
Actes JFPC 2008

Hybridization of CP and VLNS for Eternity II.

Pierre Schaus Yves Deville
Department of Computing Science and Engineering,

University of Louvain,
Place Sainte Barbe 2,

B-1348 Louvain-la-Neuve, Belgique

{pierre.schaus,yves.deville}@uclouvain.be

Abstract

Eternity II is an edge-matching puzzle created by
Christopher Monckton for the game editor Tomy(TM).
Given 256 squared pieces with a color on each of
the four sides of pieces and a 16 × 16 board, the
goal is to place all the pieces such that two adjacent
pieces have their common side of same color. This
problem is NP-complete, has very few structure and
is highly combinatorial (256! · 4256 possible combina-
tions). Christopher Monkton is so confident in the dif-
ficulty of the problem that he promises a $2 million
prize to the first person who finds the solution. We
don’t have any hope (anymore) to find a solution to
this problem, but we nevertheless decided to explain
our strategy which might be useful for someone else
still believing in his/her chances of success. Our proce-
dure first initializes the board with constraint program-
ming by relaxing the problem. Then we improve the
solution with a very large neighborhood stochastic lo-
cal search. Our neighborhood is very large (i.e. expo-
nential) but can be explored in polynomial time by sol-
ving an assignment problem. Our procedure allows us
to obtain rapidly good solutions with scores reaching
458/480 number of satisfied junctions. Our very large
neighborhood can also be used in a brute-force ap-
proach to test 256!/128! · 4128 combinations instead of
256! · 4256.

This paper is also an example of VLNS that can be
applied on other matching problems.

1 Introduction

The Eternity II (E2) puzzle consists of n2 square pieces
that are bordered by one color on each side and, a n × n
board game. The pieces must be placed on a board such

that two adjacent pieces have aligned colors. A same color
on the extremity of the board is imposed.

E2 is a 16 × 16 instance. Since the extremity color is
imposed, these constraints are not difficult to satisfy. This
is why the score is always given in terms of the number of
inside connections, that is 2n · (n − 1) for a n × n puzzle
(480 inside connections for the 16× 16).

Many people are actively working on E2. The most si-
gnificant group of discussion on the web counts about 2000
members 1. Two distributed computing softwares were de-
veloped using a brute-force backtracking approach :

– The first one was developed by Dave Clark. About
1000 registered computers were permanently active.
This project was the most popular one and to the best
of our knowledge have submitted the best known so-
lution : 463/480. This project lasted 6 months. Dave
Clark has now give up because he doesn’t believe any
more in the brute-force approach to solve the puzzle.

– The second one is a French project 2 which seems to
have less members. They did not published their hi-
ghest score.

E2 is an edge-matching puzzle, that is a tiling puzzle
involving tiling an area with (typically regular) polygons
whose edges are distinguished with colours or patterns, in
such a way that the edges of adjacent tiles match. These
categories of puzzles were proved to be NP-complete [4].
Tetravex 3 and E2 4 are both edge-matching puzzles. In par-
ticular Tetravex was proved to be NP-complete by reduc-
tion of 1in3-SAT [10].

1http://games.groups.yahoo.com/group/eternity_
two/

2http://www.eternity2.fr/
3http://live.gnome.org/Tetravex/
4http://uk.eternityii.com/

E2 has not a lot of structure : the constraints are very lo-
cal. The only constraint implying all the pieces is that no
two pieces can be placed on a same position of the board.
The colors of the tiles of E2 have been chosen by Chris-
topher Monckton such that the backtracks occur deeply in
the search tree (typically after the placement of about 160
pieces). The distribution of the colors is given on Figure
1. There are 22 colors. Color 0 is for the countour of the
board. Colors 1-5 are only present on contour pieces (with
a 0) and can only be used for the matching edges along the
contour pieces. As can be seen, the distribution of the co-
lors could not be more equally distributed. The number of
colors has also been probably chosen such that there are
probably very few solutions and such that the problem is
not too constrained. Actually, it is very easy to make a va-
lid contour even by hand and then to place about hundred
of pieces. To reduce the number of solutions and the pos-
sibility of symmetrical solutions, Monckton designed the
pieces all different and imposes the position of a clue piece
is in the center of the board. This clue piece makes the so-
lution even more difficult to find since even the rotational
symmetries of the board are suppressed.

