the latter assumption, whenever the bases {ej}j>1 and {fl}l>1 are
uniformly bounded, it follows that any joint distribution of (Z,W ) satisfies
Assumption 4.8 for sufficiently large η. This is a consequence of the well-
known fact that Cramer’s condition is satisfied in particular if the random
variable ej(Z)fl(W )−E[ej(Z)fl(W )] is bounded.
On the other hand, we show that under this additional condition the devi-

ation probability tends to zero faster than R∗n. Hence, the rate R∗n is optimal
and ϕ̂k∗n is minimax-optimal, which is summarized in the next assertion.

Theorem 4.9 Suppose that the assumptions of Theorem 4.6 are satisfied. In
addition, assume that the joint distribution of (Z,W ) fulfils Assumption 4.8 and
that the sequence (ω/λ) is non-decreasing. For all n ∈ N with (log k∗n)/k∗n 6
κ/(280Dη2ζ) and (logR∗n)/k∗n > −κ/(40Dη2ζ) we have

sup
PU∈Uσ

sup
ϕ∈Fργ

E‖ϕ̂k∗n − ϕ‖
2
ω . D

2 η4 ζ κ−1(σ2 + ΓDdρ) R∗n.

The proof of this theorem is given in a separate paragraph below.

Remark 4.10 From Theorems 4.2 and 4.9 it follows that the estimator ϕ̂k∗n
attains the optimal rate R∗n for all sequences γ, ω and λ satisfying the minimal
regularity conditions from Assumption 4.1. Let us briefly discuss the role of the
sequences γ, ω and λ. Theorem 4.2 and 4.9 show that the faster the sequence λ
decreases, the slower the obtainable optimal rate of convergence becomes. On
the other hand, a faster increase of γ or decrease of ω leads to a faster optimal
rate. In other words, as expected, a structural function satisfying a stronger
regularity condition can be estimated faster, and measuring the accuracy with
respect to a weaker norm leads to faster rates, too. �
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Proof of the upper bounds

We begin by defining and recalling notations to be used in the proofs of this
section. Given k > 0, denote ϕk :=

∑k
j=1[ϕk]jej with [ϕk]k = [T ]−1

k [g]k which
is well-defined since [T ]k is non singular. Then, the identities [T (ϕ−ϕk)]k = 0
and [ϕk−Ekϕ]k = [T ]−1

k [TE⊥k ϕ]k hold true. Furthermore, let [Ξ]k := [̂T ]k−[T ]k
and define vectors [B]k and [S]k by

[B]j := 1
n

n∑
i=1

Uifj(Wi)

[S]j := 1
n

n∑
i=1

fj(Wi){ϕ(Zi)− [ϕk]tk[e(Zi)]k}, 1 6 j 6 k,

such that [̂g]k − [̂T ]k[ϕk]k = [B]k + [S]k. Note that E[B]k = 0 due to the
mean independence, i.e., E[U |W ] = 0, and that E[S]k = [Tϕ]k − [Tϕk]k = 0.
Moreover, let us introduce the events

Ω := {‖[̂T ]
−1
k ‖ 6

√
n} and Ω1/2 := {‖[Ξ]k‖ ‖[T ]−1

k ‖ 6 1/2}.

Observe that Ω1/2 ⊂ Ω in case
√
n > 2‖[T ]−1

k ‖. Indeed, if ‖[Ξ]k‖‖[T ]−1
k ‖ 6 1/2

then the identity [̂T ]k = [T ]k{I + [T ]−1
k [Ξ]k} implies ‖[̂T ]

−1
k ‖ 6 2‖[T ]−1

k ‖ by
the usual Neumann series argument. Moreover, in case T satisfies the extended
link condition (4.9), that is T ∈ T λd,D, then

2‖[T ]−1
k ‖ 6 2‖[diag(λ)]−1/2

k ‖‖[diag(λ)]1/2k [T ]−1
k ‖ 6 2

√
D/λk

since λ is non increasing. Finally, given k∗n, R∗n and κ defined in Theorem 4.2
we have κ−1ωk∗nγ

−1
k∗n
> R∗n >

∑k∗n
j=1 ωj(nλj)−1 by using successively the def-

inition of κ and R∗n. By combination of the last estimate and the condition
supk∈N k3γ−1

k 6 ζ it follows that (k∗n)3(nλk∗n)−1 6 κ−1(k∗n)3γ−1
k∗n
6 κ−1ζ.

Thus, for all n ∈ N with (k∗n)3 > 4Dζκ−1 we have 4‖[T ]−1
k∗n
‖2 6 4Dλ−1

k∗n
6

n4Dζκ−1(k∗n)−3 6 n, and hence Ω1/2 ⊂ Ω. These notations and results will be
used below without further reference.
We shall prove in the end of this section three technical lemmas (4.21 – 4.23)

which are used in the following proofs.

Proof of Theorem 4.6. Define ϕ̃k∗n := ϕk∗n1Ω and decompose the risk into two
terms,

E‖ϕ̂k∗n − ϕ‖
2
ω 6 2{E‖ϕ̂k∗n − ϕ̃k∗n‖

2
ω + E‖ϕ̃k∗n − ϕ‖

2
ω} =: 2{A1 +A2}, (4.10)
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which we bound separately. Consider first A2. By combination of Ωc ⊂ Ωc1/2
and the identity ‖ϕ̃k∗n − ϕ‖

2
ω = ‖ϕk∗n − ϕ‖

2
ω1Ω + ‖ϕ‖2ω1Ωc we deduce

E‖ϕ̃k∗n − ϕ‖
2
ω 6 ‖ϕk∗n − ϕ‖

2
ω + ‖ϕ‖2ωP (Ωc1/2).

Since (ω/γ) is monotonically decreasing, the last estimate together with (4.36)
in Lemma 4.22 implies for all ϕ ∈ Fργ

E‖ϕ̃k∗n − ϕ‖
2
ω 6 4DdρR∗n max

(
1,
λk∗n
ωk∗n

max
16j6k∗n

ωj
λj

)
+ ρP (Ωc1/2) (4.11)

by employing the definition of R∗n.
Consider A1. From the identity [̂g]k∗n − [̂T ]k∗n [ϕm]k∗n = [B]k∗n + [S]k∗n follows

[ϕ̂k∗n−ϕ̃k∗n ]k∗n = {[T ]−1
k∗n

+ [T ]−1
k∗n

([T ]k∗n − [̂T ]k∗n)[̂T ]
−1
k∗n
}{[B]k∗n + [S]k∗n}1Ω

= [T ]−1
k∗n
{[B]k∗n + [S]k∗n}1Ω − [T ]−1

k∗n
[Ξ]k∗n [̂T ]

−1
k∗n
{[B]k∗n + [S]k∗n}1Ω.

By making use of this identity we decompose A1 further into two terms

E‖ϕ̂k∗n − ϕ̃k∗n‖
2
ω 6 2E[‖[diag(ω)]1/2k∗n

[T ]−1
k∗n
{[B]k∗n + [S]k∗n}‖

21Ω]

+ 2E[‖[diag(ω)]1/2k∗n
[T ]−1

k∗n
[Ξ]k∗n [̂T ]

−1
k∗n
{[B]k∗n + [S]k∗n}‖

21Ω] =: 2{A11 +A12}
(4.12)

which we bound separately. In case of A11 we employ successively (4.35)
from Lemma 4.21 with M := [diag(ω)]1/2k∗n

[T ]−1
k∗n

, the elementary inequality
tr(AtBtBA) 6 ‖A‖2tr(BtB) valid for all (k × k) matrices A and B and the
extended link condition (4.9), that is, ‖[diag(λ)]1/2k∗n

[T ]−1
k∗n
‖2 6 D. Thereby, we

obtain

E[‖[diag(ω)]1/2k∗n
[T ]−1

k∗n
{[B]k∗n + [S]k∗n}‖

21Ω]

6 (2/n)D tr
(

[diag(λ)]−1/2
k∗n

[diag(ω)]k∗n [diag(λ)]−1/2
k∗n

)
{σ2 + η2 Γ ‖ϕ− ϕk∗n‖

2
γ}

= 2D{σ2 + η2 Γ ‖ϕ− ϕk∗n‖
2
γ}

k∗n∑
j=1

ωj
nλj

. (4.13)

Consider now A12. Observe that ‖[diag(ω)]1/2k∗n
[T ]−1

k∗n
‖2 6 Dmax16j6k∗n ωj/λj

for all T ∈ T λd,D. Applying the last inequality together with

‖[̂T ]
−1
k∗n
‖21Ω1/2 6 4D/λk∗n and ‖[̂T ]

−1
k∗n
‖21Ω 6 n,
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we see that there exists a numerical constant C > 0 such that

E[‖[diag(ω)]1/2k∗n
[T ]−1

k∗n
[Ξ]k∗n [̂T ]

−1
k∗n
{[B]k∗n + [S]k∗n}‖

21Ω]

6 D max
16j6k∗n

ωj
λj

{
4Dλ−1

k∗n
E‖[Ξ]k∗n‖

2‖[B]k∗n + [S]k∗n‖
21Ω1/2

+ nE‖[Ξ]k∗n‖
2‖[B]k∗n + [S]k∗n‖

21Ωc1/2

}
6 D max

16j6k∗n

ωj
λj

{
4Dλ−1

k∗n

(
E‖[Ξ]k∗n‖

4)1/2
+ n

(
E‖[Ξ]k∗n‖

8)1/4P (Ωc1/2)1/4
}(

E‖[B]k∗n + [S]k∗n‖
4)1/2

6 C max
16j6k∗n

ωj
nλj

Dη4 (σ2 + Γ ‖ϕ− ϕk∗n‖
2
γ){

4D (k∗n)3

λk∗nn
+ (k∗n)3|P (Ωc1/2)|1/4

}
where the last bound follows from (4.32), (4.33) and (4.34) in Lemma 4.21. By
combination of the last bound and (4.13) via the decomposition (4.12) there
exists a numerical constant C > 0 such that

E‖ϕ̂k∗n − ϕ̃k∗n‖
2
ω 6 C D η4 (σ2 + Γ ‖ϕ− ϕk∗n‖

2
γ){

4Dζ/κ+ (k∗n)3|P (Ωc1/2)|1/4
} k∗n∑
j=1

ωj
nλj

.

Furthermore, taking into account the estimate (4.36) from Lemma 4.22 with
ω = γ and the definition of R∗n, the last inequality implies

E‖ϕ̂k∗n − ϕ̃k∗n‖
2
ω 6 C D η4 (σ2 + 4ΓDdρ)

{
4Dζ/κ+ (k∗n)3|P (Ωc1/2)|1/4

}
R∗n.

Finally, using the decomposition (4.10), the result of the theorem follows from
the last estimate and (4.11), since Ωc1/2 ⊂ {‖[̂T ]k∗n − [T ]k∗n‖

2 > λk∗n/(4D)}. �

Proof of Theorem 4.9. We start our proof with the observation that under
Assumption 4.8

P
(
‖[̂T ]k∗n − [T ]k∗n‖

2 >
λk∗n
4D

)
6 2 exp{−

nλk∗n
20Dη2(k∗n)2 + 2 log k∗n}

6 2 exp{− κ

20Dη2ζ
k∗n + 2 log k∗n}

using first (4.38) and the estimate (k∗n)3(nλk∗n)−1 6 κ−1(k∗n)3γ−1
k∗n
6 κ−1ζ.

