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Abstract. Many assignment problems require the solution to be bal-
anced. Such a problem is the Balanced Academic Curriculum Problem
(BACP) [1]. Standard deviation is a common way to measure the balance
of a set of values. A recent constraint presented by Pesant and Régin [2]
enforces the mean µ and the standard deviation σ of a set of variables.
Our work extends [2] by showing a more simple propagator from σ and
µ to X and by introducing new propagators: from σ together with X to
µ and from X together with µ to σ.

1 Introduction

In assignation problems, it is often desirable to have a fair or balanced solution.
One example of such a problem is BACP. The goal is to assign periods to courses
such that the academic load of each period is balanced, i.e., as similar as possible
[1]. A perfectly balanced solution is generally not possible. A standard approach
is to include the balance property in the objective function. Alternatively the
constraint SPREAD introduced by Pesant and Régin [2] could be used to re-
duce the search tree while simplifying the model. Constraining the variance of
assignments to fall below an upper bound is a proper way to enforce the balance
property.

Given a set of variables X and two variables µ and σ, SPREAD(X, µ, σ)
states that the collection of values taken by the variables of X exhibits an arith-
metic mean µ and a standard deviation σ. While the SPREAD constraint in
[2] also involves the median, this will not be considered here.

The SPREAD constraint can be seen as a special kind of soft constraint
opening new perspectives in CSP modeling. As a perfect balanced solution is
mostly not possible, the perfect balance constraint can be soften with SPREAD
allowing a positive maximum standard deviation and an interval for the mean.
SPREAD could also be used to combine a set of soft constraints. The usual way
to combine a set of soft constraints is to minimize the sum of the violation cost
of each of them. The drawback with this approach is that some constraints could
be much more violated that the others. A clever way could be to use SPREAD
to enforce the violation costs to be balanced among the soft constraints.
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Section 2 mainly reviews the material from [2] used in this paper and in-
troduces some statistical background and definitions relative to constraint pro-
gramming. The problem of the variance minimization over the set of variables
X is the starting point of our propagation algorithms. This problem is solved in
[2] and explained in Section 2.

The propagator described in [2] filters from standard deviation σ to the set
of variables X with quadratic time complexity with respect to the number of
variables. It is possible to achieve better pruning by taking also the mean µ into
consideration. Although the propagator from [2] can be easily extended to take
also µ into account together with σ, this is not explicitly described in [2]. Section
3 presents a simpler filtering algorithm from µ and σ to X with the same time
complexity.

We show in Section 4 that the problem of the variance minimization is a
convex one. This implies that it admits a global minimum. This result allows
us to design a propagator not present in [2]: from X and σ to µ. The filtering
algorithm presented in Section 5 also performs in quadratic time with respect to
the number of variables.

The filtering of the upper bound of the standard deviation requires a solution
to the problem of the variance maximization. Section 6 shows that this problem
is NP-hard and presents an algorithm to find an upper bound on the variance
running in quadratic time with respect to the number of variables.

2 Background

We start this section with some statistical background and definitions relative
to constraint programming. Next we present the problem of the variance min-
imization over the set of variables X. This problem is solved in [2] and is the
starting point of our propagation algorithms.

We assume the reader familiar with common statistical notions such as mean,
standard deviation and variance (these notions are defined in Section 2 of [2]).
Note simply that a convenient way to compute the variance of a set of values
{v1, v2, ..., vn} is the following: σ2 =

(
1
n

∑n
i=1 v2

i

)
− µ2.

We use the following notations for the variables and domains considered in
this paper:

– A finite-domain (discrete) variable x takes a value in D(x), a finite set called
its domain. We denote the smallest (resp. largest) value x may take as xmin

(resp. xmax).
– A bounded-domain (continuous) variable y takes a value in ID(y) =

[ymin, ymax], an interval on R called its domain as well.
– Given a finite-domain variable x, ID(x) denotes its domain relaxed to the

continuous interval [xmin, xmax]. By extension for a union of domains D =⋃n
i=1 D(xi), ID represents the interval [minn

i=1 xmin
i ,maxn

i=1 xmax
i ].

The remaining of the section reviews the problem of the variance minimiza-
tion solved in [2]. We detail successively the key points to find a solution:



1. A property of an optimal solution.
2. An optimal solution can be found by iterating once over a set of contiguous

intervals.
3. The construction of this set of contiguous interval is based on the bounds of

the domains.
4. For each interval, the optimal solution property can be checked in constant

time.