0 2 4 6 8 10 12 14 16 18 20 22
color

fr
eq

ue
nc

y
0

20
40

60

FIG. 1 – Distribution of the colors over the 256 pieces of
E2

A lot of standard techniques to tackle combinatorial op-
timization problems can be used to solve E2. We think this
challenging game might become a standard benchmark for
combinatorial optimization.

A summary of our attempts to reach our best score of
458/480 follows :

1. Using an exact Constraint Programming (CP) model,
we were not able to solve exactly instances with the
same characteristics than E2 with n larger that 8. We
had to relax about 80 junction constraints to be able
to solve it. Hence we were not able to reach a score
larger than 400/480 with a pure CP approach.

2. We tried a standard tabu stochastic local search with
moves switching a pair of pieces. Starting from a ran-
dom placement of the pieces, this approach was not
able to reach scores larger than 410/480. Using the so-
lution of the relaxed CP solution to initialize the local
search we could raise our best score to about 425/480.

3. Finally we improved the local search using a very

large neighborhood. Our neighborhood is able to
move optimally more than two pieces at once. The
only constraint is that the moved pieces must not
be edge-adjacent. The number of moved pieces can
hence be up to n2/2 at once. This large neighborhood
allowed us to raise our score to 458/480 in less than
one day of computation on a standard computer. This
score can be considered as state-of-the-art and de-
monstrates that the approach is promising to solve E2
and can certainly be improved to reach larger scores.

Contributions : The main contribution is the design of
a large neighborhood that can be explored efficiently by
solving an assignment problem. Our neighborhood can po-
tentially be applied to any edge-matching puzzle and pro-
bably to other placement problems as well. We also show
that a local search based on this neighborhood can reach
higher scores when initialized with a (partial) solution ob-
tained with CP on a (relaxed) E2 problem.

Outline : Section 2 describes the CP model. Section 3
explains how to build and solve the very large neighbo-
rhood. Section 4 gives our tabu procedure using the very
large neighborhood. Section 5 presents a possible hybri-
dization of CP and the local search to solve E2. Finally
Section 6 concludes by giving experimental results.

2 Constraint Programming Model

Constraint Programming is a paradigm where a pro-
blem is modeled by declaring variables with their domains
of possible values ,and stating constraints among the va-
riables. The solver then tries to find an assignment of
the variables to values of their domains such that every
constraints are satisfied. The constraints are responsible
to remove as much inconsistent values as possible from
the domains of variables (propagation part). When a fixed
point of the propagation is reached and that all the domains
are not singletons and non empty, two branches are crea-
ted. The first branch reduces the domain of a variable to
a single value and the alternative branch removes this va-
lue from the domain. The search tree is usually explored
in depth first way. In summary, the search of a solution is
nothing else than exploring a search tree interleaving assi-
gnment and propagation and backtracking when a domain
becomes empty. Of course one can hope to find more ra-
pidly solutions by deciding heuristically which variable to
instantiate to which value at each node. More details about
CP in general can be found in [9].

The Variables : The different colors are {0, ..., c}. For
each of the 16x16 positions (i, j) of the board we define
the following variables.

– Uij , Rij , Dij , Lij with domains {0, ..., c} represent
respectively the colors of the up, right, down and left
side of the piece coming in position (i, j) of the board,

– Iij ∈ {0, ..., n2 − 1} is the identifier of the piece co-
ming in that position.

We also add the following variables allowing a more effi-
cient branching heuristic :

– Oij ∈ {0..3} represents the orientation of the piece
coming in that position (number of clockwise quarter
rotations),

– IOij ∈ {0, .., 4n2 − 1} represents together the piece
identifier and its orientation in that position.