From this estimate we conclude for all n ∈ N with

(log k∗n)/k∗n 6 κ/(280Dη2ζ) and (logR∗n)/k∗n > −κ/(40Dη2ζ)
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that

(k∗n)12P
(
‖[̂T ]k∗n − [T ]k∗n‖

2 >
λk∗n
4D

)
6 2,

(R∗n)−1P
(
‖[̂T ]k∗n − [T ]k∗n‖

2 >
λk∗n
4D

)
6 2.

By employing these estimates the assertion follows now from Theorem 4.6. �

Illustration: estimation of derivatives

To illustrate the previous results, we will describe in this section the prior
information about the unknown structural function ϕ by its degree of smooth-
ness. In order to simplify the presentation, we follow Hall and Horowitz (2005)
and suppose that the marginal distribution of the scalar regressor Z and the
scalar instrument W are uniformly distributed on the interval [0, 1]. It is worth
noting that all the results below can be extended to the multivariate case in
a straightforward way. In the univariate case, it follows that both Hilbert
spaces L2

Z and L2
W are isomorphic to L2[0, 1], endowed with the usual norm ‖·‖

and inner product 〈·, ·〉.
In the last sections, we have seen that the choice of the basis {ej}j>1 is

directly linked to the a priori assumptions we are willing to impose on the
structural function. In case of classical smoothness assumptions, it is natural
to consider the Sobolev space of periodic functions. Therefore, we introduce
the trigonometric basis

ψ1 :≡ 1, ψ2j(s) :=
√

2 cos(2πjs), ψ2j+1(s) :=
√

2 sin(2πjs), s ∈ [0, 1], j ∈ N.

and choose {ej = ψj}. It is well-known that for a weight sequence γ with
γ1 = 1 and γj = j2p for j > 2, the ellipsoid Fργ is a subset of the Sobolev
space of p-times differentiable periodic functions. In the rest of this section
we will suppose that the prior information about the unknown structural func-
tion ϕ is characterized by such a Sobolev ellipsoid, i.e. that ϕ is p > 0 times
differentiable. In this illustration, we consider the estimation of derivatives of
the structural function ϕ. We therefore recall that, up to a constant, for any
function h ∈ Fργ the weighted norm ‖h‖ω with ω0 = 1 and ωj = j2s, j > 2,
equals the L2-norm of the s-th weak derivative h(s) for each integer 0 6 s 6 p.
By virtue of this relation, the results in the previous section imply also a lower
as well as an upper bound of the L2-risk for the estimation of the s-th weak
derivative of ϕ. Finally, we restrict our attention to conditional expectation
operator T ∈ T λd with either

[p-λλλ] a polynomially decreasing sequence λ, i.e., λ0 = 1 and λj = j−2a, j > 2,
for some a > 0, or



108 Non parametric instrumental regression

[e-λλλ] an exponentially decreasing sequence λ, i.e., λ0 = 1 and λj = exp(−j2a),
j > 2, for some a > 0.

It is easily seen that the minimal regularity conditions given in Assumption 4.1
are satisfied if p > 1/2. Roughly speaking, this means that the structural
function is at least continuous. The lower bound presented in the next assertion
follows now directly from Theorem 4.2. Note that the additional condition,
supj>1 E[e4

j (Z)|W ] 6 η, η > 8, is satisfied since the trigonometric basis is
bounded uniformly by two.

Proposition 4.11 Suppose an iid. sample of size n from the model (4.1a–4.1b).
If γj = j2p with p > 1/2, then we have for any estimator ϕ̃(s) of ϕ(s), 0 6 s < p,

[p-λλλ] supPU∈Uσ supϕ∈Fργ
{

E‖ϕ̃(s) − ϕ(s)‖2
}
& n−2(p−s)/(2p+2a+1),

[e-λλλ] supPU∈Uσ supϕ∈Fργ
{

E‖ϕ̃(s) − ϕ(s)‖2
}
& (logn)−(p−s)/a.

Proof. Since for each 0 6 s 6 p we have E‖f̃ (s)− f (s)‖2 ∼ E‖f̃ − f‖2ω we apply
the general result given Theorem 4.2. In both cases, the additional conditions
formulated in Theorem 4.2 are easily verified. Therefore, it is sufficient to
evaluate the lower bound R∗n given in (4.6). Note that the optimal dimension
parameter k∗n satisfies R∗n ∼ ωk∗n/γk∗n ∼

∑k∗n
l=1 ωl/(nλl) since both sequences

(γj/ωj) and (
∑

0<|l|6j
ωl
nλl

) are non-increasing.
[p-λλλ] The well-known approximation

∑k
j=1 j

r ∼ kr+1 for r > 0 implies
n ∼ (γk∗n/ωk∗n)

∑k∗n
l=1 ωl/λl ∼ (k∗n)2a+2p+1. It follows that k∗n ∼ n1/(2p+2a+1)

and the lower bound writes R∗n ∼ n−(2p−2s)/(2p+2a+1).
[e-λλλ] Applying Laplace’s Method (c.f. Chapter 3.7 in Olver (1974)) we have

n ∼ (γk∗n/ωk∗n)
∑k∗n
l=1 ωl/λl ∼ (k∗n)2p exp(|k∗n|2a) which implies that

k∗n ∼ {log(n/(logn)p/a)}1/(2a) = (logn)1/(2a)(1 + o(1)) and that the lower
bound can be rewritten as R∗n ∼ (logn)−(p−s)/a. �

In this section, the basis of L2
W is given by the trigonometric basis {fl = ψl}l>1.

The additional moment conditions formalized in Assumption 4.8 are thus au-
tomatically fulfilled since the bases {ej}j>1 and {fl}l>1 are both uniformly
bounded. We suppose that the associated conditional expectation operator T
satisfies the extended link condition (4.9), that is, T ∈ T λd,D. By this means,
we restrict the set of possible joint distributions of (Z,W ) to those having the
trigonometric basis as optimal instruments. As an estimator of ϕ(s), we shall
consider the s-th weak derivative of the estimator ϕ̂k defined in (4.8). Recall
that for each integer 0 6 s 6 p, the s-th weak derivative of the estimator ϕ̂k is

ϕ̂
(s)
k (t) =

∑
j∈Z

(2iπj)s
∫ 1

0
ϕ̂k(u) exp(−2iπju)du exp(−2iπjt).
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Applying Theorem 4.6, the rates of the lower bound given in the last assertion
are seen to coincide, up to a constant, with an upper bound of the L2-risk of
the estimator ϕ̂(s)

k , which is the statement of the next proposition. This proves
that these rates are optimal and the estimator ϕ̂(s)

k is minimax optimal in both
cases.

Proposition 4.12 Suppose that the iid. (Y,Z,W )-sample of size n obeys the
model (4.1a–4.1b). Let γj = j2p for p > 3/2. For 0 6 s < p consider the
estimator ϕ̂k∗n given in (4.8).
[p-λλλ] In the polynomial decreasing case with k∗n ∼ n1/(2p+2a+1),

supPU∈Uσ supϕ∈Fργ
{

E‖ϕ̂(s)
k∗n
− ϕ(s)‖2

}
. n−2(p−s)/(2p+2a+1).

[e-λλλ] In the exponentially decreasing case with k∗n ∼ (logn)1/(2a),

supPU∈Uσ supϕ∈Fργ
{

E‖ϕ̂(s)
k∗n
− ϕ(s)‖2

}
. (logn)−(p−s)/a.

Proof. Since in both cases the dimension parameter is chosen in the optimal
way (see the proof of Proposition 4.11), the result follows from Theorem 4.9.�

Remark 4.13 We emphasize the interesting role of the parameters p and a char-
acterizing the regularity conditions imposed on ϕ and T respectively: As we see
from Propositions 4.11 and 4.12, if the value of a increases, the obtainable op-
timal rate of convergence decreases. Therefore, the parameter a is often called
degree of ill-posedness (c.f. Natterer, 1984). On the other hand, an increase
of the quantity p leads to a faster optimal rate. In other words, as expected,
a smoother structural function can be estimated faster. Finally, as opposed
to the polynomial case, in the exponential case the smoothing parameter k∗n
does not depend on the value of p. It follows that the proposed estimator is
automatically adaptive, i.e. it does not depend on an a-priori knowledge of the
degree of smoothness of the structural function ϕ. However, the choice of the
smoothing parameter does depend on the properties of T , more precisely, the
value of a. �
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4.3 Adaptive estimation under smoothness
assumptions

In this section, our objective is to construct a fully adaptive estimator of the
structural function ϕ. Adaptation means that in spite of the conditional ex-
pectation operator T being unknown, the estimator should attain the optimal
rate of convergence over the ellipsoid Fργ for a wide range of different weight
sequences γ. However, we will suppose that the operator T is diagonal with
respect to the trigonometric basis {ψj}. In this situation, for example, an
operator with polynomially decreasing λ having a degree of ill-posedness a be-
haves like a-times integrating, and hence it is also called finitely smoothing. On
the other hand, when the sequence λ is exponentially decreasing with degree
of ill-posedness a, the operator behaves like integrating infinitely many times,
and hence it is also called infinitely smoothing. Thus, this additional condition
imposes in fact a smoothing condition on the unknown conditional expectation
operator T . Even though we assume that the operator is smoothing, we do
not impose any a-priori knowledge about the specific decay of λ. Our starting
point is the estimator given in (4.8), which in this situation takes the form

ϕ̂k =
k∑
j=1

[̂g]j
[̂T ]jj

1
[inf16j6k [̂T ]

2
jj>1/n]

ψj , (4.14)

with [̂g]j and [̂T ]jj defined in (4.8). In the last section, we have shown that this
estimator is minimax-optimal provided the dimension parameter k is chosen in
the optimal way. In what follows, the dimension parameter k is chosen using
a model selection approach via penalization. This choice will only involve the
data and none of the sequences γ and λ describing the underlying smoothness.
First, we introduce some sequences which are used below.

Definition 4.14

(i) For all k > 1, define ∆k := max16j6k ωj/λj, τk := max16j6k(ωj)∨1/λj
with (q)∨1 := max(q, 1) and

δk := k∆k
log(τk ∨ (k + 2))

log(k + 2) .

Let further Σ be a non-decreasing function such that for all C > 0∑
k>1

C τk exp
(
− k log(τk ∨ (k + 2))

6C log(k + 2)

)
6 Σ(C) <∞ (4.15)

and supn∈N exp
(
− K2 C−1 n1/6 + 5

3 logn
)
6 Σ(C) with the constant

K2 = (
√

2− 1)/(21
√

2).
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(ii) Define a sequence N as follows,

Nn := Nn(λ, d) := max
{

1 6 N 6 n
∣∣∣∣ n7 exp

(
− nλN

288d

)
6
(2016 d

λ1

)7

and δN/n 6 1
}
.

It is easy to see that there exists always a function Σ satisfying condition (4.15).
Consider the estimator ϕ̂

k̃
defined by choosing the dimension parameter k̃ such

that
k̃ := argmin

16k6Nn

{
−‖ϕ̂k‖2ω + c

δk
n

}
for some constant c > 0. It is shown in the previous chapter and in Comte and
Johannes (2010) that such an estimator can attain minimax-optimal rates in
the context of a circular deconvolution problem and a functional linear model,
respectively. However, this estimator is only partially adaptive, since the di-
mension parameter is chosen using a criterion function that involves the se-
quences N and δ which depend on λ and d. We solve this problem by defining
empirical versions of these sequences. The fully adaptive estimator is then
defined analogously to the one above, but uses the estimated rather than the
original sequences.

