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ABSTRACT   

Large variations occur in brain anatomical structures in human populations, presenting a critical challenge to the brain 

mapping process. This study investigates the major impact of these variations on the performance of atlas-based 

segmentation. It is based on two publicly available datasets, from each of which 17 T1-weighted brain atlases were 

extracted. Each subject was registered to every other subject using the Morphons, a non-rigid registration algorithm. The 

automatic segmentations, obtained by warping the segmentation of this template, were compared with the expert 

segmentations using Dice index and the differences were statistically analyzed using Bonferroni multiple comparisons at 

significance level 0.05. The results showed that an optimum atlas for accurate segmentation of all structures cannot be 

found, and that the group of preferred templates, defined as being significantly superior to at least two other templates 

regarding the segmentation accuracy, varies significantly from structure to structure. Moreover, compared to other 

templates, a template giving the best accuracy in segmentation of some structures can provide highly inferior 

segmentation accuracy for other structures. It is concluded that there is no template optimum for automatic segmentation 

of all anatomical structures in the brain because of high inter-subject variation. Using a single fixed template for brain 

segmentation does not lead to good overall segmentation accuracy. This proves the need for multiple atlas based 

solutions in the context of atlas-based segmentation on human brain. 
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1. INTRODUCTION 

Medical image segmentation plays an increasingly important role in several medical imaging applications. As manual 

segmentation is tedious, time consuming and subject to considerable inter- and intra operator variability, the 

development of automated methods is of great interest. Atlas-based methods have been widely used as a powerful 

approach when a reference or atlas template is available
1,2

. However, human brain structures vary significantly between 

individuals, seriously hampering the segmentation process
3
. This study aims at investigating how the overall accuracy of 

all brain structure segmentation using one single template is limited by inter-subject variation.   

     In the context of this work, we define an atlas as being composed of two 3D volumes: an anatomical image and the 

labeled structures of the image. In a standard atlas-based segmentation problem, a mapping between the atlas anatomical 

image and the image to be segmented must be determined. The determined mapping allows the propagation of the 

labeled structures onto the MR image, resulting in the segmentation of this image. The process of computing the 

mapping is referred to as registration. The better the registration maps the atlas image to the image with unknown 

segmentation, the more accurate the results of segmentation are. Normally a combination of rigid and non-rigid methods 

with numerous degrees of freedom such as the Demons
4,5

 and Morphons
6,7

 is required. Depending on particular 

applications, one may use a publicly available atlas such as Talairach, MNI, and Colin27, or construct an atlas from a 

dataset. Given a representative dataset, selecting a subject that could lead to the best segmentation accuracy when its 

constructed atlas is adopted in an atlas-based segmentation framework is crucial. Some strategies have been proposed for 

automatic optimum atlas selection purpose
8,9,10

.  
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     It is well recognized that individuals differ substantially in brain volumes, distribution of gray and white matter, gyral 

patterns and cytoarchitecture
11

. Extreme variations in brain structure present fundamental challenges to human brain 

mapping
3
, and correspondingly limit the segmentation accuracy. Whereas human brain varies tremendously depending 

on several factors, especially from subject to subject, a lot of atlas-based segmentations still involve one subject as a 

template. Provided with an appropriate registration approach, whether one could obtain good automatic segmentations 

for all brain regions by using a single reference is a critical question and has not been fully answered. With this study, we 

show that because of high inter-subject variation in human brain structure, these solutions will not give satisfying results 

on all structures. Instead, multiple atlas based techniques
12,13 

are required. 

2. MATERIALS AND METHODS 

Each subject iS in a dataset consists of an anatomical image iI and a manual segmentation of that image iA . Of all N

subjects in the dataset, one was selected as an atlas ,j j jS I A and was used to automatically segment the other images of 

the dataset 1 ,iI i N i j as illustrated in Figure 1. The result was then compared, for every other subject, to the 

segmentation which was manually traced by expert. This process was carried out for all subjects. Therefore, every 

subject was selected respectively for being the atlas in atlas-based segmentation.  

     To obtain an automatic segmentation, the Morphons registration was applied to find the correspondence between the 

anatomical image of the atlas being used and the image to be segmented. The resulting deformation field ,j iT allows the 

propagation or warping of the atlas segmentation jA  to the image, resulting in the segmentation of this image ,j iA . The 

anatomical agreement between the automatic and the manual segmentations was measured using the Dice index. These 

numerical results were then subjected to multiple comparisons to statistically compare all atlas pairs with respect to 

segmentation accuracy. The significant tests, with significance level 0.05 and Bonferroni correction, were carried out to 

analyze the difference in means of all possible pairs considering all brain structures at a time and particular structures.  
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Figure 1. Segmentation of all subject i (i≠j) using subject j as the atlas. 