These variables are redundant and are linked to the first
ones with

∀(i, j) ∈ [1..n]× [1..n] : IOij = 4 · Iij + Oij . (1)

Alternatively, one can also use element constraints [6] spe-
cifying that IOij ∈ [4k..4k + 3] if and only if Iij = k
and, IOij mod 4 = l if and only if Oij = l. This second
set of channeling constraints are preferable to the arith-
metic constraint (1). Indeed if the variable IOij is assi-
gned, the values taken by Iij and Oij cannot be deduced
if bound-consistency is achieved on (1) 5. On the contrary,
for the element constraints, as soon as IOij is assigned,
the identifier of the piece Iij = IOij/4 and the orientation
Oij = IOij mod 4 can be deduced.

The constraints : First we must have that the Iij’s
must be different. This can be enforced with an AllDif-
ferent global constraint [8]. We must also have that the four
colors Uij , Rij , Dij , Lij correspond to a physical piece.

A first way is to use extensional constraints. Since, n2

physical pieces are given, for each one, four 4-tuples of co-
lors can be created corresponding the four possible orien-
tations of the piece. Hence, a total of 4n2 4-tuples can be
created and one must constraint [Uij , Rij , Dij , Lij] to be
one of these tuples. This can be realized with extensional
constraints from [2].

Alternatively, one can also use element constraints. In-
deed when the piece and its orientation are known for a
position (i, j) one can pickup the values for Uij , Rij , Dij ,
Lij in four different arrays of constants encoding all the
valid tuples.

The edge-matching constraints are simply expressed as
Di,j = Ui+1,j and Ri,j = Li,j+1. There is a constraint
that the sides on the contour must be of color 0.

Branching Heuristics : Our experiments showed that
it is more advantageous to branch on the IOij variables
rather than, first fixing the pieces Iij’s then the orientations
Oij’s. The heuristic we used is a classical first fail : the
choice of the next variable to instantiate is the IOij with

5Arc-consistency for arithmetic constraints is too costly

the smallest domain size. Ties are broken randomly. The
choice of the value is chosen randomly.

Possible improvements : A big issue with our mo-
del is the depth first search used with the branching heu-
ristic described above. The search can always place a large
number of pieces (typically 160) before backtracking. The
backtracks never occurs at the level of the first placed
pieces. Hence these early choices are never reconsidered.
A more clever search could use impacts and restarts to bet-
ter guide the search and reconsider more rapidly the early
choices [7]. Another possible improvement is to increase
the filtering. For example, one could imagine to maintain
arc-consistency on domino global constraints on the rows
and columns of the board.

3 A Polynomial Time Very Large Neigh-
borhood

Most combinatorial problem are intractable and E2 is
one of these. Nevertheless we can generally obtain near op-
timal solutions using improving algorithms. The idea is to
start from a solution an successively apply improving mo-
difications on this solution. The possible modifications on
a solution is called a neighborhood. The problem is that
the solution can rapidly be trapped in a local optimum or
in a cycling state. These issues can be avoided using va-
rious methaheuristics. A very popular and simple one, also
very efficient in practice, is the tabu search [5] were some
moves are forbidden for a while to avoid cycling and try to
diversify the search space.

Whichever methaheuristic is used, there is no hope to
reach good solutions without a pertinent neighborhood.
The neighborhood is also very important to avoid local op-
timum. The larger is better, since there is more chance to
escape from local optimum. A neighborhood is said to be
very large with respect to the input data when it is expo-
nential. Unfortunately, is can be very expensive to explore
a large neighborhood at each iteration. There is generally
a tradeoff between the speed and the size of the neighbo-
rhood. For certain problems, we are lucky and one can ima-
gine very large neighborhoods that can be explored rapidly
(in polynomial time). For the well known traveling sales-
man problem, useful very large neighborhoods have been
designed [1]. The selection of the neighborhood is typi-
cally solved by an optimization problem such as finding a
minimum path or cycle length, or solving a matching or
assignment problem.

A small neighborhood For E2, the first neighborhood
that comes to mind is probably to exchange two pieces
and possibly rotate them. Let us call it the swap and rotate
move. For a solution, there are n2 · (n2 − 1) · 16 possible

swap and rotate moves. To reduce this complexity, one can
proceed in two steps by first choosing the first piece (typi-
cally one of the most violated one) and let the freedom on
the other. The time complexity to explore the neighborhood
is of O(n2) rather than O(n4).