Definition 4.15 Let δ̂ := (δ̂k)k>1, N̂ := (N̂n)n>1, be as follows.

(i) Given ∆̂k := max16j6k ωj [̂T ]
−2
jj 1

[inf16j6k [̂T ]
2
jj>1/n]

and

τ̂k := max06j6k(ωj)∨1 [̂T ]
−2
jj 1

[inf16j6k [̂T ]
2
jj>1/n]

let

δ̂k := k∆̂k
log(τ̂k ∨ (k + 2))

log(k + 2) .

(ii) Given Nu
n := argmax16N6n

{
max16j6N ωj/n 6 1

}
, let

N̂n := argmin
16j6Nun

{ |[̂T ]j |2

|j|(ωj)∨1
<

logn
n

}
.

It worth to stress that all these sequences do not involve any a-priori knowledge
about neither the target function ϕ nor the operator T . Now, we choose the
dimension parameter as

k̂ := argmin
16k6N̂n

{
− ‖f̂k‖2ω + 540 E[Y 2] δ̂k

n

}
. (4.16)
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Throughout this chapter we do not address the issue that the value E[Y 2] is
not known in practice. Anyway, it can easily be estimated by its empirical
counterpart. Moreover, the constant 540, though suitable for the theory, may
probably be chosen much smaller in practice by a simulation study (cf. Comte
et al. (2006) in the context of a deconvolution problem).

Our main result below requires the following Assumption.

Assumption 4.16 The sequence N from Definition 4.14 (ii) satisfies the con-
ditions

max
j>Nn

λj
j(ωj)∨1

6
logn
4dn and d−1 min

16j6Nn
λj > 2/n.

Remark 4.17 Assumption 4.16 satisfied for sufficiently large n by construc-
tion. Let us illustrate briefly this assumption in the setting of the examples
introduced in Section 4.2.3. Recall the distinction between finitely and in-
finitely smoothing conditional expectation operators. The sequences from Def-
inition 4.14 take the following forms in the two respective cases.

[fs] In the finitely smoothing case, we have

∆k = k2a+2s, δk ∼ k2a+2s+1, Nn ∼ n1/(2a+2s+1).

[is] In the infinitely smoothing case, we have

∆k = k2s exp(k2a), δk ∼ k2a+2s+1 exp(k2a)(log k)−1,

Nn ∼
(

log n log logn
(logn)(2a+2s+1)/(2a)

)1/(2a)
.

The sequence N satisfies Assumption 4.16 in either case. �

We are now able to state the main result of this chapter providing an upper
risk bound for the fully adaptive estimator in the case where the eigenfunctions
of the operator T ∗T are known.

Theorem 4.18 Assume that we have a sample of size n of (Y,Z,W ). Consider
sequences ω, γ, and λ satisfying Assumption 4.1 such that the conditional ex-
pectation operator T associated to (Z,W ) belongs to T ∈ T λd,D, d,D > 1 and
is diagonal with respect to the trigonometric basis {ψj}. Let the sequences δ
and N be as in Definition 4.14 and suppose that Assumption 4.16 holds. Define
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further N l
n := argmax16j6Nn

{ λj
j(ωj)∨1

> 4d logn
n

}
. Consider the estimator ϕ̂

k̂

defined in (4.14) with k̂ given by (4.16). Then for all n > 1

sup
PU∈Uσ

sup
ϕ∈Fργ

{
E‖ϕ̂

k̂
− ϕ‖2ω

}
. (2ρΓ+σ2+1)4d ζd

[
min

16k6N ln

{
max

(
ωk
γk
,
δk
n

)}

+ ρmax
j>1

{
ωj
γj

min
(

1, 1
nλj

)}
+ 1
n

{
Σ
(

(2ρΓ + σ2)ζd + VU |Z

V 2
U |Z

)
+ 1
}]
,

where VU |Z := E[Var(U |Z)] and ζd := (log 3d)/ log 3.

Compare the last assertion with the lower bound given in Theorem 4.2. It is
easily seen that if (ω/λ) is non-decreasing, the second term in the upper bound
of Theorem 4.18 is always smaller than the first one. Thus, in this situation the
fully adaptive estimator attains the lower bound up to a constant as long as
supk>1{δk/(

∑
16j6k ωj/λj)} < ∞ and if the optimal dimension parameter k∗n

given in Theorem 4.2 is smaller than N l
n. This is summarized in the next

assertion.

Corollary 4.19 Let the assumptions of Theorem 4.18 be satisfied. If in addition
(ω/λ) is non-decreasing and we have supk>1{δk/(

∑
16j6k ωj/λj)} < ∞ and

supn∈N(k∗n/N l
n) 6 1, then

sup
PU∈Uσ

sup
ϕ∈Fργ

{
E‖ϕ̂

k̂
− ϕ‖2ω

}
= O(R∗n), as n→∞,

where k∗n and R∗n are given in (4.6).

It is worth to note that the additional assumptions in the last assertion are
sufficient, but not necessary, to establish the order optimality of the estimator,
as follows from the example [is] below.
Before proving Theorem 4.18, we define some notation to be used in the proof.

Given u ∈ L2[0, 1] we denote by [u] the infinite vector of Fourier coefficients
[u]j := 〈u, ψj〉. In particular we use the notations

ϕ̂k =
k∑
j=1

[̂g]j
[̂T ]jj

1{ inf
16j6k

[̂T ]
2
jj > 1/n}ψj , ϕ̃k :=

k∑
j=1

[̂g]j
[T ]jj

ej , ϕk :=
k∑
j=1

[g]j
[T ]jj

ψj ,

Φ̂u :=
∑
j∈N

[u]j
[̂T ]jj

1{ inf
16j6k

[̂T ]
2
jj > 1/n}ψj , Φ̃u :=

∑
j∈N

[u]j
[T ]jj

ψj .
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Furthermore, let ĝ be the function with Fourier coefficients [ĝ]j := [̂g]j and
observe that Eĝ = g. Given 1 6 k 6 k′ we have then for all t ∈ Sk :=
span{ψ1, . . . , ψk}

〈t, ϕ̂k′〉ω = 〈t, Φ̂
ĝ
〉ω = 1

n

n∑
i=1

k∑
j=1

Yiψj(Wi)
ωj [t]j
[̂T ]jj

1
[inf16j6k [̂T ]

2
jj>1/n]

= 〈t, ϕ̂k〉ω,

〈t, ϕ̃k′〉ω = 〈t, Φ̃
ĝ
〉ω = 1

n

n∑
i=1

k∑
j=1

Yiψj(Wi)
ωj [t]j
[T ]jj

= 〈t, ϕ̃k〉ω, (4.17)

〈t, ϕk′〉ω = 〈t, Φ̃g〉ω =
k∑
j=1

ωj [t]j [g]j
[T ]jj

=
k∑
j=1

ωj [t]j [ϕ]j = 〈t, ϕ〉ω.

Consider the contrast Υ(t) := ‖t‖2ω − 2〈t, Φ̂
ĝ
〉
ω
, for all t ∈ L2[0, 1]. Obviously

it follows for all t ∈ Sk that Υ(t) = ‖t− ϕ̂k‖2ω − ‖ϕ̂k‖2ω and, hence

arg min
t∈Sk

Υ(t) = ϕ̂k, ∀ k > 1. (4.18)

Then, the adaptive choice k̂ of the dimension parameter can be rewritten as

k̂ = argmin
16k6Nn

{Υ(ϕ̂k) + p̂en(k)} with p̂en(k) := 540 E[Y 2] δ̂k
n
. (4.19)

Then for all 1 6 k 6 Nn, we have that Υ(ϕ̂
k̂
) + p̂en(k̂) 6 Υ(ϕ̂k) + p̂en(k) 6

Υ(ϕk) + p̂en(k), using first (4.19) and then (4.18). This inequality implies

‖ϕ̂
k̂
‖2ω − ‖ϕk‖2ω 6 2〈ϕ̂

k̂
− ϕk, ϕ̂k̂〉ω + p̂en(k)− p̂en(k̂),

which together with the identities given in (4.17) for all 1 6 k 6 Nn implies

‖ϕ̂
k̂
− ϕ‖2ω = ‖ϕ− ϕk‖2ω + ‖ϕ̂

k̂
‖2ω − ‖ϕk‖2ω − 2〈ϕ̂

k̂
− ϕk, ϕ〉ω

6 ‖ϕ− ϕk‖2ω + p̂en(k)− p̂en(k̂) + 2〈ϕ̂
k̂
− ϕk, Φ̂ĝ − Φ̃g〉ω (4.20)

Consider the unit ball Bk := {f ∈ Sk | ‖f‖ω 6 1} and, for arbitrary τ > 0 and
t ∈ Sk, the elementary inequality

2|〈t, h〉ω| 6 2‖t‖ω sup
t∈Bk
|〈t, h〉ω|

6 τ‖t‖2ω + 1
τ

sup
t∈Bk
|〈t, h〉ω|2 = τ‖t‖2ω + 1

τ

k∑
j=1

ωj |[h]j |2.
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Combining the last estimate with (4.20) and ϕ̂
k̂
− ϕk ∈ Sk̂∨k we obtain

‖ϕ̂
k̂
− ϕ‖2ω 6 ‖ϕ− ϕk‖2ω + τ ‖ϕ̂

k̂
− ϕk‖2ω + p̂en(k)− p̂en(k̂)

+ 1
τ

sup
t∈B

k∨̂k

|〈t, Φ̂
ĝ
− Φ̃g〉ω|2.

Letting τ := 1/3 it follows from ‖ϕ̂
k̂
− ϕk‖2ω 6 2‖ϕ̂

k̂
− ϕ‖2ω + 2‖ϕk − ϕ‖2ω that

1
3‖ϕ̂k̂ − ϕ‖

2
ω 6

5
3‖ϕ− ϕk‖

2
ω + p̂en(k)− p̂en(k̂) + 3 sup

t∈B
k∨̂k

|〈t, Φ̂
ĝ
− Φ̃g〉ω|2.

Consider the functions ν̂ and µ̂ with [ν̂]j = 1
n

∑n
i=1 Yi1[|Yi|6n1/3]ψj(Wi) and

[µ̂]j = 1
n

∑n
i=1 Yi1[|Yi|>n1/3]ψj(Wi) respectively, as well as their centered ver-

sions ν = ν̂ −E[ν̂] and µ = µ̂−E[µ̂], then we have ĝ − g = ν + µ and

1
3‖ϕ̂k̂ − ϕ‖

2
ω 6

5
3‖ϕ− ϕk‖

2
ω + p̂en(k)− p̂en(k̂)

+6 sup
t∈B

k∨̂k

|〈t, Φ̃ν〉ω|2+12 sup
t∈B

k∨̂k

|〈t, Φ̂ν−Φ̃ν〉ω|2+12 sup
t∈B

k∨̂k

|〈t, Φ̂µ+Φ̂g−Φ̃g〉ω|2

Decompose |〈t, Φ̂ν − Φ̃ν〉ω|2 = |〈t, Φ̂ν − Φ̃ν〉ω|21Ωq + |〈t, Φ̂ν − Φ̃ν〉ω|21Ωcq further
using

Ωq :=
{
∀ 1 6 j 6 Nn

∣∣∣∣ ∣∣∣[̂T ]
−1
jj − [T ]−1

jj

∣∣∣ 6 1
2|[T ]jj |

∧ [̂T ]
2
jj > 1/n

}
. (4.21)

Since 1
[[̂T ]

2
jj>1/n]

1Ωq = 1Ωq , it follows that for all 1 6 j 6 Nn we have

(
[T ]jj
[̂T ]jj

1
[[̂T ]

2
jj>1/n]

− 1
)2

1Ωq = |[T ]jj |2 1Ωq

∣∣∣∣[̂T ]
−1
jj − [T ]−1

jj

∣∣∣∣2 6 1
4 .

