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1 Introduction

This paper considers the problem of determining the optimal stopping time for the
exchange of the sum of m geometric Brownian motions for the sum of n others, here-
after referred to as the (n, m) exchange. This problem can model optimal timing of
investments when revenues and costs evolve over time as geometric Brownian motions.

Let (Ω,F , P) be a complete probability space, and {Ft ⊂ F , t ∈ [0,∞[} a family
of σ-algebras increasing in t, right-continuous and completed by sets of Ω having P-
measure zero. We note Xx

t (ω) : �+ ×Ω→ �n+m
+ with n, m ≥ 1 a (n + m)-dimensional

geometric Brownian motion (GBM) starting at x ∈ �n+m
+ at time t = 0. In other words,

denoting by B(t, ω) the (n + m)-dimensional Brownian motion on (Ω,F , P), one has
Xx

t (ω) = Xx(t, ω) satisfies the stochastic differential equations (SDEs)

X0 = x; dXi(t, ω) = µiXi(t)dt + σiXi(t)dBi(t, ω) (1)

for i = 1, . . . , n + m and some vectors µ, σ ∈ �n+m
+ . We note ρijdt � E [dBi · dBj ] =

Cov [dBi · dBj ].
Define the linear reward function g : �n+m → � by

g(x) �
n�

i=1

xi −
n+m�

j=n+1

xj =
n+m�

i=1

cixi (2)

where c ∈ �n+m, defined by

ci �
�

1 for i = 1, . . . , n

−1 for i = n + 1, . . . , n + m
(3)

indicates whether Xi is an income or a cost.
Let S denote the set of stopping times, containing τ =∞ and note Ex the expecta-

tion w.r.t. the probability law Px generated by the stochastic process Xx(t, ω) since its
departure from x. For a given stopping time τ ∈ S and discount rate r > 0, let J(τ, x)
be the performance associated to τ :

J(τ, x) � Ex
�
e−rτg (Xτ )

�
. (4)

We want to solve the optimal stopping problem

τ�(x, ω) = arg sup
τ∈S

J(τ, x) (5)

i.e. we are looking for a random time τ�(x, ω) that maximizes J , for all x. The optimal
performance f(x) � J(τ�(x), x) is called the value function. The stopping region of the
problem is the set Sn,m ∈ �n+m

+ such that

x ∈ Sn,m ⇔ τ�(x, ω) = 0 a.s. Px.

The components of the optimal stopping problem in hand are simple mathematical
objects: (a) all assets are geometric Brownian motions and (b) the payoff function
is linear. Notwithstanding this simplicity there is no characterization of the optimal
stopping rule so far for arbitrary n and m. Partial results exist that we summarize
below.
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1. McDonald and Siegel (1986) solve the problem for n = m = 1. They determine
the optimal investment rule for the exchange of one geometric Brownian motion for
another:

τ�(x, ω) = arg sup
τ∈S

Ex
�
e−rτ (X1(τ)−X2(τ))

�

= inf {t : Xx
1 (t, ω) ≥ C12X

x
2 (t, ω)}

with
C12 � λ1

λ1 − 1
(6)

where λ1 is the positive root of

Q12(λ) � 1
2

�
σ2

1 − 2ρ12σ1σ2 + σ2
2

�
λ (λ− 1) + (µ1 − µ2)λ− (r − µ2). (7)

In other words,
S1,1 =

�
x ∈ �2

+ : x1 ≥ C12x2
�

. (8)

This first result is fundamental for our class of problems: advanced results on (n, m)
exchanges are expressed via this solution of the two dimensional case. Note that optimal
exchange of the GBM Xj for the GBM Xi leads to a coefficient Cij in a similar way:
Cij = λ1/(λ1 − 1) where λ1 is the positive root of a quadratic Qij(λ) defined as in Eq.
(7).