Let first define formally the problem we want to solve. The variance mini-
mization is an optimization problem under a sum constraint:

Definition 1 (Minimization of the variance on X). Let X = {x1, x2, ..., xn}
be a set of finite-domain (discrete) variables. For some fixed number q we de-
note by Π1(X, q) the problem: min

∑n
i=1(xi − q/n)2 such that

∑n
i=1 xi = q,

xi ∈ ID(xi), 1 ≤ i ≤ n and we denote by opt(Π1(X, q)), or simply opt(Π1), the
optimal value to this problem.

In the above definition, opt(Π1) corresponds to n times the minimal variance
and q to n times µ.

The following definition and lemma characterize an optimal solution to Π1(X, q).
This property is a particular assignment of a variable x to a value of its relaxed
domain to the continuous interval ID(x).

Definition 2. An assignment A : x → ID(x) is said to be a v-centered assign-
ment when:

A(x) =

xmax if xmax ≤ v
xmin if xmin ≥ v
v otherwise

Lemma 1. [2]. Any optimal solution to Π1(X, q) is a v-centered assignment.

Lemma 1 gives a necessary condition for an assignment to be optimal for
Π1(X, q) but the v value can be anywhere in ID. [2] introduces a splitting of ID
into contiguous intervals based on the bounds of the domains of variables. The
v value of the v-centered assignment characterizing an optimal solution can be
found by iterating once over this set of contiguous intervals. Any such interval
is either subsumed by a domain or has an empty intersection with it but partial
overlap cannot occur.

Definition 3. Let B(X) be the sorted sequence of bounds of the relaxed domains
of the variables of X, in non-decreasing order and with duplicates removed. De-
fine I(X) as the set of intervals defined by a pair of two consecutive elements
of B(X). The kth interval of I(X) is denoted by Ik. For an interval I = Ik we
define the operator prev(I) = Ik−1, (k > 1) and succ(I) = Ik+1.

Example 1 (Building I(X)). Let X = {x1, x2, x3} with ID(x1) = [1, 3], ID(x2) =
[2, 6] and ID(x3) = [3, 9] then I(X) = {I1, I2, I3, I4} with I1 = [1, 2], I2 = [2, 3],
I3 = [3, 6], I4 = [6, 9]. We have prev(I3) = I2 and succ(I3) = I4.



There are at most 2.n − 1 intervals in I(X). Let assume that the value v
of the optimal solution to Π1(X, q) lies in the interval I ∈ I(X). We denote
by R(I) = {x|xmin ≥ max(I)} the variables lying to the right of I and by
L(I) = {x|xmax ≤ min(I)} the variables lying to the left of I. By Lemma 1, all
variables x ∈ L(I) take their value xmax and all variables in R(I) take their value
xmin. It remains to assign the variables subsuming I. We denote these variables
by M(I) = {x|I ⊆ ID(x)} and the cardinality of this set by m = |M(I)|. By
Lemma 1, the variables of M(I) must take a common value v. The sum constraint
(see Definition 1) of Π1(X, q) can be rewritten as∑

x∈R(I)

xmin +
∑

x∈L(I)

xmax +
∑

x∈M(I)

v = q. (1)

Let denote the sum of extrema by

ES(I) =
∑

x∈R(I)

xmin +
∑

x∈L(I)

xmax.

The sum constraint in Equation (1) implies that v must be equal to a specific
value v∗ = (q − ES(I))/m. This results in a valid assignment only if v∗ ∈ I.
This condition is satisfied if

q ∈ V (I) = [ES(I) + min(I).m,ES(I) + max(I).m].

We previously said that an optimal solution the problem Π1(X, q) (see Def-
inition 1) could be found by iterating once over a set of contiguous intervals by
checking for each interval a property in constant time. The set of intervals is
naturally I(X) introduced in Definition 3 and for each I ∈ I(X), the test is:
does q belong to V (I)? If it is true that q ∈ V (I), the value v of the v-centered
assignment defined in Definition 2 characterizing an optimal solution Π1(X, q)
lies in the interval I and has a value of (q − ES(I))/m.