Hence, supt∈Bk |〈t, Φ̂ν − Φ̃ν〉ω|2 1Ωq 6
1
4 supt∈Bk |〈t, Φ̃ν〉ω|

2 for all 1 6 k 6 Nn
and

1
3‖ϕ̂k̂ − ϕ‖

2
ω 6

5
3‖ϕ− ϕk‖

2
ω + 9 sup

t∈B
k∨̂k

|〈t, Φ̃ν〉ω|2 + p̂en(k)− p̂en(k̂)

+ 12 sup
t∈B

k∨̂k

|〈t, Φ̂ν − Φ̃ν〉ω|2 1Ωcq + 12 sup
t∈B

k∨̂k

|〈t, Φ̂µ + Φ̂g − Φ̃g〉ω|2. (4.22)

Define ∆T
k := max16j6k ωj/|[T ]jj |2, τTk := max16j6k(ωj)∨1/|[T ]jj |2,

and δTk := k∆T
k

{
log(τTk ∨ (k + 2)) / log(k + 2)

}
. Then, it is easily seen that

δTk 6 δk d
log(3d)

log 3 = δk d ζd ∀ k > 1. (4.23)
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with ζd = (log 3d)/(log 3). Moreover, define the event Ωqp := Ωq ∩Ωp where Ωq
is given in (4.20) and

Ωp :=
{
N l
n 6 N̂n 6 Nn

}
.

Observe that on Ωq we have (1/2)∆T
k 6 ∆̂k 6 (3/2)∆T

k for all 1 6 k 6 Nn and
hence (1/2)[∆T

k ∨ (k+ 2)] 6 [∆̂k ∨ (k+ 2)] 6 (3/2)[∆T
k ∨ (k+ 2)], which implies

(1/2)k∆T
k

( log[∆T
k ∨ (k + 2)]

log(k + 2)

)(
1− log 2

log(k + 2)
log(k + 2)

log(∆T
k ∨ [k + 2])

)
6 δ̂k 6 (3/2)k∆T

k

( log(∆T
k ∨ [k + 2])

log(k + 2)

)(
1 + log 3/2

log(k + 2)
log(k + 2)

log(∆T
k ∨ [k + 2])

)
.

Using log(∆T
k ∨ (k + 2))/log(k + 2) > 1, we conclude from the last estimate

that
δTk /10 6(log 3/2)/(2 log 3)δTk 6 (1/2)δTk [1− (log 2)/ log(k + 2)] 6 δ̂k

6 (3/2)δTk [1 + (log 3/2)/ log(k + 2)] 6 3δTk .

Recalling that p̂en(k) = 540 E[Y 2] δ̂kn−1, we define

pen(k) := 54 E[Y 2] δTk n−1, (4.24)

then it follows that on Ωq we have

pen(k) 6 p̂en(k) 6 30 pen(k) ∀ 1 6 k 6 Nn.

On Ωqp = Ωq ∩ Ωp, we have k̂ 6 Nn. Thus,(
pen(k ∨ k̂) + p̂en(k)− p̂en(k̂)

)
1Ωqp

6
(

pen(k) + pen(k̂) + p̂en(k)− p̂en(k̂)
)

1Ωqp

6 31 pen(k) ∀1 6 k 6 Nn. (4.25)

Furthermore, we obviously have ∆̂k 6 n∆T
k for every 1 6 k 6 Nn, which implies

δ̂k 6 n (1 + logn) δTk . Consequently, p̂en(k) 6 540 E[Y 2]n (1 + logn), because
δTk /n 6 dζdδk/n 6 dζd for all 1 6 k 6 Nn by (4.23) and the definition of Nn.
On Ωcq ∩ Ωp, we have k̂ 6 Nn and hence pen(k ∨ k̂) 6 pen(Nn) 6 54 E[Y 2],
which implies

(pen(k∨ k̂) + p̂en(k)− p̂en(k̂))1Ωcq∩Ωp 6 594 E[Y 2]n (1 + logn)1Ωcq∩Ωp . (4.26)

We note further that for all ϕ ∈ Fργ with
∑
j∈N γ

−1
j = Γ < ∞ and for all

z ∈ [0, 1] we have |ϕ(z)|2 6 ρ
∑
j∈N γ

−1
j ψ2

j (z) 6 2ρΓ using the Cauchy-Schwarz
inequality. Thereby, given m > 1 such that E[U2m|W ] 6 σ2m, it follows that

E[Y 2m|W ] 6 22m(2ρΓ + σ2)m and, hence E[Y 2m] 6 22m(2ρΓ + σ2)m. (4.27)
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At the end of this chapter we will prove the technical Lemmata which are used
in the following proof.

Proof of Theorem 4.18. The proof is based on the decomposition

E‖ϕ̂
k̂
− ϕ‖2ω = E‖ϕ̂

k̂
− ϕ‖2ω1Ωqp + E‖ϕ̂

k̂
− ϕ‖2ω1Ωcqp .

In Lemma 4.24 below we show that for all n > 1 and all 1 6 k 6 N l
n we have

E‖ϕ̂
k̂
− ϕ‖2ω1Ωqp 6 C

{
‖ϕ− ϕk‖2ω + pen(k) + dρmax

j>1

[
ωj
γj

min
(
1, 1
nλj

)]
+(2ρΓ + σ2)4

n
+ (2ρΓ + σ2 + 1)d ζd

n
Σ
(

(2ρΓ + σ2)ζd + VU |Z

V 2
U |Z

)}
,

(4.28)

E‖ϕ̂
k̂
− ϕ‖2ω1Ωcqp 6

C

n
(2ρΓ + σ2). (4.29)

The result follows using (4.27), that is, pen(k) 6 54 (2ρΓ + σ2) d ζd δkn−1, and
by employing the monotonicity of ω/γ, that is ‖ϕ− ϕk‖2ω 6 ρωk/γk. �

Illustration: estimation of derivatives (continued)

The following result shows that even without any prior knowledge on the struc-
tural function ϕ and for all smoothing operators T , the fully adaptive penal-
ized estimator automatically attains the optimal rate in the finitely and in the
infinitely smoothing case. Recall that the computation of the dimension pa-
rameter k̂ given in (4.16) involves the sequence Nu, which in our illustration
satisfies Nu

n ∼ n1/(2s) since ωj = j2s, j > 1.

Proposition 4.20 Suppose that the i.i.d. (Y, Z,W )-sample of size n obeys the
model (4.1a–4.1b) and that PU ∈ Uσ, σ > 0. Consider the estimator ϕ̂

k̂
given

in (4.8) with k̂ defined by (4.16).

[fs] In the finitely smoothing case, we obtain

supPU∈Uσ supϕ∈Wρ
p

{
E‖ϕ̂(s)

k̂
− ϕ(s)‖2

}
= O(n−2(p−s)/(2p+2a+1)).

[is] In the infinitely smoothing case, we have

supPU∈Uσ supϕ∈Wρ
p

{
E‖ϕ̂(s)

k̂
− ϕ(s)‖2

}
= O((logn)−(p−s)/a).

Proof. In the light of the proof of Proposition 4.11 we apply Theorem 4.18,
where in both cases the additional conditions are easily verified (Remark 4.17)
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and the result follows by an evaluation of the upper bound. Note further that
(ω/λ) is in both cases non decreasing, and hence the second term in the upper
bound of Theorem 4.18 is always smaller than the first one.
In case [fs] we have N l

n ∼ (n/(logn))1/(2a+2s+1) and k∗n := n1/(2a+2p+1). Note
that k∗n . N l

n. Thus, the upper bound is of order O((k∗n)−2(p−s) + n−1), which
equals O(n−2(p−s)/(2a+2p+1)).
In case [is] we have

N l
n ∼ {log(n/(logn)(2p+2a+1)/(2a))}1/(2a) = (logn)1/(2a)(1 + o(1)) ∼ k∗n.

Thereby, the upper bound is of order O((k∗n)−2(p−s) + n−1), which equals
O((logn)−(p−s)/a). �

4.4 Auxiliary results
Lemma 4.21 Suppose that the distribution PU of U belongs to Uσ, σ > 0 and
that the joint distribution of (Z,W ) satisfies Assumption 4.5. If in addition
ϕ ∈ Frγ with Γ =

∑∞
j=1 γ

−1
j <∞, then there exists a constant C > 0 such that

for all k ∈ N and for all z ∈ Rk

E|zt [B]k|2 6 (1/n) ‖z‖2 σ2, (4.30)
E|zt [S]k|2 6 (1/n) ‖z‖2 η2 Γ ‖ϕ− ϕk‖2γ (4.31)

E‖[B]k‖4 6 C ·
(

(k/n) · σ2 · η2
)2
, (4.32)

E‖[S]k‖4 6 C ·
(

(k/n) · η2 · Γ · ‖ϕ− ϕk‖2γ
)2
, (4.33)

E‖[Ξ]k‖8 6 C ·
(

(k2/n) · η2
)4
. (4.34)

Moreover, given a (k × k) matrix M , we have

E‖M{[B]k + [S]k}‖2 6 (2/n) tr(M tM){σ2 + η2 Γ ‖ϕ− ϕk‖2γ}. (4.35)

Proof. The proof of (4.30) - (4.34) can be found in Johannes and Breunig
(2009) and we omit the details. The estimate (4.35) follows by applying (4.30)
and (4.31) to the identity ‖M{[B]k + [S]k}‖2 =

∑k
j=1‖M t

j{[B]k + [S]k}‖2,
where Mj denotes the j-th column of M t, which completes the proof. �

Lemma 4.22 Let g = Tϕ and for each k ∈ N denote ϕk := [T ]−1
k [g]k. Given

sequences λ and γ satisfying Assumption 4.1 let T ∈ T λd,D and ϕ ∈ Frγ . For
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each strictly positive sequence ω := (ωj)j∈N such that ω/γ is non increasing we
obtain for all k ∈ N

‖ϕ− ϕk‖2ω 6 4Ddρ
ωk
γk

max
(

1, λk
ωk

max
16j6k

ωj
λj

)
(4.36)

Proof. The condition T ∈ T λd,D, that is, supk∈N‖[diag(λ)]1/2k [T ]−1
k ‖2 6 D and

‖Tf‖2 6 d‖f‖2λ for all f ∈ L2
Z , together with the identity

[Ekϕ− ϕk]k = −[T ]−1
k [TE⊥k ϕ]k

imply
‖Ekϕ− ϕk‖2λ 6 D‖TE⊥k ϕ‖2 6 Dd‖E⊥k ϕ‖2λ 6 Ddγ−1

k λkρ

for all ϕ ∈ Fργ because (λ/γ) is monotonically non increasing. From this esti-
mate we conclude

‖Ekϕ− ϕk‖2w = ‖[diag(w)]1/2k [Ekϕ− ϕk]k‖2

6 ‖[diag(w)]1/2k [diag(λ)]−1/2
k ‖2‖Ekϕ− ϕk‖2λ 6 Ddρ

λk
γk

max
16j6k

ωj
λj
. (4.37)

Furthermore, since (ω/γ) is non increasing, we have ‖Ekϕ − ϕ‖2w 6 ρωk/γk
for all f ∈ Fργ . The assertion follows now by combination of the last estimate
and (4.37) via a decomposition based on an elementary triangular inequality.�

Lemma 4.23 Suppose that the joint distribution of (Z,W ) satisfies Assump-
tion 4.8. If in addition the sequence λ fulfills Assumption 4.1, then for all
k ∈ N we have

P (‖[Ξ]k‖2 >
λk
4D ) 6 2 exp{− nλk

k2(20Dη2) + 2 log k}. (4.38)

Proof. The proof of the assertion can be found in Johannes and Breunig (2009)
and we omit the details. �

Lemma 4.24 The inequalities (4.28) and (4.29) hold.