A very large neighborhood We suggest to generalize
the swap and rotate to more that two pieces. We consider
swaps and rotates of a set of pieces. Unfortunately opti-
mally swap and rotate a set of pieces is in general as dif-
ficult as solving E2. However, by choosing carefully our
set of pieces we can replace them optimally into the holes
in polynomial time. Indeed, if there are no edge-adjacent
pieces in the set of removed pieces on the board, they can
be replaced optimally in the holes by solving an assign-
ment problem. Figure 2 shows a set of pieces without edge-
adjacent removed from the current solution.

FIG. 2 – 5 non edge-adjacent pieces are removed from the
current solution creating five holes.

The removed pieces can be reallocated optimally to the
created holes by solving an assignment problem. The assi-
gnment problem is defined on a complete weighted bipar-
tite graph between the set of removed pieces and the holes.
An arc between a piece an a hole is labelled with a couple
(r, w) :

– r is an optimal rotation of the piece when placed in
this position and

– w is the number of matching edges of the piece when
placed inside the hole with rotation r.

We have r ∈ [0..3] (number of clockwise quarter of ro-
tation) and w ∈ [0..4]. Table 1 gives arcs labels for the
example of Figure 2.

When the optimal weights and rotations from the pieces
to the holes are computed, one can compute a matching of
maximal weight on this bipartite graph. The selected edges
and the labels on the edges tell us how to place and ro-
tate the pieces optimally in the holes. Finding a maximum

TAB. 1 – Labels (orientation,weight) of the arcs of the bi-
partite graph from the pieces to the holes of example of
Figure 2.

Holes

Pieces 1 2 3 4 5

1 2,3 2,2 0,1 1,1 1,1
2 0,1 0,1 2,2 1,3 3,3
3 0,1 0,1 0,1 1,1 1,1
4 1,2 1,2 0,1 0,2 1,2
5 0,1 0,1 2,4 1,1 3,2

weight matching is called an assignments problem. It can
be solved in polynomial time for example with the Hunga-
rian algorithm or the primal dual method in O(m4) 6 for a
m × m weighted bipartite graph (see [3] for a dedicated
book on assignment problems).

On our example, the selected edges (piece 7→ hole) are
(1 7→ 1), (2 7→ 4), (3 7→ 3), (4 7→ 5) and (5 7→ 3).

In summary, the steps to build our neighborhood are :
1. Select a set S of non edge-adjacent positions.
2. Compute the labels (r, w) for each of the |S|2 arcs

from pieces to the holes.
3. Compute the maximum weight matching solving an

assignment problem.
4. The arcs of the matching give the permutation of the

positions and the rotations are determined by the la-
bels of the selected arcs.

The size of the explored neighborhood is |S|! · 4|S| and |S|
can be up to n2/2. The neighborhood is thus exponential.

Figure 3 gives more insight on the influence of size of
the set S. We applied successively the large neighborhood
move during 30 seconds by selection of random sets of
non-edge adjacent pieces of size k. For each k we made
10 runs, each one starting from a random placement of the
pieces. We tried the values 2, 4, 8, 16, 32 and 64 for k.
Figure 3 gives the average evolution of the score (480 is a
perfect solution) over the 30 seconds. The standard devia-
tions are represented only for k = 2 and k = 4 for clarity
reasons. The quality of the local optimum is not really im-
proved for k ≥ 16.

4 A Tabu Search

A tabu search tries to diversify the search making some
moves tabu for some iterations (see [5] for more informa-
tion on tabu search). Typically, the tabu moves are concep-
tually stored in tabu list. The number of iterations a move

6faster algorithms exist (e.g. O(m3)) but are also more complicated
[3].

time (s)

sc
or

e
(/

48
0)

20
0

25
0

30
0

35
0

40
0

0 5 10 15 20 25 30

2
4
8
16
32
64

FIG. 3 – Influence of the number of selected pieces with
the large neighborhood move on the quality of the local
optimum

remains in the tabu list is called the tenure of the tabu list.
Two different tabu lists can be imagined for the large neigh-
borhood described above :

– A first tabu list can store during some iterations the
positions that were recently chosen in the set of non-
edge adjacent positions S. The positions will then be
diversified over the board along the iterations.