We denote the overall minimal (resp. maximal) sum by S(X) =
∑

x∈X xmin

(resp. S(X) =
∑

x∈X xmax). We are sure that for every value q ∈ [S(X), S(X)]
there is one I ∈ I(X) such that q ∈ V (I). Indeed, we have min(V (I1)) = S(X),
max(V (I|I(X)|)) = S(X) and for two consecutive intervals Ik, Ik+1 from I(X),
we have min(V (Ik+1)) = max(V (Ik)), thus leaving no gap.

Theorem 1. [2] Given a value q such that q ∈ [S(X), S(X)] and Iq ∈ I(X)
such that q ∈ V (Iq), the following assignment gives the optimal value to Π1(X, q):

A(x) =


xmax if x ∈ L(Iq)
xmin if x ∈ R(Iq)
v = q−ES(Iq)

m if x ∈M(Iq)

Example 2 (Solving Π1(X, q)). Variables and domains are from Example 1. We
obtain the following values:



i Ii R(Ii) L(Ii) M(Ii) ES(Ii) V (Ii)
1 [1, 2] x2, x3 φ x1 5 [6, 7]
2 [2, 3] x3 φ x1, x2 3 [7, 9]
3 [3, 6] φ x1 x2, x3 3 [9, 15]
4 [6, 9] φ x1, x2 x3 9 [15, 18]

For q = 10 we have q ∈ V (I3) thus I10 = I3. A(x1) = 3, A(x2) = A(x3) = 3.5.
For q = 9, we have q ∈ V (I2) and q ∈ V (I3). Whichever interval we choose
between I2 and I3, we find the same optimal assignment A(x1) = 3, A(x2) = 3
and A(x3) = 3.

3 Propagation from µ and σ to X

In this section, we propose to reformulate, simplify and extend (by considering
explicitly the mean together with the standard deviation) the propagator given
in [2]. The procedure to filter the domain of a variable x ∈ X is the following:

– Shift the domain of x by a positive real quantity d.
– For some maximal shift d = dmax, the minimum standard deviation reaches

the upper bound σmax of the domain of σ.
– The computed value dmax allows us to filter D(x) since a shift larger that

dmax would render the constraint inconsistent.

To clarify the presentation, we first assume that σ is an interval [σmin, σmax]
and µ is a given value. We consider afterward the general case where µ is an
interval.

We recall and introduce some notations to explain more precisely the filtering
procedure. We denote q = nµ, πmax

1 = n(σmax)2 and Iq ∈ I(X) is such that
q ∈ V (Iq). In the following we use the shift operation I+d by a positive quantity
d on an interval [Imin, Imax] to denote interval [Imin+d, Imax+d]. This operation
also applies on domains of variables: we simply denote by x′ = x+d the variable
x with a shifted domain D(x) + d.

These notations allow us to explain more precisely the filtering of the domain
of one variable x ∈ X. First, the constraint fails if the minimum standard devia-
tion is larger than the upper bound of σ. In this case, there exists no consistent
assignment. This happens if opt(Π1) > πmax

1 . When the constraint is consistent
(opt(Π1) ≤ πmax

1 ) we can consider the filtering of each variable x ∈ X. In partic-
ular for a variable x ∈ R(Iq) (resp. ∈ L(Iq)), we compute its maximal consistent
value (resp. minimal consistent value) by computing the maximal shift dmax. For
a variable x ∈ M(Iq) we compute both. Each value larger (resp. smaller) than
the maximal (resp. minimal) consistent value must be filtered. As the problem is
symmetrical we only consider the computation of the maximal consistent value
for x ∈ R(Iq) ∪M(Iq).

For a variable x ∈ R(Iq)∪M(Iq) we show that shifting its domain (D(x)+d)
by d ∈ <+ increases opt(Π1) (n× the minimum variance) quadratically with d.
The bound πmax

1 is reached for some d denoted by dmax. The propagation on X



considers each variable x ∈ X in turn, computes its maximum shift dmax and
prunes D(x) as follows: D(x)← D(x)∩ [xmin, xmin + dmax]. All the domains can
be updated once after consideration of all variables in X. Alternatively, each
pruned domain can directly be used for the propagation on the other variables.

Searching dmax for x ∈ R(Iq) X ′ denotes X after the shift x′ = x + d. Let
Π1(X ′, q), ES′(Iq) and V ′(Iq) be the corresponding quantities for X ′. We have
ES′(Iq) = ES(Iq) + d and V ′(Iq) = V (Iq) + d.