Proof. Consider first (4.28). Defining pen(k) := 54 E[Y 2] δTk n−1 and using the
estimate (4.22), we have

1
3‖ϕ̂k̂ − ϕ‖

2
ω 6

5
3‖ϕ− ϕk‖

2
ω + 9

(
sup

t∈B
k∨̂k

|〈t,Φν〉ω|2 − 6
E[Y 2] δT

k∨k̂
n

)
+

+ pen(k ∨ k̂) + p̂en(k)− p̂en(k̂)

+ 12 sup
t∈B

k∨̂k

|〈t, Φ̂ν − Φν〉ω|2 1Ωcq + 12 sup
t∈B

k∨̂k

|〈t, Φ̂µ + Φ̂g − Φg〉ω|2
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and, hence using that k̂ 6 Nn on Ωp we obtain for all 1 6 k 6 N l
n

1
3‖ϕ̂k̂ − ϕ‖

2
ω1Ωqp 6

5
3‖ϕ− ϕk‖

2
ω + 9

Nn∑
k=1

(
sup
t∈Bk
|〈t,Φν〉ω|2 − 6E[Y 2]δTk

n

)
+

+ 12 sup
t∈BNn

|〈t, Φ̂µ + Φ̂g − Φg〉ω|2 +
(

pen(k ∨ k̂) + p̂en(k)− p̂en(k̂)
)

1Ωqp

6
5
3‖ϕ− ϕk‖

2
ω + 9

Nn∑
k=1

(
sup
t∈Bk
|〈t,Φν〉ω|2 − 6E[Y 2]δTk

n

)
+

+ 12 sup
t∈BNn

|〈t, Φ̂µ + Φ̂g − Φg〉ω|2 + 31 pen(k),

where the last inequality follows from (4.25). The second term is bounded by
employing Lemma 4.25. In order to control the third term, apply Lemmata 4.26
and 4.27. Consequently, combining these estimates proves inequality (4.28).

Consider now (4.29). Let ϕ̆k :=
∑k
j=1[ϕ]j1{[̂T ]

2
jj > 1/n}ψj . It is easy to see

that ‖ϕ̂k − ϕ̆k‖2 6 ‖ϕ̂k′ − ϕ̆k′‖2 for all k′ 6 k and ‖ϕ̆k − ϕ‖2 6 ‖ϕ‖2 for all
k > 1. Thus, using that 1 6 k̂ 6 Nu

n , we can write

E‖ϕ̂
k̂
− ϕ‖2ω1Ωcqp 6 2{E‖ϕ̂

k̂
− ϕ̆

k̂
‖2ω1Ωcqp + E‖ϕ̆

k̂
− ϕ‖2ω1Ωcqp}

6 2
{

E‖ϕ̂Nun − ϕ̆Nun ‖
2
ω1Ωcqp + ‖ϕ‖2ω P[Ωcqp]

}
.

Moreover, since supj>1 E[Y 4ψ4
j (W )] 6 64(2ρΓ + σ2)2 and Eψ4

j (W )ψ4
j (Z) 6 16

due to (4.27), it follows from Theorem A.3 in the appendix that

E‖ϕ̂Nun − ϕ̆Nun ‖
2
ω1Ωcqp

6 2n
Nun∑
j=1

ωj

{
E([̂g]j − [T ]jj [ϕ]j)21Ωcqp + E([T ]jj [ϕ]j − [̂T ]jj [ϕ]j)21Ωcqp

}

6 2n
{Nun∑
j=1

ωj

[
E
(

[̂g]j − [g]j
)4]1/2

P[Ωcqp]1/2

+
Nun∑
j=1

ωj |[ϕ]j |2[E([̂T ]jj − [T ]jj)4]1/2P[Ωcqp]1/2
}

6 Cn
{
n (2ρΓ + σ2) + (n−1‖ϕ‖2ω)

}
P[Ωcqp]1/2,

where we have used that
∑Nun
j=1 ωj 6 n(max16j6Nun ωj) 6 n2 due to Defini-

tion 4.15 (ii). Since (ω/γ) is non-increasing, (4.29) follows from Lemmas 4.29
and 4.30, which completes the proof. �
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Lemma 4.25 There exists a numerical constant C > 0 such that

Nn∑
k=1

E
[(

sup
t∈Bk
|〈t,Φν〉ω|2 −

6 E[Y 2] δTk
n

)
+

]
6
C

n

{
(2ρΓ + σ2 + 1)d ζd Σ

(
(2ρΓ + σ2)ζd + VU |Z

V 2
U |Z

)}
.

where Σ(·) is the function from Definition 4.14

Proof. For t ∈ Sk, define rt(y, w) :=
∑k
j=1 ωjy1[|y|6n1/3]ψj(w)[t]j [T ]−1

jj . Then
it is readily seen that 〈t,Φν〉ω = 1

n

∑n
k=1 rt(Yk,Wk)−E[rt(Yk,Wk)].

Next, we compute constants H1, H2, and v verifying the three inequalities
required in Talagrand’s inequality (Theorem A.5). Consider H1 first:

sup
t∈Bk
‖rt‖2∞ = sup

y,w

k∑
j=1

ωj
(
y1[|y|6n1/3][T ]−1

jj ψj(w)
)2
6 2n2/3δTk =: H2

1

Next, find H2. Notice that

E[ sup
t∈Bk
|〈t,Φν〉ω|2] = 1

n

k∑
j=1

ωj |[T ]jj |−2 Var(Y 1[|Y |6n1/3]ψj(W ))

6
1
n

k∑
j=1

ωj |[T ]jj |−2 E[E[Y 2|W ]ψj(W )2] 6 2E[Y 2]δ
T
k

n
=: H2

2

As for v, we note that due to (4.27) for all ϕ ∈ Fργ the condition PU ∈ Uσ, i.e.,
E[U2|W ] 6 σ2, implies E[Y 2|W ] 6 2(2ρΓ + σ2), and hence

sup
t∈Bk

Var(rt(Y,W )) 6 sup
t∈Bk

E
[(
Y

k∑
j=1

ωj [t]j
[T ]jj

ψj(W )
)2]

= sup
t∈Bk

E
[
E[Y 2|W ]

( k∑
j=1

ωj [t]j
[T ]jj

ψj(W )
)2]

6 2(2ρΓ + σ2) sup
t∈Bk

k∑
j,j′=1

ωjωj′ [t]j [t]j′
[T ]jj [T ]j′j′

E[ψj(W )ψj′(W )]

6 2(2ρΓ + σ2) max
16j6k

ωj
[T ]2jj

sup
t∈Bk

k∑
j=1

ωj [t]2j 6 2(2ρΓ + σ2)∆T
k =: v,



122 Non parametric instrumental regression

Employing Theorem A.5 we conclude

Nn∑
k=1

E
[(

sup
t∈Bk
|〈t,Φν〉ω|2 −

6 E[Y 2] δTk
n

)
+

]
6 C

{
E[Y 2]
n

Nn∑
k=1

(2ρΓ + σ2)
E[Y 2] ∆T

k exp
(
− E[Y 2]

6(2ρΓ + σ2) (δTk /∆T
k )
)

+ n2/3 exp
(
−K2

√
E[Y 2]n1/6

) Nn∑
k=1

δTk
n2

}
.

The definition of Nn together with (4.23) implies
∑Nn
k=1 δ

T
k /n

2 6 ζd. Thereby,
using (4.23), ∆T

k 6 dτk and the function Σ given in Definition 4.14, there exists
a numerical constant C > 0 such that

Nn∑
k=1

E
[(

sup
t∈Bk
|〈t,Φν〉ω|2 −

6 E[Y 2] δTk
n

)
+

]
6
C

n

{
E[Y 2]dΣ

( (2ρΓ + σ2)ζd
E[Y 2]

)
+ ζdΣ

( 1√
E[Y 2]

)}
.

Moreover, we have E[Y 2] 6 2(2ρΓ + σ2) and

inf
ϕ∈Fργ

E[Y 2] > inf
ϕ∈L2

Z

E[ϕ(Z)+U)2] > E[(U−E[U |Z])2] = E[Var(U |Z)] = V 2
U |Z ,

which implies the result. �

Lemma 4.26 For every n ∈ N we have

E
[

sup
t∈BNn

|〈t, Φ̂µ〉ω|2
]
6 29(2ρΓ + σ2)4n−1.

Proof. Since [µ]j = [µ̂]j − E[µ̂]j and Var[µ̂]j 6 n−1E[Y 21[|Y |>n1/3]ψ
2
j (W )], it

is easily seen that

E
[

sup
t∈BNn

|〈t, Φ̂µ〉ω|2
]
6 n

Nn∑
j=1

ωj Var[µ̂]j

6
Nn∑
j=1

E
[(

E[Y 4|W ]E[1[|Y |>n1/3]|W ]
)1/2

ψ2
j (W )

]
.
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Moreover, we have E[Y 12|W ] 6 212(2ρΓ + σ2)6for all ϕ ∈ Fργ and U ∈ Uσ due
to (4.27) with m = 6, and hence by Markov’s inequality

E[1[|Y |>n1/3]|W ] 6 212(2ρΓ + σ2)6n−4.

Combining these estimates, we obtain

E
[

sup
t∈BNn

|〈t, Φ̂µ〉ω|2
]
6

Nn∑
j=1

E
[

28(2ρΓ + σ2)4n−2ψ2
j (W )

]
6 29Nn(2ρΓ + σ2)4n−2.

The result follows now from Nn 6 n. �

Lemma 4.27 There is a numerical constant C > 0 such that for all ϕ ∈ Fργ
and every k, n ∈ N

E
[

sup
t∈Bk
|〈t, Φ̂g − Φg〉ω|2

]
6 Cdρmax

j>1

{
ωj
γj

min
(
1, 1
nλj

)}
.

Proof. Firstly, as ϕ ∈ Fργ , it is easily seen that

E
[

sup
t∈Bk
|〈t, Φ̂g − Φg〉ω|2

]
6

k∑
j=1

[ϕ]2jωjE[R2
j ] 6 ρmax

j>1

{
ωj
γj

E[R2
j ]
}

where Rj is defined by

Rj :=
(

[T ]jj
[̂T ]jj

1
[[̂T ]

2
jj>1/n]

− 1
)
. (4.39)

The result follows from ER2
j 6 Cdmin

(
1, 1

nλj

)
, which can be shown as follows.