– A second tabu list can forbid some permutations of
positions. Assume that at the current iteration, a piece
at position i is moved to the position j (with i 6= j). In
order to avoid cycling effects, it is desirable to avoid
the opposite move during some iterations. The pair
(j, i) is added to the tabu list specifying that a piece
in position j cannot move to position i while (j, i) is
in the tabu list. This can be easily achieved by giving a
very small weight to the arc (j, i) during the construc-
tion of the bipartite graph.

Algorithm 1: VLN tabu search algorithm for E2
tabu1 ← list().
tabu2 ← list().
while not end condition do

if diversify condition then
diversify

1. Select a subset S of non edge-adjacent pieces not in
tabu1.

2. Add elements of S in tabu1 for some iterations.

3. Compute an apply the optimal move on S by solving
the assignment problem and by penalizing arcs in
tabu2.

4. Add the reverse arcs of moved pieces to tabu2.

if intensification condition then
restore the best solution

Algorithm 1 is a quite high level description. We give a
more detailed view of some parts of our implementation.

– In the selection of S, most violated positions are pre-
ferably chosen.

– The diversify condition occurs when a plateau of gi-
ven length is met.

– The diversification consists of making a given number
of random swap and rotate moves.

– The intensification condition occurs when the best
score is not improved for a given number of conse-
cutive plateau detections.

– The end condition occurs after a given number of in-
tensification’s.

– The time period move remains in a tabu list is chosen
randomly between two bounds.

5 Hybridization

The large neighborhood described in previous section
allows to replace optimally in polynomial time non edge-
adjacent pieces on the board. This neighborhood can also
be used to reduce the cost of a brute-force approach. The
number of possible placement of the pieces on the board
is n2! · 4n2

. It is possible to reduce drastically this number
by placing only one over two pieces like black squares of
a chess board. The number of possible placements is then

n2!
(n2/2)! · 4

n2/2. It remains n2/2 non edge-adjacent empty
positions. These positions are optimally completed with the
matching move.

Another exact approach can combine constraint pro-
gramming and the large neighborhood :

– E2 is too hard for constraint programming. Neverthe-
less a solution can be found by allowing some non
matching edges. If we choose to relax non-matching
edges of some non edge-adjacent positions (e.g. a sub-
set of the black pieces of a chess like board), one can
hope to find a solution with CP.

– The relaxed positions can be filled optimally with the
large neighborhood based on the assignment problem.

– If they are some violations, repeat the procedure for
the next solution given by CP.

We relaxed a number of non edge-adjacent positions
chosen randomly. For each number, we generated 30 re-
laxed instances. Figure 4 gives the number of instances that
could be solved within 30 seconds. Clearly the number of
relaxed pieces must be larger than 24 to have a good chance
of solving the relaxed problem.

The procedure described above can also generate good
initial solutions. Our hybridization starts a local search with
Algorithm 1 on such solutions. If CP is not able to find a
solution in a given limit of time, we complete randomly the
largest partial assignment (deepest node of the search tree).

20 21 22 23 24 25 26 27 28 29 30
Number of relaxed pieces

N
um

be
r

of
 s

ol
ve

d
0

5
10

15
20

25
30

FIG. 4 – Number of solved relaxed problems on 30 runs.

6 Experimental Results and Conclusion

We experiment in this section the initializations with CP
for a varying number of relaxed positions. For each number
of relaxed positions we made 20 runs with the hybridiza-
tion described in previous section. We also tried with a ran-
dom initialization, that is by placing randomly the pieces
on the board. The boxplots are drawn on Figure 5. The
boxes represent the median and quartiles and the whiskers
extend to the extreme values.