Let assume that d ≤ d1 = q−min(V (Iq)) such that v′ remains in Iq. In this
case, the value of q leading to the value of opt(Π1) does not change (i.e. q′ = q).
Only the v value will change in the optimal assignment: v′ = v − d/m. We have
opt(Π1(X ′, q)) =

(∑
xi∈L(Iq)(x

max
i )2

)
+

(∑
xi∈R(Iq)(x

min
i )2

)
+ d2 + 2dxmin +(∑

xi∈M(Iq)(v −
d
m )2

)
− q2

n = opt(Π1(X, q)) + d2 + 2dxmin + m
(

d2

m2 − 2 d
mv

)
.

The value dmax is the positive solution of a second degree equation ad2 +2bd+c,
where a = (1 + 1

m ), b = xmin − v and c = opt(Π1(X, q))− πmax
1 .

Until now, we made the assumption that d ≤ d1. If dmax > d1 this value is
not valid since v does not lie within Iq anymore. In this case x is shifted by d1

(i.e. xmin is increased by d) and the interval I
′q = prev(Iq) is considered. The

resulting Algorithm 1 searching for dmax runs in O(n) since there are at most
|I(X )| < n recursive calls and that the body runs in O(1).

Algorithm: FindDMax(x, Iq)

Data: x ∈ R(Iq); Iq ∈ I; q ∈ V (Iq);
Result: dmax s.t. opt(Π1(X

′, q)) = πmax
1 with x′ = x + dmax

d1 = q −min(V (Iq))

dmax =
−b+

√
b2−ac

a

if dmax < d1 then
return dmax

else
if Iq = I1 then

return d1

else
return d1+FindDMax(x + d1, prev(Iq))

end

end

Algorithm 1: FindDMax

Searching dmax with x ∈ M(Iq) can be reduced to searching for dmax with
a new variable x′ with x′min = v. When x is increased (x′ = x + d), the optimal
assignment does not change if d ≤ v − xmin (i.e. the values of A(x) remain the



same) . For d = v − xmin two new intervals are created replacing the old Iq:
Ij = [min(Iq), v] and Ik = [v,max(Iq)] with q = max(V ′(Ij)) = min(V ′(Ik)).
The optimal assignment is the same but a new problem Π1(X ′, q) is created
with q ∈ V ′(Ij) and x′ ∈ R(Ij). This case reduced to searching for dmax with
x′ ∈ R(Ij) is exposed above. The final dmax relative to the variable x is given
by:

dmax = v − xmin + FindDMax(x′, Ij) where x′ = x + v − xmin (2)

Example 3 (Filtering of one domain). Variables and domains are from Example
1. This example shows the filtering of the domain of variable x2 for q = 10
and πmax

1 = 8. We are in the case of searching dmax with x ∈ M(Iq). We
have I10 = [3, 6] because 10 ∈ V ([3, 6]) = [9, 15] and the value v of the v-
centered assignment is 3.5 (see Example 2). From Equation (2) we have dmax =
3.5 − 2 + FindDMax(x′2, [3, 3.5]) where x′2 = x2 + 1.5. We now analyze the
successive calls to Algorithm 1.

1. FindDMax(x2 + 1.5, [3, 3.5]). We have ES([3, 3.5]) = 6.5, V ([3, 3.5]) =
[9.5, 10], d1 = 0.5, a = 2, b = 0 and c = (3− 10/3)2 + 2 ∗ (3.5− 10/3)2 − 8 ≈
−7.83. We can compute dmax ≈ 1.98. Since dmax > d1 we have the recursive
call FindDMax(x2 + 1.5 + 0.5, [1, 3]).

2. FindDMax(x2 +1.5+0.5, [1, 3]). We have ES([1, 3]) = 7, V ([1, 3]) = [8, 10],
d1 = 2, a = 2, b = 1 and c = 2 ∗ (3− 10/3)2 + (4− 10/3)2 − 8 ≈ −7.33. We
can compute dmax ≈ 1.48. Since dmax < d1 we can return 1.48.

In conclusion, the dmax value of x2 is 1.5 + 0.5 + 1.48 = 3.48 and the variable x2

can be filtered D(x2)← D(x2) ∩ [2, 5.48].

An example of the application of Algorithm 1 is given in Figure 1. The
complexity analysis of Algorithm 1 shows that dmax is computed in O(n) making
the propagation on whole X running in O(n2).