Consider the identity

E|Rj |2 = E
[ ∣∣∣∣ [T ]jj

[̂T ]jj
− 1
∣∣∣∣21

[[̂T ]
2
jj>1/n]

]
+ P[[̂T ]

2
jj < 1/n] =: RIj +RIIj . (4.40)

Trivially, RIIj 6 1. If 1 6 4/(n [T ]2jj), then obviously RIIj 6 4/(n[T ]2jj) 6
4d/(nλj). Otherwise, we have 1/n < [T ]2jj/4 and hence, using Chebychev’s
inequality,

RIIj 6 P[|[̂T ]jj − [T ]jj | > |[T ]jj | /2 ] 6
4 Var([̂T ]jj)

[T ]2jj
6

16
n[T ]2jj

6
16d
nλj

,
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where we have used that Var([̂T ]jj) 6 4/n for all j. Combining both estimates
we have RIj 6 16dmin

(
1, 1

nλj

)
. Now consider RIj . We find that

RIj = E
[ |[̂T ]jj − [T ]jj |2

[̂T ]
2
jj

1
[[̂T ]

2
jj>1/n]

]
6 nVar([̂T ]jj) 6 4. (4.41)

Using that E[|[̂T ]jj−[T ]jj |4] 6 c/n2 for some numerical constant c > 0 (cf. The-
orem A.3 in the appendix), there exists a numerical constant c > 0 such that

RIj 6 E
[ |[̂T ]jj − [T ]jj |2

[̂T ]
2
jj

1
[[̂T ]

2
jj>1/n]

2
{ |[̂T ]jj − [T ]jj |2

[T ]2jj
+

[̂T ]
2
jj

[T ]2jj

}]

6
2nE[|[̂T ]jj − [T ]jj |4]

[T ]2jj
+

2 Var([̂T ]jj)
[T ]2jj

6
c

n [T ]2jj
6

cd

nλj
.

Combining with (4.41) givesRIj 6 Cdmin
{

1, 1
nλj

}
for some numerical constant

C > 0, which completes the proof. �

Lemma 4.28 There is a numerical constant C > 0 such that

E
[

sup
t∈BNn

|〈t, Φ̂ν − Φν〉ω1Ωcq |
2
]
6 Cd(P[Ωcq])(1/2).

Proof. Given Rj from (4.39) we begin our proof observing that

E
[

sup
t∈BMm

|〈t, Φ̂ν − Φν〉ω1Ωcq |
2
]
6

Nn∑
j=1

ωj
[T ]2jj

E[[ν]2j R2
j 1Ωcq ]

6
Nn∑
j=1

ωj
[T ]2jj

(
E[[ν]8j ]E[R8

j ]
)1/4 P[Ωcq]1/2,

where we have applied Cauchy-Schwarz twice. By Petrov’s inequality, there
exists a numerical constant c > 0 such that E[[ν]8j ] 6 cn−4/3 and hence, because
dδk >

∑k
j=1

ωj
[T ]2

jj
,

E
[

sup
t∈BMm

|〈t, Φ̂ν − Φν〉ω1Ωcq |
2
]
6 P[Ωcq]1/2dδk max

16j6Nn
(E[R8

j ])1/4

In analogy to (4.40), we decompose the moment of Rj into two terms

E[R8
j ] = E

[ ∣∣∣∣ [T ]jj − [̂T ]jj
[̂T ]jj

∣∣∣∣81
[[̂T ]

2
jj>1/n]

]
+ P[[̂T ]

2
jj < 1/n],

which we bound by a constant using Petrov’s inequality. �
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Lemma 4.29 We have P[Ωcq] 6 2(2016d/λ1)7 n−6, where Ωq is the event de-
fined in (4.21).

Proof. Consider the complement of Ωq given by

Ωcq =
{
∃ 1 6 j 6 Nn

∣∣∣∣ ∣∣∣ [T ]jj
[̂T ]jj

− 1
∣∣∣ > 1

2 ∨ [̂T ]
2
jj < 1/n

}
.

It follows from Assumption 4.16 (i) that [T ]2jj > 2/n for all 1 6 j 6 Nn. This
yields

P(Ωcq) 6
Nn∑
j=1

P
[∣∣∣∣ [̂T ]jj

[T ]jj
− 1
∣∣∣∣ > 1

3

]
.

From Hoeffding’s inequality follows

P[|[̂T ]jj/[T ]jj − 1| > 1/3] 6 2 exp
(
−
n[T ]2jj

288

)
,

which implies the result by definition of Nn. �

Lemma 4.30 Consider the event Ωp defined in (4.21). Then we have

P(Ωcp) 6 4
(

2016 d
λ1

)7
n−6, ∀ n > 1.

Proof. Let ΩI := {N l
n > N̂n} and ΩII := {N̂n > Nn}. Then we have Ωcp = ΩI∪

ΩII . Consider ΩI first. By definition of N l
n, we have that min16j6N ln

|[T ]j |2
|j|(ωj)∨1

>
4(logn)

n , which implies

{N̂n < N l
n} ⊂

{
∃1 6 j 6 N l

n

∣∣∣∣ [̂T ]
2
jj

|j|(ωj)∨1
<

logn
n

}

⊂
⋃

16j6N ln

{ |[̂T ]jj |
|[T ]jj |

6 1/2
}
⊂

⋃
16j6N ln

{
|[̂T ]jj/[T ]jj − 1| > 1/2

}
.

Therefore, ΩI ⊂
⋃

16|j|6Nn

{
|[̂ϕ]j/[ϕ]j − 1| > 1/2

}
, since N l

n 6 Nn. Hence,
as in (4.23) applying Hoeffding’s inequality together with the definition of Nn
gives

P[ΩI ] 6
Nn∑
j=1

2 exp
(
−
n [T ]2jj

288

)
6 2

(
2016 d
λ1

)7
n−6. (4.42)
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Consider ΩII . Recall that logn
4n > max|j|>Nn

[T ]2jj
|j|(ωj)∨1

due to Assumption 4.16,
and hence

{N̂n > Nn} ⊂
{
∀1 6 j 6 Nn

∣∣∣ [̂T ]
2
jj

|j|(ωj)∨1
>

logn
n

}
⊂
{ |[̂T ]Nn |
|[T ]Nn |

> 2
}
⊂
{
|[̂T ]Nn/[T ]Nn − 1| > 1

}
.

Hoeffding’s inequality and the definition of N yield P[ΩII ] 6 2(2016d/λ1)7n−6,
which by combining with (4.42) implies the result. �

4.5 Conclusion
In this chapter, we have developed a minimax theory for the estimation of
the structural function in a nonparametric regression model with instrumental
variables. We have defined an estimator based on the Galerkin solution which
can attain the minimax optimal rate when the dimension parameter is chosen
in an appropriate way. This choice, however, depends on characteristics of the
conditional expectation operator which are not known.
In order to solve this problem, we have proposed a data-driven estimator

which attains the minimax optimal rate over a wide range of classes. Unfor-
tunately, we still need the additional assumption that the eigenfunctions of
the conditional expectation operator are known, in which case the proposed
estimator takes the form of an orthogonal series. Furthermore, we have shown
in (4.17) that if Sk is the subspace generated by the first k eigenfunctions, then
we have for all k 6 k′ and t ∈ Sk that 〈t, ϕ̂k′〉ω = 〈t, ϕ̂k〉ω. If, however, Sk is
generated by an arbitrary set of linearly independent functions, this is not true
in general. In particular, the estimate (4.20) on which the proof is essentially
based, does not hold anymore.
Let us briefly outline a promising approach which might allow to drop the

restrictive assumption of known eigenfunctions. Recall that in the proof of the
upper risk bound for the adaptive estimator, we have first represented the or-
thogonal series estimator as a minimum contrast estimator in (4.18) by defining
a suitable contrast function Υ. The data-driven choice of the dimension pa-
rameter was then the minimizer of this contrast subject to a stochastic penalty
term that was the empirical version of the function pen from (4.24). The ques-
tion is if similar proof techniques could work for unknown eigenfunctions if we
use a different contrast function. We define a promising candidate of such a
new contrast by

Ψ(k) := max
k6j6Nn

{‖ϕ̂j − ϕ̂k‖2ω − pen(j)},
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where Nn is the sequence defined in Definition 4.14. A partially adaptive choice
of the dimension parameter k is then defined as

k̂ := argmin
16j6Nn

{Ψ(j) + pen(j)}.

Using the monotonicity of pen, one can show that

Ψ(k) 6 6 sup
k6j6Nn

[
‖ϕ̂j − ϕj‖2ω − (1/6) pen(j)

]
+ + 3 sup

k6j6Nn
‖ϕj − ϕj‖2ω.

By the definition of k̂, it follows that for all 1 6 k 6 Nn

‖ϕ̂
k̂
− ϕ‖2ω 6

[
‖ϕ̂

k̂
− ϕ̂

k̂∧k‖
2
ω + ‖ϕ̂

k̂∧k − ϕ̂k‖
2
ω + ‖ϕ̂k − ϕ‖2ω

]
6 3

[
Ψ(k) + pen(k̂) + Ψ(k̂) + pen(k) + ‖ϕ̂k − ϕ‖2ω

]
6 6 [Ψ(k) + pen(k)] + 3‖ϕ̂k − ϕ‖2ω

6 42 sup
k6j6Nn

(
‖ϕ̂j − ϕj‖2ω − (1/6) pen(j)

)
+ + 18 sup

k6j6Nn
‖ϕj − ϕk‖2ω

+ 7 pen(k) + 6‖ϕk − ϕ‖2ω

Moreover, we have

sup
k6j6Nn

‖ϕj − ϕk‖2ω 6 4 sup
k6j6Nn

‖ϕj − ϕ‖2ω.

And hence, for all 1 6 k 6 Nn,

‖ϕ̂
k̂
− ϕ‖2ω 6 42 sup

k6j6Nn

(
‖ϕ̂j − ϕj‖2ω − (1/6) pen(j)

)
+

+ 78 sup
k6j6Nn

‖ϕj − ϕ‖2ω + 7 pen(k).

Using supk6j6Nn‖ϕj − ϕ‖
2
ω . ‖ϕk − ϕ‖2ω, we may expect a similar estimate

as (4.28) to hold. However, it remains to control the term

E
[

sup
k6j6Nn

(
‖ϕ̂j − ϕj‖2ω − (1/6) pen(j)

)
+

]
. (4.43)

The analogous term appearing in the proof of Theorem 4.18 is controlled by
Lemmas 4.24 and 4.25. The control of (4.43) is technically demanding and still
work in progress.
Another interesting research question concerns the choice of the basis {fj}

in the image space of the operator, because the estimator is only minimax
optimal if this basis is appropriately chosen. The construction of the optimal
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basis, though possible in theory (cf. Johannes and Breunig, 2009), requires a
priori knowledge about the operator. It is natural to ask how a basis could be
constructed without prior knowledge about the operator. A possible approach
could be a criterion allowing to choose a basis from a finite set («library»)
of possible bases and to investigate to what extend the performance of the
estimator could be improved depending on the available bases in the library.