2.1 Data 

The experiments were carried out on two different datasets, which were extracted from two publicly available resources. 

Examples of both datasets are shown in Figure 2. 

     Dataset 1: MR brain data of 17 subjects were acquired from the database available through the Internet Brain 

Segmentation Repository (IBSR)
14

. The T1-weighted images were already ―positionally normalized‖ into the Talairach 

alignment. The manual delineations were done by experts at the Center for Morphometric Analysis of Massachusetts 

General Hospital, Harvard Medical School. The images were processed by the CMA 'autoseg' bias field correction 

routines and manually labeled with the NVM, an open-source software tool for making precise quantitative neuro-

anatomical measurements in volumetric image data. This study considered 32 basic structures in each subject of the 

dataset as all segmented structures.  

     Dataset 2: 17 subjects were randomly extracted from the database LPBA40
15

, which consists of 40 T1-weighted brain 

images and the corresponding labels. This database is available at the Laboratory of Neuro Imaging (LONI), University 

of California, Los Angeles (UCLA). The images were already preprocessed using the existing LONI protocols to 

produce skull-stripped volumes and aligned to the MNI305 atlas. 56 structures were manually labeled in each of the 

subjects according to the LONI custom protocol based on BrainSuite software. 
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     In the experiments, we refer to a subject in a dataset by its identification number [1,…,17].  

 

 

           Figure 2. Examples of two datasets. 

Preprocessing 

As the presence of non-brain tissue makes it problematic for the registration, skull-stripping needs to be done for images 

in dataset 1 as the very first step of the framework. To perform skull-stripping, we constructed a binary mask based on 

the expert segmentation. Since the brain structures were not fully labeled in some cases, mathematical morphology 

operators such as closure were necessarily applied to obtain a solid mask. The structuring element used was a square 

whose size is [2,2].  

     To reduce the computational cost, the volumetric images were cropped to remove unnecessary background: from 

256x256x128 voxels to 175x175x128 voxels (dataset 1) and from 217x181x181 voxels to 185x150x150 voxels (dataset 

2).  

2.2 Image registration 

In the context of this study, atlas-based approach treats the segmentation problem as a registration problem. An 

appropriate registration algorithm, therefore, is indispensible to obtain satisfying segmentation results. Registration was 

performed in two steps: a rigid registration providing global alignment of the data followed by a non-rigid deformation.  

Rigid registration 

Despite the images in dataset 1 being normalized to the Talairach system, and those in dataset 2 being aligned to the 

MNI305 atlas, rigid registration was needed to improve the global alignment. We applied a rigid translation with 3 

parameters using the Sum of Squared Difference (SSD) as the similarity metric. For each dataset, a subject was 

randomly selected as the reference. All remaining subjects were then translated to this reference.  

Deformable registration: the Morphons  

Morphons registration uses an iterative process in a multi-resolution framework to find the correspondence from an 

image to a target image. At each resolution scale, the following steps are executed iteratively: displacement estimation, 

deformation field accumulation and deformation. Local indication on how to deform the moving (reference) image to 

make it more similar to the fixed (target) image is found in the displacement estimation step. One of the salient points of 

this method is that it estimates the incremental displacement field based on the local phase computed for every voxel. 

The local phase information is found by applying a set of quadrature filters on the images. Each filter is corresponding to 

a particular direction. The displacement field, computed from the local phase difference, is then used to update the 

deformation field. Normalized convolution
16

 is employed instead of a regular smoothing method for the regularization of 

the updated field. In the deformation step, the moving image is morphed toward the fixed image based on the resulting 

deformation field.  



 
N.T. Doan, J. Orban de Xivry and B. Macq, Effect of inter-subject variation on the accuracy of atlas-based segmentation 

applied to human brain structures in Proceedings of SPIE Medical Imaging 2010: Image Processing, B. M. Dawant and 

D. R. Haynor, 7623, 63, 2010  

Copyright Notice: Copyright 2010 Society of Photo-Optical Instrumentation Engineers. One print or electronic copy mey 

be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a 

fee or for commercial purposes, or modification of the content of the paper are prohibited. 

 

     It is important to notice that a certainty measure is adopted in the accumulation and regularization steps. As the 

quadrature filters are applied to measure the displacement of local structure, using the response amplitude as a certainty 

measure yields large certainties at edges, lines and surfaces. This quadrature phase difference measure is beneficial 

because it is invariant to image intensity and weak gradients. Besides, using quadrature phase for measuring the 

similarity between the images makes the method less sensitive to the variations in the intensity of the data.  