Extension to µ = [µmin, µmax] The generalization µ = [µmin, µmax] is equiv-
alent to q ∈ [qmin = nµmin, qmax = nµmax]. This extension does not affect our
propagator but only requires an additional step before the call to FindDMax for
each variable: the computation of a suitable q ∈ [qmin, qmax]. The computation
of dmax in the algorithm depends on the value of q. To express this explicitly we
denote dmax as a function of q: dmax(q). Since it can be shown to be concave and
derivable, one can search a q0 such that dmax(q) is maximum: ∂dmax

∂q |q=q0= 0.
It can be shown that q0 is the only valid solution of a second degree equation .
As q ∈ [qmin, qmax], if q0 > qmax (resp. < qmin) then FindDmax is called with
q = qmax (resp. q = qmin). If q0 ∈ [qmin, qmax], FindDmax is called with q = q0.

4 Study of Π1(X, q)

We show in this section that the problem of the variance minimization with
given mean is convex. This result allows us to design a propagator from X and



Fig. 1. The propagation on a typical run. The Iq interval lies between the two hori-
zontal lines. The posted constraint is SPREAD(X, 50, [0, 28]). There are 20 variables
and the domains after the propagations are represented on the right of each original
domain.

σ to µ in Section 5. Indeed, the values for the mean leading to a minimum
standard deviation larger than the upper bound σmax must be filtered. Thanks
to the convexity property, all inconsistent values for the mean will be filtered
by computing only two values for the mean such that the upper bound σmax is
reached. All the values for the mean not between these two computed values are
inconsistent.

More precisely, in this section we characterize completely the function of q
opt(Π1(X, q)) which is the minimization of the variance for a fixed mean (see Def-
inition 1). We demonstrate that opt(Π1(X, q)) is continuous, derivable, convex
and accepts one global minimum on [S(X), S(X)]. Figure 2 shows a typical set X
of variables with their domains and the corresponding functions opt(Π1(X, q)).
You can see on the figure that opt(Π1(X, q)) is continuous, convex with one
global minimum.

Theorem 2 (Characteristics of opt(Π1(X, q))). Assuming a domain for q
in the interval [S(X), S(X)] and a given set of variables X the optimal value
to Π1(X, q) denoted by opt(Π1(X, q)) is continuous, differentiable and convex
having a global minimum for some q ∈ [S(X), S(X)].

Proof. It is sufficient to show that ∂opt(Π1(X, q))/∂q is a continuous (1) increas-
ing (2) function with ∂opt(Π1(X, q))/∂q |q=S(X)≤ 0 and ∂opt(Π1(X, q))/∂q |q=S(X)≥
0 (3).

The function opt(Π1(X, q)) is piecewise defined on [S(X), S(X)]: for q ∈
V (Ik), opt(Π1(X, q)) = C +

∑
xi∈M(Ik)((q − ES(Ik))/m)2 − q2/n where C =∑

xi∈L(Ik)(x
max
i )2 +

∑
xi∈R(Ik)(x

min
i )2. The derivative is also piecewise defined:



Fig. 2. On the left a typical set X is represented with the domain of each variables.
On the right top and bottom opt(Π1(X, q)) and ∂opt(Π1(X, q))/∂q are respectively
represented for q ∈ [S(X), S(X)]. The vertical lines represent V (Ik), 1 ≤ k ≤ |I(X)|.

for q ∈ V (Ik), ∂opt(Π1(X, q))/∂q = 2(q − ES(Ik))/m − 2q/n. The proofs for
(1),(2) and (3) are:

1. The derivative is continuous because for q = max(V (Ik)) = min(V (Ik+1)),
the values obtained on interval V (Ik) and V (Ik+1) are the same: 2. q−ES(Ik)

|M(Ik)| −
2 q

n = 2 q−ES(IK+1)
|M(IK+1)| − 2 q

n . Indeed, by denoting δm = |M(Ik+1)| − |M(Ik)| we

have q−ES(Ik)
|M(Ik)| = ES(Ik)+|M(Ik)|max(Ik)−ES(Ik)

|M(Ik)| = max(Ik) and q−ES(Ik+1)
|M(Ik+1)| =

ES(Ik)+|M(Ik)|max(Ik)−ES(Ik)+δm max(Ik)
|M(Ik)|+δm = max(Ik).