0 5 10 15 20 25 30 random

43
0

43
5

44
0

44
5

45
0

45
5

sc
or

e
(/

48
0)

FIG. 5 – Boxplots of the scores on 20 runs with
CP initialization using a varying number relaxed pieces
(0,5,10,15,20,25,30) and a random initialization

It seems that the local search Algorithm 1 obtains bet-
ter results with a CP initialization than with a random one
(gray box versus other boxes). What is more surprising is
that higher scores are obtained with less relaxed positions.
Remember that for less than 20 relaxed positions, CP is
not able to find a solution. In this case, the initial state
is the largest partial assignment completed randomly with
remaining pieces. Intuitively we thought that higher was
the score of the initial state, better it was to start the lo-
cal search and finally reach very good scores. It is not the
case. Starting with a good small partial assignment gives

better results than starting with larger partial assignment of
worse quality. Our explanation is that if we relax say 30
positions and find a solution to this relaxed problem then
replace optimally the relaxed pieces, we start precisely in a
local optimum and it is very difficult for our local search to
improve it.

By letting the program run 24 hours, we were able to
generate several solutions with a score of 458 which can be
considered as a state-of-the-art result for E2.

All experiments were realized on CPU Intel Xeon(TM)
2.80GHz. We used the Gecode 2.0.1 CP library [11]. The
local search with large neighborhood was implemented in
C++. Our implementation maintains incrementally the vio-
lations along the moves.

Conclusions and Perspectives We have designed a
very large neighborhood for E2 that can be efficiently ex-
plored by solving an assignment problem. We also explai-
ned how this neighborhood can be used to reduce the num-
ber of combinations in an exact brute-force method. We
gave a basic tabu search procedure using the neighborhood
and showed that an initialization using a (partial) solution
generated with CP can enhance the results obtained by the
local search.

We don’t believe that E2 will be solved with exact me-
thods nor by heuristic methods in the near future. But we
think that the combinations of the two can help to reach
better solutions. Standard CP is maybe not a good choice
for the initialization because CP backtracks as soon as a
domain is empty. The approaches used by most people is
rather to place as many pieces as possible with matching
edges. Backtracking when a domain is empty is not a good
idea to this end. Indeed, one could continue with the non
empty domains until all the domains are empty. People
pretend to be able to place about 210 pieces with these
approaches while CP is not able to produce partial solu-
tions with more than 170 placed pieces. As future work
we would like to try such initializations before starting
our local search procedure. The local search algorithm can
also be imagined with other methaheuristics and alternative
moves.

Références

[1] Ravindra K. Ahuja, Özlem Ergun, James B. Orlin,
and Abraham P. Punnen. A survey of very large-scale
neighborhood search techniques. Discrete Applied
Mathematics, 123(1-3) :75–102, 2002.

[2] Christian Bessière, Jean-Charles Régin, Roland H. C.
Yap, and Yuanlin Zhang. An optimal coarse-grained
arc consistency algorithm. Artif. Intell., 165(2) :165–
185, 2005.

[3] R. Burkard, M. DellAmico, and S. Martello. Assi-
gnment Problems. SIAM Monographs on Discrete
Mathematics and Applications, 2008.

[4] Erik D. Demaine and Martin L. Demaine. Jig-
saw puzzles, edge matching, and polyomino pa-
cking : Connections and complexity. Graph. Comb.,
23(1) :195–208, 2007.

[5] Fred Glover. Tabu Search. Kluwer Boston, Inc., 1998.

[6] Van Hentenryck P. and Carillon J.-P. Generality ver-
sus specificity : an experience with ai and or tech-
niques. In Proceedings of AAAI-88, 1988.

[7] Philippe Refalo. Impact-based search strategies for
constraint programming. In CP, pages 557–571,
2004.

[8] Jean-Charles Régin. A filtering algorithm for
constraints of difference in csps. In AAAI ’94 : Pro-
ceedings of the twelfth national conference on Artifi-
cial intelligence (vol. 1), pages 362–367, Menlo Park,
CA, USA, 1994. American Association for Artificial
Intelligence.

[9] Francesca Rossi, Peter van Beek, and Toby Walsh.
Handbook of Constraint Programming (Foundations
of Artificial Intelligence). Elsevier Science Inc., New
York, NY, USA, 2006.

[10] Yasuhiko Takenaga and Toby Walsh. Tetravex is np-
complete. Inf. Process. Lett., 99(5) :171–174, 2006.

[11] Gecode Team. Gecode : Generic constraint
development environment. available from
http ://www.gecode.org. 2006.