     For detailed descriptions about this registration method, we refer the readers to articles describing this method 

thoroughly
6,7,16

. In this study, we implemented the algorithm in a 8 scale multi-resolution framework, using 6 quadrature 

filters and Gaussian Kernel function with variance 1.5 for the normalized convolution. The automatic segmentation was 

found by warping the atlas segmentation using the deformation field computed in the registration to the fixed image. 

2.3 Anatomical agreement measurement 

The anatomical agreement is quantified using the Dice index, also referred to as Dice Metric (DM), a realization of 

volume overlap measurement. This metric measures the volumetric overlap of two structures by taking the intersection 

and the union.  

 
2

i i

moving fixed

i i

moving fixed

V V
DM

V V
 (1) 

     
i

movingV and 
i

fixedV denote the volume of structure i in the moving image and the fixed image, respectively. The volume 

is computed as the total number of voxels which form that structure.  

     Perfect overlap of the manual and automatic segmentations leads DM to its maximum value 1. A complete mismatch 

between the volumes results in 0DM . The more the volumes are overlapping, the larger the value of DM is (

0 1DM ) 

2.4 Statistical analysis 

After the automatic segmentations were obtained, one way ANOVA testing was carried out to statistically analyze the 

effect of inter-subject variation on the segmentation accuracy. For every possible subject pair, we applied one way 

ANOVA to check the significant difference of segmentation accuracy using two different atlases. The median of the 

alignment measurements of all structure pairs quantitatively represents the segmentation accuracy. Besides, the analysis 

was also done at structure level. We performed the same pairwise comparisons but considered one particular structure at 

a time. In this case, the Dice metric of the overlap measurement is used directly to indicate the segmentation accuracy. 

General Linear Model (GLM) procedure was applied for multiple comparisons at significance level 0.05 in conjunction 

with Bonferroni adjustment.  

3. RESULTS AND DISCUSSION 

In this section, we present the segmentation results and the analysis on the underlying effect of inter-subject variation.  

     Experimental results showed good performance of the Morphons. To assess the registration results, we compared the 

anatomical alignment using every subject as an atlas after rigid and non-rigid registration with the anatomical agreement 

after rigid registration only. Figure 3 shows obvious improvement in image positioning applying the Morphons.  

     These registration results are comparable to those in Arno Klein‘s comprehensive study
17

 about 14 non-rigid 

registration methods on the same databases. The average, taken across all subjects, of the median Dice measurements is 

0.78 on dataset 1 and 0.72 on dataset 2; whereas in that study
18

, it lies between 0.34 and 0.52 on dataset 1, and ranges 

from 0.6 to 0.81 on the whole database LPBA40 depending on the registration method used. Besides, these results show 

that there is a limit in the agreement between the expert and automatic delineations made by registering an atlas with 

current registration techniques. The Morphons registration has the same results as other registration techniques for this 

sake. An illustrative example of the segmentation results can be found in Figure 4. 
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Figure 3. Registration result. The alignment measurement of every subject pair results in a vector whose components are 

corresponding to the measurements for all structures (32 for dataset 1 and 56 for dataset 2). The median of these components was used 

as the representative for the vector. We had 16 median values resulting from 16 measurements between a subject and the remaining 

ones. The average of these values is plotted as a single metric associated to the measurement for this subject. 

 

 
 

 
Figure 4. An example of segmentation results: from left to right: intensity image, manual segmentation and automatic segmentation; 

from top to bottom: slice with different views (axial, sagittal, and coronal). 

     To choose the best subject of the database, it is important to analyze the significant difference in terms of 

segmentation accuracy when different atlases are used. The inter-subject comparisons revealed that no subject in either 

of the databases was a good template for all structures. No subject was found to be superior to more than 4 subjects 

among the other 16 subjects regarding segmentation accuracy. All cases in which there is significant difference are: in 

dataset 1, subjects 5, 7, 14, 16 are superior to subject 10; in dataset 2, subject 13 is superior to subjects 3, 4, 11, 16, and 

subjects 8, 10, 12, 17 are superior to subject 4, 16.  

     The overlap measurement distribution is presented in Figure 5. Each boxplot, associated to an atlas being used for 

segmenting the other 16 subjects, displays the distribution of 16 values that represent the overlap measurements for those 

subjects. Each value is the median of the vector consisting of the agreement measurements between automatic and expert 

segmentations for all structures of a subject to be segmented. The boxplot corresponding to MUL represents the 

distribution of 14 measurements when three atlases were used in a combining way for segmenting the other 14 subjects. 
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Figure 5. Data distribution. Each boxplot includes a box and whisker plot. The box has lines at the lower quartile, median (center red 

horizontal line), and upper quartile values. The whiskers extend from each end of the box to the most extreme values within 1.5 times 

the interquartile range from the ends of the box. Outliers are presented by the red plus signs. 