2. Since ∂2opt(Π1(X, q))/∂q2 = 2( 1
|M(Ik)| −

1
n ) ≥ 0, ∂opt(Π1(X, q))/∂q is non

decreasing on V (Ik). Because ∂opt(Π1(X, q))/∂q is continuous (1) and non
decreasing on each interval the function is globally convex on [S(X), S(X)].

3. Note that ES(I1) = S(X)−m min(I1) and ES(I|I(X)|) = S(X)−m max(I|I(X)|).
∂opt(Π1(X, q))/∂q |q=S(X)=

S(X)−S(X)+m min(I1)
m − S(X)

n = min(I1)− S(X)
n ≤

0. ∂opt(Π1(X, q))/∂q |q=S(X)=
S(X)−S(X)+m max(I|I(X)|)

m −S(X)
n = max(I|I(X)|)−

S(X)
n ≥ 0. ut

Example 4 (Study of opt(Π1(X, q))). Variables and domains are from Example
1. We study the function opt(Π1(X, q)). With help of the table from Example 2
we add one column which is the definition of opt(Π1(X, q)) for q ∈ V (Ii).



i Ii R(Ii) L(Ii) M(Ii) ES(Ii) V (Ii) C opt(Π1(X, q)) for q ∈ V (Ii)
1 [1, 2] x2, x3 φ x1 5 [6, 7] 13 13 + 1 ∗ ( q−5

1 )2 − q2

3

2 [2, 3] x3 φ x1, x2 3 [7, 9] 9 9 + 2 ∗ ( q−3
2 )2 − q2

3

3 [3, 6] φ x1 x2, x3 3 [9, 15] 9 9 + 2 ∗ ( q−3
2 )2 − q2

3

4 [6, 9] φ x1, x2 x3 9 [15, 18] 45 45 + 1 ∗ ( q−9
1 )2 − q2

3

Each function opt(Π1(X, q)) for q ∈ V (Ii) is plotted on the following graphics.
Clearly the minimum is reached for q = 9 in this example.

5 Propagation from X and σ to µ

As already explained at the beginning of Section 4, the convexity property of
the problem of variance minimization (see Theorem 2) with given mean allows
us to design an efficient propagator from X and σ to µ. All the values for the
mean leading to a minimum standard deviation larger than the upper bound
σmax can be filtered. Thanks to the convexity property, all inconsistent values
for the mean will be filtered by computing only two values for the mean such
that the upper bound σmax is reached. All the values for the mean not between
these two computed values are inconsistent.

We now explain more precisely the narrowing of µ with help of Figure 3.
The function σ(µ) depicted on figure 3 is the function

√
opt(Π1(X, q))/n with

µ = q/n. Naturally this function has the same properties than the function
opt(Π1(X, q)). The constraint σ ≤ σmax is represented by a vertical line crossing
σ(µ) in two points. The projection of these two points on the mean axis gives
the two values µ1, µ2 for the mean such that the minimum standard deviation
is equal to the upper bound of σ. All mean values outside the interval [µ1, µ2]
are inconsistent and can be filtered.

It is possible that the maximum standard deviation is so large that it does
not constraint the mean. In this case µ1 = S/n and µ2 = S/n and we have
simply a propagation from X to µ.



Fig. 3. Propagation from X and σ to µ.

In the remaining of this section we explain how the two values µ1, µ2 are
found and finally we give the resulting filtering algorithm for µ

As already said µ1, µ2 are the projection on the mean axis of the two cross
points of

√
opt(Π1(X, q))/n with σmax (see Figure 3). These two cross points

are obtained by considering each interval V (Ik) in turn. It is possible to find two
values n.µ1 = q1 ≤ q2 = n.µ2 for q such that opt(Π1(X, q1)) = opt(Π1(X, q2)) =
πmax

1 = n(σmax)2 and ∀q ∈ [q1, q2], opt(Π1(X, q)) ≤ πmax
1 . The two values q1, q2

are found as follows. For every value of q: opt(Π1(q)) = C+
∑

xi∈M(Ik)

(
q−ES(Ik)

m

)2

−
q2

n where C =
∑

xi∈L(Ik)(x
max
i )2 +

∑
xi∈R(Ik)(x

min
i )2. Then, q1 and q2 are the

solutions of the second degree equation aq2 + 2bq + c where a = (1/m − 1/n),
b = −ES(Ik)/m and c = C+(1/m).ES(Ik)2−πmax

1 . If q1 = (−b−
√

b2 − ac)/a ∈
V (Ik) then µ1 = q1/n is a lower bound of the permitted interval for µ. If
q2 = (−b +

√
b2 − ac)/a ∈ V (Ik) then µ2 = q2/n is the upper bound of the

permitted interval for µ. Else there is no bounds in V (Ik). The resulting Algo-
rithm 2 narrows the interval µ if possible.