Conclusion and future research

B efore mentioning some yet unanswered questions which have arisen during
the work on this thesis and which in my view are promising starting points

for interesting future research projects, let me briefly explain which results
of this thesis were the most challenging to prove and which were the most
surprising to obtain. In the deconvolution model on the real line, the hardest
problem consisted in obtaining a fully identified model without imposing any
condition on the Fourier transform of the target density. The vast majority
of identification conditions from the literature is based on conditions in the
frequency domain and so I was surprised to see that in fact an easy to interpret
condition is sufficient to guarantee identification in the deconvolution model
under a normally distributed error with unknown variance. Another difficulty
was the understanding of why the identification condition is not sufficient to
ensure consistency as well, which is illustrated by a counterexample. While the
proof of the identification result is finally surprisingly short and elementary,
the consistency theorem demanded a greater technical effort.
In the last two chapters, the greatest challenge consisted in the construction

of the adaptive estimator and in the control of its risk. While the general model
selection procedure has already been used by other authors, its application in
the particular models necessitated the solution of many technical difficulties.
Surprising results in this context were the fact that adaptation is possible over a
range of density classes including both polynomially and exponentially smooth
densities, and that it is not even very costly in terms of convergence rates. In
fact, the optimal rates are attained for a vast variety of classes.
Let us now turn to the still open questions. In Chapter 1 and 3, we have

considered density deconvolution problems on the real line and on the circle.
In both cases, the error term was assumed to be independent from the uncon-
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taminated data. A natural modification of the model would be a relaxation of
the independence condition. How could the dependence be modeled (possibly
using copulas?) and which restrictions would be necessary in order to preserve
the identifiability of the solution by the contaminated sample? Would similar
estimation methods still yield comparable results? In Chapter 3, developing the
minimax theory, we have considered density classes defined in terms of charac-
teristic functions. This corresponds well to classical smoothness assumptions,
but in case of densities with pronounced local features such as discontinuities
or sharp peaks, it would be of interest as well to consider wavelet based classes.
Chapter 2 was devoted to robust frontier estimation in the presence of noise

in the data. We have considered the case where the noise was in the input
variable and argued that a slight modification of the same technique would
still work when the noise was in the output variable instead. However, it is
not obvious how to treat the case of error in both the input and the output
variable, which seems however a realistic assumption in real life applications.
The two errors could be independent of each other or correlated in some way. In
either case, identification problems arise. What modeling assumptions would
allow for identification and for consistent estimation in this case? Moreover, the
estimation of productivity which is measured by the distance of an individual
production unit to the frontier is another interesting problem. In the context
of the model discussed in Chapter 2, the horizontal or vertical distance suggest
themselves, but one could also be interested in directional distances, which
presents us with the problem of formulating the model such that an underlying
deconvolution problem becomes manifest.
In Chapter 4, we have developed an adaptive estimator in the context of a

nonparametric regression model with instrumental variables. We needed the as-
sumption that the eigenfunctions of the conditional expectation operator were
known. Note that we have used an analogous implicit assumption in the cir-
cular deconvolution model in Chapter 3. In that case, this was no restriction
because the eigenfunctions of the convolution operator are indeed known. In
the regression framework, however, this assumption is restrictive and the most
natural question is how to estimate the regression function in the same model
when the eigenfunctions are not known. We have outlined an approach to this
question in the concluding section of Chapter 4, but much technical work re-
mains to be done. One could further investigate the problem of missing data,
that is the case where some replications of the instrument or of the regressor
have not been observed.
Finally, one could drop the iid. hypothesis and examine the effect of a time

series structure in the data in any of the models we have treated in this thesis.



Auxiliary definitions and results

Definition A.1 (Hellinger, Kullback-Leibler) Consider probability measures P
and Q on some measurable space (Ω,A). Suppose that P and Q have densities p
and q, respectively, with respect to a dominating measure λ. The Hellinger
distance between P and Q is defined as

H2(P,Q) :=
∫

Ω
(√p−√q)2 dλ = 2 (1−

∫
Ω

√
pq dλ).

This distance does not depend on the choice of the dominating measure. The
quantity ρ(P,Q) :=

∫
Ω
√
pq dλ is called the Hellinger affinity of P and Q. The

Kullback-Leibler divergence between P and Q is given by

KL(P,Q) :=
{∫

Ω log dP
dQ dP (P � Q)

0 (otherwise).

For any two probability measrues P and Q, the Hellinger distance and the
Kullback-Leibler divergence satisfy

H2(P,Q) 6 KL(P,Q).

A more detailed discussion of distances between probability measures can be
found in Tsybakov (2004), for example.

Definition A.2 (Weak derivative) Let u ∈ L2(I) for some bounded interval
I ⊂ R. A function v ∈ L2(I) is called weak derivative of u if∫

I

v(t)ϕ(t) dt = −
∫
I

u(t)ϕ′(t) dt

for every infinitely differentiable function ϕ with compact support. If a weak
derivative exists, it is unique in L2(I).
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Theorem A.3 (Petrov (1995)) Let X1, . . . , Xn be independent random vari-
ables with zero means, and let p > 2. Then

E
[∣∣ n∑

k=1
Xk

∣∣p] 6 C(p)np/2−1
n∑
k=1

E[|Xk|p],

where C(p) is a positive constant depending only on p.

Theorem A.4 (Hoeffding (1963)) Let X1, . . . , Xn be independent real-valued
random variables. Assume that there are intervals [ai, bi] ⊂ R such that P(Xi ∈
[ai, bi]) = 1 for all i = 1, . . . , n. Letting Sn :=

∑n
i=1Xi, we have, for all t > 0,

P(Sn −E[Sn] > t) 6 exp
(
− 2t2∑n

i=1(bi − ai)2

)
,

P(|Sn −E[Sn]| > t) 6 2 exp
(
− 2t2∑n

i=1(bi − ai)2

)
.

Theorem A.5 (Talagrand (1996)) Let T1, . . . , Tn be independent random vari-
ables and ν∗n(r) = (1/n)

∑n
i=1
[
r(Ti)−E[r(Ti)]

]
, for r belonging to a countable

class R of measurable functions. Then,

E[sup
r∈R
|ν∗n(r)|2 − 6H2

2 ]+ 6 C
(
v

n
exp(−(nH2

2/6v)) + H2
1

n2 exp(−K2(nH2/H1))
)

with numerical constants K2 = (
√

2− 1)/(21
√

2) and C > 0 and where

sup
r∈R
‖r‖∞ 6 H1, E

[
sup
r∈R
|ν∗n(r)|

]
6 H2, sup

r∈R

1
n

n∑
i=1

Var(r(Ti)) 6 v.



List of symbols

ψX Characteristic function of the random variable X
N (µ, σ2) Normal distribution with mean µ and variance σ2

Nσ Abbreviation for N (0, σ2)
B(E) Borel σ-algebra of the topological space E
N The set of positive integers
Z The set of integers
R The set of real numbers
R+ The set of positive real numbers
C The set of complex numbers
|A| The Lebesgue measure of a Borel set A ⊂ R
1A,1[A],1{A} Indicator function of the event A
(X(k))k=1,...,n Ordered version of the (random) vector (Xk)k=1,...,n ∈ Rn
D−→ Weak convergence
V−→ Vague convergence (p.22)

[f ]j j-th coefficient of f with respect to a given basis (p.3)
f ∗ g Convolution of the functions f and g (p.14)
an . bn «There is C > 0 such that ak < Cbk all k > 1»
an ∼ bn an . bn and bn . an hold simultaneously
P[A] Probability of the event A
E[X] Expected value of the random variable X
iid. «independent and identically distributed»
a.s. «almost surely»
an = O(bn) lim supn→∞ |an/bn| <∞
an = o(bn) limn→∞ |an/bn| = 0
cdf «cumulative distribution function»
MISE «mean integrated squared error»
KL(P,Q) Kullback-Leibler divergence between the measures P and

Q (p.98)
H2(P,Q) Hellinger distance between the measures P and Q (p. 131)
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ρ2(P,Q) Hellinger affinity between the measures P and Q (p. 131)
⊥ stochastic independence
span{v1, . . . , vn} the linear subspace generated by the vectors v1, . . . , vn
P � Q absolute continuity of the measure P with respect to Q



Bibliography

Ai, C. and Chen, X. (2003). Efficient estimation of models with conditional
moment restrictions containing unknown functions. Econometrica, 71:1795–
1843.

Amemiya, T. (1974). The nonlinear two-stage least square estimator. Journal
of Econometrics, 2:105–110.

Barron, A., Birgé, L., and Massart, P. (1999). Risk bounds for model selection
via penalization. Probability Theory and Related Fields, 113:301–413.

Bigot, J. and Van Bellegem, S. (2009). Log-density deconvolution by wavelet
thresholding. Scandinavian Journal of Statistics, 36:749–763.

Blundell, R., Chen, X., and Kristensen, D. (2007). Semi-nonparametric IV
estimation of shape-invariant Engel curves. Econometrica, 75:1613–1669.

Blundell, R. and Horowitz, J. L. (2007). A non-parametric test of exogeneity.
The Review of Economic Studies, 74:1035–1058.

Bosq, D. (1998). Nonparametric statistics for stochastic processes. Springer,
New York.

Butucea, C. and Matias, C. (2005). Minimax estimation of the noise level
and of the deconvolution density in a semiparametric deconvolution model.
Bernoulli, 11:309–340.

Butucea, C., Matias, C., and Pouet, C. (2008). Adaptivity in convolution mod-
els with partially known noise distribution. Electronic Journal of Statistics,
2:897–915.

135



136 Bibliography

Cardot, H. and Johannes, J. (2010). Thresholding projection estimators in
functional linear models. Journal of Multivariate Analysis, 101:395–408.

Carrasco, M., Florens, J.-P., and Renault, E. (2007). Linear Inverse Problems
and Structural Econometrics: Estimation Based on Spectral Decomposition
and Regularization, volume 6B of Handbook of Econometrics. J. Heckman
and E. Leamer.

Carroll, R. J. and Hall, P. (1988). Optimal rates of convergence for deconvolving
a density. Journal of the American Statistical Association, 83:1184–1186.

Cavalier, L. and Hengartner, N. W. (2005). Adaptive estimation for inverse
problems with noisy operators. Inverse Problems, 21:1345–1361.

Cazals, C., Florens, J.-P., and Simar, L. (2002). Nonparametric frontier esti-
mation: A robust approach. Journal of Econometrics, 106:1–25.

Chen, X. and Reiss, M. (2011). On rate optimality for ill-posed inverse problems
in econometrics. Econometric Theory. In press.

Chung, K. (1968). A course in probability theory. Harcourt, Brace and World.

Cochran, W. W., Mouritsen, H., and Wikelski, M. (2004). Migrating song-
birds recalibrate their magnetic compass daily from twylight cues. Science,
304:405–408.

Comte, F. and Johannes, J. (2010). Adaptive estimation in circular functional
linear models. Mathematical Methods of Statistics, 19:42–63.

Comte, F., Rozenholc, Y., and Taupin, M.-L. (2006). Penalized contrast es-
timator for adaptive density deconvolution. Canadian Journal of Statistics,
34:431–452.

Comte, F., Rozenholc, Y., and Taupin, M.-L. (2007). Finite sample penalization
in adaptive density deconvolution. Journal of Statistical Computation and
Simulation, 77:977–1000.