     The mean overlap measurement was close to inter-observer agreement
17

 proving that the registration method was 

performing correctly on the whole images. Nevertheless, the minimum Dice values were low as shown in Figure 6, 

leading to the remark that the automatic segmentations were not satisfactory for all structures.       

 

 

Figure 6. Scatter plot of the overlap measurements between manual and automatic segmentations of a subject in each dataset. 

 

     Figure 7 and Figure 8 present a detailed inter-subject analysis at structure level. In these figures, a colored block on a 

column reveals that the corresponding subject S has significant difference with k other subjects. The difference is 

positive (S is superior) or negative (S is inferior) depending on the group to which this subject belongs. Any subject 

which is superior (inferior) to at least two other subjects is categorized in the group of the most (least) preferred subjects 

by assigning green (red) color on the corresponding block. Cases in which a subject has significant difference with 

respect to only one other subject are not reflected. At a certain point on the color code bar, sign ―+‖ or ―-‖, followed by 

the value of k, indicates positive or negative significance. In the results, the maximum number of subject to which a 
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subject has negative (or positive) significant difference is 16 (or 8). This explains why the color code bar appears to 

cover the range [-16:8]. The same color lookup table is used for both cases. 

     The results showed that the two groups vary significantly from structure to structure. Moreover, a template providing 

superior or comparable segmentation accuracy for some structures can have very low performance compared to other 

templates at some other structures. For examples, in dataset 1, subject 15 is superior for structures 16, 28, 51 and 60 but 

inferior for structures 7 and 11. In dataset 2, subject 10 is preferred for segmentation of structures such as 27, 34, 44, 65, 

66, and 86 but highly inferior at structure 24, 49, 67, and 81. 

 

L cerebral white matter 2

L cerebellum white matter 7

L cerebellum cortex 8

L thalamus proper 10

L caudate 11

L putamen 12

L pallidum 13

3rd ventricle 14

Brain stem 16

L hippocampus 17

L amygdale 18

L accumbens area 26

L ventralDC 28

R thalamus proper 49

R caudate 50

R putamen 51

R pallidum 52

R amygdale 54

R accumbens area 58

R ventralDC 60

5Structure-Label

Subject

1 2 3 4 6 7 8 9 10 11 12 13 14 15 16 17

CSF 24

R inf lat vent 44

L inf lat vent 5

+8

0

-8

-16

4th ventricle 15

 

Figure 7. [Dataset 1] Multiple comparisons on particular structures. Color codes represent the number of subjects to which each 

subject is significantly better or worse at segmenting a specific structure in other subjects. 
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Figure 8. [Dataset 2] Multiple comparisons on particular structures. Color codes represent the number of subjects to which each 

subject is significantly better or worse at segmenting a specific structure in other subjects. 

     In summary, we studied from the experiments that given a good registration method, with regard to all brain structure 

segmentation accuracy, an atlas that is superior to many other atlases could not be found. This resulted in a suspicion that 

all atlases in these particular datasets are capable of producing comparable segmentation results. However, by the 
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statistical analysis at particular structures, we demonstrated that what mainly explains the above phenomenon is the 

significant difference in optimum templates used for segmenting different structures. In other words, being the best 

option for segmenting a structure does not mean that an atlas can yield good segmentation for other structures. 

      To handle the tremendous inter-subject variations of human brain structure, sophisticated approaches such as 

multiple-atlas based solutions are needed. Figure 5 shows a comparison on the segmentation accuracy resulting by using 

one single atlas and using three atlases. In this experiment, three atlases were selected as the most optimum templates of 

a dataset based on Normalized Mutual Information (NMI) after non-rigid registration
8
. Each atlas resulted in a 

segmentation. All segmentations of an image were merged together to obtain the final segmentation by assigning to each 

voxel the label that receives the majority ―votes‖ from the atlases. The median of the Dice index using three atlases (0.82 

for dataset 1, and 0.77 for dataset 2) is greater than that resulting by using individual atlas ( [0.77 - 0.79] for dataset 1, 

and [0.7 – 0.74] for dataset 2).  

4. CONCLUSION 

In this study, we proved the critical effect of inter-subject variations on single atlas based segmentation. There is no 

template optimum for automatic segmentation of all anatomical structures in the brain because of high inter-subject 

variation. Although atlas-based segmentation applied for particular human brain structures is a valid approach, using a 

single fixed template does not lead to good segmentation accuracy for all structures. For such needs, a multiple-atlas 

based solution should be used instead. 
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