Example 5 (Filtering of µ).
Variables and domains are from Example 1. We search the permitted values

for µ under the constraint πmax
1 = 8. Clearly, if we look at the figure of Example

4, we can deduce that qmin = 6 but the upper bound qmax must be computed.
All we know by looking at the figure is that qmax ∈ V (I4) because the curve
opt(Π1(X, q)) intersects πmax

1 = 8 in this interval. We can take the expression
of opt(Π1(X, q)) on the interval V (I4) (see Example 4) and compute the value
qmax such that opt(Π1(X, qmax)) = πmax

1 = 8. We have the equation 45 + 1 ∗



Algorithm:MeanPruning

Result: narrowing of µ
set µmin ≥ S/n
set µmax ≤ S/n
for 1 ≤ k ≤ |I(X)| do

q1 = (−b−
√

b2 − ac)/a
if q1 ∈ V (Ik) then

set µmin ≥ q1/n
break

end

end
for |I(X)| ≥ k ≥ 1 do

q2 = (−b +
√

b2 − ac)/a
if q2 ∈ V (Ik) then

set µmax ≤ q2/n
break

end

end

Algorithm 2: MeanPruning

( qmax−9
1 )2 − (qmax)2

3 = 8 and we find qmax ≈ 15.79. A bound consistent interval
for the mean is thus [6/3, 15.79/3] = [2, 3.74].

6 Narrowing of σ

The propagation from X and µ to σmin is detailed in [2]. We propose to study
the propagation from X and µ to σmax.

The decreasing of the upper bound of σ requires to compute the maximal
variance on X with a given mean. This can be shown to be a convex maxi-
mization problem (NP-hard in general [3]). Even the relaxed problem without
the sum constraint remains a convex maximization problem but it is easier to
design an upper bound on it because of a known characterization of the optimal
solution with respect to the extrema of the domains. We describe in this section
a quadratic running time algorithm (with respect to the number of variables) to
find an upper bound on the variance.

The maximization problem we want to solve is:

Definition 4 (Maximization of the variance on X). Let X = {x1, x2, ..., xn}
be a set of finite-domain (discrete) variables. We denote by Π2(X) the problem:
max

∑n
i=1(xi −

∑n
j=1 xj/n)2. We denote by opt(Π2(X)) the optimal value for

the problem.

Since opt(Π2(X)) =
∑

i x2
i − (

∑
i xi)

2
/n, an upper bound opt(Π2(X)) can

be computed using the bound values xmax
i (resp. xmin

i ) in the first (resp. second)
sum. This upper bound can be used to narrow the interval σ by setting n.σ2 ≤
opt(Π2(X)).



Example 6 (Upper bound). We consider the same variables and domains as in
Example 1. We have X = {x1, x2, x3} with ID(x1) = [1, 3], ID(x2) = [2, 6] and
ID(x3) = [3, 9]. opt(Π2(X)) = (32 + 62 + 92)− (1 + 2 + 3)2/3 = 114.

The following lemma gives a property on an optimal assignment for the
variance maximization problem. We will use this property to improve the upper
bound in O(n2).

Lemma 2 (Optimal solution to Π2(X)). Any optimal solution to Π2(X)
must be an assignment on the extrema of the domains i.e. on xmax or xmin.

Proof (Proof of Lemma 2). It is sufficient to show that starting from an arbitrary
assignment and choosing an arbitrary variable xi >

∑
j xj/n, assigning a greater

value to xi i.e. xi ← xi + d will increase the variance on X. The previous
variance was σ2 = 1

n

∑
j x2

j− 1
n2 (

∑
j xj)2 the variance with the modified variable

is σ′2 = 1
n

∑
j x2

j + 1
n (d2 +2dxi)− 1

n2 (
∑

j xj)2− 1
n2 (d2 +2

∑
j(d.xj)). The result

is σ′2 = σ2 + 1
n (d2 + 2dxi)− 1

n2 (d2 + 2d
∑

j(xj)) > σ2 + 1
n (d2 + 2dxi)− 1

n2 (d2 +
2dnxi) = σ2 + 1

nd2 − 1
n2 d2 with σ′2 > σ2. The same result holds by symmetry

for a variable xi <
∑

j xj/n if it is decreased xi ← xi − d. �

As already explained, an upper bound for opt(Π2(X)) can be computed using
the values and xmax