Comte, F. and Taupin, M.-L. (2003). Adaptive density deconvolution for cir-
cular data. Discussion Paper MAP5 2003-10, Université Paris 5.

Curray, J. R. (1956). The analysis of two-dimensional orientation data. The
Journal of Geology, 64:117–131.

Daouia, A., Florens, J.-P., and Simar, L. (2009). Regularization in nonparamet-
ric frontier estimators. Discussion paper, Institut de statistique, biostatis-
tique et sciences actuarielles, Université catholique de Louvain, Belgium.

Darolles, S., Fan, Y., Florens, J.-P., and Renault, E. (2001). Nonparametric
instrumental regression. Econometrica. To appear.



137

Daskovska, A., Simar, L., and Van Bellegem, S. (2010). Forecasting the
Malmquist productivity index. Journal of Productivity Analysis, 33:97–107.

De Borger, B., Kerstens, K., Moesen, W., and Vanneste, J. (1994). A non-
parametric free disposal hull (FDH) approach to technical efficiency: an il-
lustration of radial and graph efficiency measures and some sensitivity results.
Swiss Journal of Economics and Statistics, 130:647–667.

Delaigle, A., Hall, P., and Meister, A. (2008). On deconvolution with repeated
measurements. The Annals of Statistics, 36:665–685.

Deprins, D., Simar, L., and Tulkens, H. (1984). Measuring labor inefficiency
in post offices. In Marchand, M., Pestieau, P., and Tulkens, H., editors,
The Performance of Public Enterprises: Concepts and Measurements, pages
243–267, Amsterdam. North-Holland.

Devroye, L. and Györfi, L. (1985). Nonparametric density estimation. The L1
view. Wiley Series in Probability and Mathematical Statistics. John Wiley
& Sons, New York.

Efromovich, S. (1997). Density estimation for the case of supersmooth mea-
surement error. Journal of the American Statistical Association, 92:526–535.

Efromovich, S. and Koltchinskii, V. (2001). On inverse problems with unknown
operators. IEEE Transactions on Information Theory, 47:2876–2894.

Engl, H. W., Hanke, M., and Neubauer, A. (1996). Regularization of inverse
problems. Mathematics and its Applications. Kluwer Academic Publishers.

Fan, J. (1991). On the optimal rates of convergence for nonparametric decon-
volution problems. The Annals of Statistics, 19:1257–1272.

Färe, R., Grosskopf, S., and Knox Lovell, C. (1985). The Measurements of Effi-
ciency of Production, volume 6 of Studies in Productivity Analysis. Springer,
New York.

Fisher, N. (1993). Statistical analysis of circular data. Cambridge University
Press.

Florens, J.-P. (2003). Inverse problems and structural econometrics: The ex-
ample of instrumental variables. In Dewatripont, M., Hansen, L. P., and
Turnovsky, S. J., editors, Advances in Economics and Econometrics: Theory
and Applications – Eight World Congress, volume 36 of Econometric Society
Monographs. Cambridge University Press.

Florens, J.-P., Johannes, J., and Van Bellegem, S. (2009). Instrumental regres-
sion in partially linear models. Discussion Paper 0537, Institut de statistique,
biostatistique et scieces actuarielles, Université catholique de Louvain (first
version 2005, revised).



138 Bibliography

Florens, J.-P., Johannes, J., and Van Bellegem, S. (2011). Identification and
estimation by penalization in nonparametric instrumental regression. Econo-
metric Theory. To appear.

Gagliardini, P. and Scaillet, O. (2006). Tikhonov regularization for functional
minimum distance estimators. Swiss Finance Institute Research Paper No.
06-30.

Gill, J. and Hangartner, D. (2010). Circular data in political science and how
to handle it. Political Analysis, 18:316–336.

Hadamard, J. (1902). Sur les problèmes aux dérivées partielles et leur signifi-
cation physique. Princeton University Bulletin, 13:49–52.

Hall, P. and Horowitz, J. L. (2005). Nonparametric methods for inference in the
presence of instrumental variables. The Annals of Statistics, 33:2904–2929.

Hall, P. and Horowitz, J. L. (2007). Methodology and convergence rates for
functional linear regression. The Annals of Statistics, 35:70–91.

Hall, P. and Simar, L. (2002). Estimating a changepoint, boundary, or frontier
in the presence of observation error. Journal of the American Statistical
Association, 97:523–534.

Hoeffding, W. (1963). Probability inequalities for sums of bounded random
variables. Journal of the American Statistical Association, 58:pp. 13–30.

Hoffmann, M. and Reiss, M. (2008). Nonlinear estimation for linear inverse
problems with error in the operator. The Annals of Statistics, 36:310–336.

Horowitz, J. L. and Lee, S. (2007). Nonparametric instrumental variables esti-
mation of a quantile regression model. Econometrica, 75:1191–1208.

Horrace, W. C. and Parmeter, C. F. (2011). Semiparametric deconvolution
with unknown error variance. Journal of Productivity Analysis, 35:129–141.

Jain, N. C. and Orey, S. (1979). Vague convergence of sums of independent
random variables. Israel Journal of Mathematics, 33:317–348.

Johannes, J. and Breunig, C. (2009). On rate optimal local estimation in non-
parametric instrumental regression. Technical report, University Heidelberg
(submitted.). arxiv:0902.2103.

Johannes, J. and Schwarz, M. (2009). Adaptive circular deconvolution by model
selection under unknown error distribution. Discussion Paper 0931, Institut
de statistique, biostatistique et sciences actuarielles, Université catholique de
Louvain.



139

Johannes, J. and Schwarz, M. (2010). Adaptive nonparametric instrumental
regression by model selection. Discussion Paper 1026, Institut de statistique,
biostatistique et sciences actuarielles, Université catholique de Louvain. Sub-
mitted.

Johannes, J., Van Bellegem, S., and Vanhems, A. (2011). Convergence rates for
ill-posed inverse problems with an unknown operator. Econometric Theory.
To appear.

Johnstone, I., Kerkyacharian, G., Picard, D., and Raimondo, M. (2004).
Wavelet deconvolution in a periodic setting. Journal of the Royal Statis-
tical Society: Series B, 66:547–573.

Kawata, T. (1972). Fourier analysis in probability theory. Academic Press,
New York.

Kneip, A., Park, B., and Simar, L. (1998). A note on the convergence of
nonparametric DEA estimators for production efficiency scores. Econometric
Theory, 14:783–793.

Kneip, A., Simar, L., and Van Keilegom, I. (2010). Boundary estimation in
the presence of measurement error with unknown variance. Discussion Pa-
per, Institut de statistique, biostatistique et sciences actuarielles, Univertité
catholique de Louvain.

Korostolev, A. P. and Tsybakov, A. B. (1993). Minimax Theory for Image
Reconstruction., volume 82 of Lecture Notes in Statistics. Springer.

Leleu, H. (2006). A linear programming framework for free disposal hull tech-
nologies and cost functions: Primal and dual models. European Journal of
Operational Research, 168:340–344.

Li, T. and Vuong, Q. (1998). Nonparametric estimation of the measurement er-
ror model using multiple indicators. Journal of Multivariate Analysis, 65:139–
165.

Loubes, J.-M. and Marteau, C. (2009). Oracle inequality for instrumental
variable regression. arXiv:0901.4321v1.

Mardia, K. (1972). Statistics of directional data. Probability and Mathematical
Statistics. A Series of Monographs and Textbooks. Vol. 13. Academic Press.

Matias, C. (2002). Semiparametric deconvolution with unknown noise vari-
ance. European Series in Applied and Industrial Mathematics: Probability
and Statistics, 6:271–292.

Meister, A. (2006). Density estimation with normal measurement error with
unknown variance. Statistica Sinica, 16:195–211.



140 Bibliography

Meister, A. (2007). Deconvolving compactly supported densities. Mathematical
Methods in Statistics, 16:63–76.

Meister, A. (2009). Deconvolution problems in nonparametric statistics. Lecture
Notes in Statistics 193, Springer.

Meister, A., Stadtmüller, U., and Wagner, C. (2010). Density deconvolution
in a two-level heteroscedastic model with unknown error density. Electronic
journal of Statistics, 4:36–57.

Natterer, F. (1984). Error bounds for Tikhonov regularization in Hilbert scales.
Applicable Analysis, 18:29–37.

Neubauer, A. (1988a). An a posteriori parameter choice for Tikhonov regular-
ization in Hilbert scales leading to optimal convergence rates. SIAM Journal
on Numerical Analysis, 25:1313–1326.

Neubauer, A. (1988b). When do Sobolev spaces form a Hilbert scale? Proceed-
ings of the American Mathematical Society, 103:557–562.

Neumann, M. H. (1997). On the effect of estimating the error density in non-
parametric deconvolution. Journal of Nonparametric Statistics, 7:307–330.

Neumann, M. H. (2007). Deconvolution from panel data with unknown error
distribution. Journal of Multivariate Analysis, 98:1955–1968.

Newey, W. K. (1990). Efficient instrumental variables estimation of nonlinear
models. Econometrica, 58:809–837.

Newey, W. K. and Powell, J. L. (2003). Instrumental variable estimation of
nonparametric models. Econometrica, 71:1565–1578.

Olver, F. (1974). Asymptotics and special functions. Academic Press.

Pagan, A. and Ullah, A. (1999). Nonparametric Econometrics. Cambridge
University Press.

Park, B. U., Sickles, R. C., and Simar, L. (2003). Semiparametric efficient
estimation of AR(1) panel data models. Journal of Econometrics, 117:279–
311.

Park, B. U., Simar, L., and Weiner, C. (2000). The FDH estimator for produc-
tivity efficiency scores: asymptotic properties. Econometric Theory, 16:855–
877.

Pensky, M. and Vidakovic, B. (1999). Adaptive wavelet estimator for nonpara-
metric density deconvolution. The Annals of Statistics, 27:2033–2053.



141

Petrov, V. V. (1995). Limit theorems of probability theory. Sequences of inde-
pendent random variables. Oxford Studies in Probability. Clarendon Press.

Rosenblatt, M. (1956). Remarks on some nonparametric estimates of a density
function. Annals of Mathematical Statistics, 27:832–837.

Schwarz, M. and Van Bellegem, S. (2010). Consistent density deconvolution
under partially known error distribution. Statistics and Probability Letters,
80:236–241.

Schwarz, M., Van Bellegem, S., and Florens, J.-P. (2011). Nonparametric fron-
tier estimation from noisy data. In Festschrift in honour of Léopold Simar.
Springer (to appear).

Seiford, L. and Thrall, R. (1990). Recent developments in DEA: The mathe-
matical programming approach to frontier analysis. Journal of Econometrics,
46:7–38.

Shephard, R. W. (1970). Theory of cost and production functions. Princeton
University Press.

Simar, L. (2007). How to improve the performances of DEA/FDH estimators
in the presence of noise? Journal of Productivity Analysis, 28:183–201.

Stefanski, L. and Carroll, R. J. (1990). Deconvoluting kernel density estimators.
Statistics, 21:169–184.

Talagrand, M. (1996). New concentration inequalities in product spaces. In-
ventiones Mathematicae, 126:505–563.

Tsybakov, A. B. (2004). Introduction to nonparametric estimation. (Introduc-
tion à l’estimation non-paramétrique.). Mathématiques & Applications 41,
Springer.

Walker, J. S. (1988). Fourier analysis. Oxford University Press.