i (resp. xmin
i ) in the first (resp. second) sum of

∑
i x2

i −
(
∑

i xi)
2
/n. With Lemma 2, it is possible to improve this bound. In each case

where the lower-bound using an extrema is larger than the upper-bound using
the other extrema, the optimal assignment corresponds to the first extrema. If
for one variable, the extrema assignment can be found, then we can use this
extrema value in the first and in the second sum to decrease the upper bound.
If all the extrema assignment could be found the upper bound would be optimal
(equal to the maximum variance). There are 2n possible extrema assignments
on X. We suggest an O(n2) algorithm to deduce as much extrema assignments
as possible.

We now detail the method to deduce the correct extrema assignment of some
variables. We denote µ = S(X)/n and µ = S(X)/n. For some variables the
optimal assignment can be deduced immediately. Indeed if xmin > µ, an optimal
solution to Π2(X) is such that x = xmax. The case xmax < µ is symmetrical.
There are additional cases where extrema assignment can be deduced. Note that
if x would be assigned to xmin, the upper bound for µ would become µ∗ =
µ− xmax−xmin

n .
In the example on the left of Figure 4, an optimal solution would assign

x = xmax because the lower bound on the distance of xmax to µ is greater than
the upper bound on the distance of xmin to µ∗. More generally, in each case
where the lower-bound using an extrema is larger than the upper-bound using
the other extrema, the optimal assignment corresponds to the first extrema.

Assigning a variable x to xmin will decrease µ and assigning a variable x to
xmax will increase µ resulting possibly in a larger set of variables for which an
optimal assignment can be deduced. All such extrema can be found in O(n2).



Example 7 (Deducing extrema assignment). We consider the same variables and
domains as in Example 1. We have X = {x1, x2, x3} with ID(x1) = [1, 3],
ID(x2) = [2, 6] and ID(x3) = [3, 9]. We have µ = 2 and µ = 6.

– x3: If we assign x3 to 9 then we have µ = 4, µ = 6 and the smallest distance
from 9 to µ is 9− 6 = 3. If we assign x3 to 3 then we have µ = 2, µ = 4 and
the largest distance from 3 to µ is 1. We are sure that the correct extrema
assignment for x3 is 9 because whichever the assignment on other variables
is, the distance to µ (and thus the variance also) will always be greater
with x3 assigned to 9. The new values for the bounds on the mean are now
µ = 4, µ = 6.

– x2: A similar argument as for x3 leads to the conclusion that the extrema
assignment on x2 is 2.

– x1: Since the distance to the mean is always larger with x1 assigned to
1 because xmax

1 = 3 < µ = 4 we are sure that it is the correct extrema
assignment.

Example 8 (Upper bound with extrema assignments). The extrema assignment
computed in Example 7 can be used to compute opt(Π2(X)). In this example, all
the extrema assignments could be deduced. Consequently we have opt(Π2(X)) =
opt(Π2(X)) = (1− 4)2 + (2− 4)2 + (9− 4)2 = 38.

For the example on the right of Figure 4 with 50 variables, the algorithm
find the optimal solution i.e. opt(Π2(X)) = opt(Π2(X)). The deduced extrema
are indicated with a ⊕. The worst case for propagating on σ would correspond
to all variables with an identical domain.

Fig. 4. Left figure: x = xmax because the lower bound on the distance from xmax

to µ is smaller than the upper bound on the distance from xmin to µ. Right figure:
opt(Π2(X)) = opt(Π2(X)). The deduced extrema are indicated with a ⊕



7 Conclusion

In this paper we have considered a constraint dealing with statistics: the Spread
constraint. This constraint and some filtering algorithms associated with it have
been proposed by [2]. First, we have shown that simpler filtering algorithms with
the same efficiency can be designed. Then, we have studied the main problem on
which the constraint is based, that is the minimization of the standard deviation,
and we have proved that this problem has a unique optimal value. From this
result, we have proposed for the first time an algorithm reducing the values of
the mean from the variables and the standard deviation. At last, we have shown
that the computation of the maximal value of the standard deviation is NP-hard
and we have given an algorithm to compute an upper bound of that value.
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