2. Olsen and Stensland (1992) prove that the value function of the (n, m) exchange
is homogeneous of degree one. Importantly, they provide a sufficient condition for
optimal stopping of (1, m) and (n, 1) exchanges. For the (1, m) exchange

τ�(x, ω) = arg sup
τ∈S

Ex
�
e−rτ (X1(τ)−X2(τ)− . . .−Xm+1(τ))

�
, (9)

this condition takes the form

S1,m ⊇ S−1,m �
�
x ∈ �m+1

+ : x1 ≥ C12x2 + . . . + C1,m+1xm+1
�

(10)

with a similar result for the (n, 1) exchange. Note that the sufficient condition (10) does
not depend on inter-cost correlations (ρij for i, j > 1). It is therefore intuitive to think
that this condition is too strong (not necessary).1

3. Hu and Øksendal (1998) provide necessary conditions for optimal immediate
investment in (1, m) and (n, 1) exchanges. Applied to the (1, m) exchange (9), they
prove that, having chosen arbitrarily a geometric Brownian Xu(t, ω) s.t. Xu(0) = 1, we
have

S1,m ⊆ S+
1,m(Xu) �

�
x ∈ �m+1

+ : x1 ≥ C1u

�
x2

C2u
+ . . . +

xm+1

Cm+1,u

��
, (11)

where the condition depends on the choice of Xu through the coefficients Ciu, i =
1, . . . ,m+1. Note that as Xu is arbitrarily chosen, we actually have an infinite number

1The similar sufficient condition
x1

C1,n+1
+ . . . +

xn

Cn,n+1
≥ xn+1

holds for the (n, 1) exchange. This condition does not depend on inter-prices correlations (ρij for
i, j ≤ n).
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of necessary conditions. Because the necessary conditions (11) do not depend on inter-
cost correlations, it is intuitive to think that they are too weak (not sufficient).

4. Nishide and Rogers (2011) extend respectively the works of Olsen and Stensland
(1992) and Hu and Øksendal (1998) to (n, m) exchanges (5). Moreover they prove
that the known sufficient conditions for optimal stopping are not necessary. To be
more precise, they characterize the above sufficient and necessary conditions for optimal
stopping.

Sufficient condition. One has

Sn,m ⊃ S−n,m � conv




�

i=1,...,n
j=n+1,...,n+m

Aij



 (12)

where conv(set) denotes the convex hull of a given set and

Aij �
�
x ∈ �n+m

+ : xi ≥ Cijxj , xk = 0 ∀k �= i, j
�

.

Note that, in (12), S−n,m is strictly included in Sn,m.

Necessary conditions. One has

Sn,m ⊆ S+
n,m(Xu, Xv) �

�
x ∈ �n+m

+ :

Cv1x1 + . . . + Cvnxn ≥ Cvu

�
xn+1

Cn+1,u
+ . . . +

xn+m

Cn+m,u

� �
(13)

for any geometric Brownian motion Xu and Xv defined on the probability space
(Ω,F , P).

The sufficient condition (12) is not particularly tractable: it requires to compute the
convex hull of the union of n×m subsets of �n+m

+ . This task is analytically cumbersome,
with no guarantee that the convex hull has an intuitive representation. In practice it is
easier to compute (12) numerically.

The necessary condition (13) is tractable, but it depends on the choice of auxiliary
processes Xu and Xv. We have no indication on how to efficiently choose these two
processes.

Again, note that (12) and (13) depend neither on inter-price nor on inter-cost cor-
relations (ρij for i, j ≤ n and ρij for i, j > n, respectively) while obviously the optimal
investment rule should involve these correlations. This reflects the weakness of the re-
ward decomposition technique2 that is used to prove these results and indicates that it
is unlikely to give the optimal investment rule.

2Consider the optimal stopping problem supτ∈S Ex[g(Xτ )]. Decompose the reward by e.g. g(x) =
g1(x) + g2(x). It follows from the inequality

sup
τ∈S

Ex[g(Xτ )] ≤ sup
τ∈S

Ex[g1(Xτ )] + sup
τ∈S

Ex[g2(Xτ )]

that if x simultaneously belongs to the stopping region of supτ∈S Ex[g1(Xτ )] and supτ∈S Ex[g2(Xτ )],
then x belongs to the stopping region of supτ∈S Ex[g(Xτ )]. Thus we can determine sufficient conditions
for optimal stopping by decomposing intelligently the reward function (we refer to this method as the
reward decomposition technique; see Olsen and Stensland, 1992). What is not obvious is that it allows
also to obtain necessary conditions for optimal stopping (see Hu and Øksendal, 1998).
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Unlike the results (10), (11), (12) and (13), the expression (8) provided by McDon-
ald and Siegel (1986) relies on the (heuristic) principle of smooth fit3 which states that
the value function is C1 on its entire domain (but fails to be C2 at the boundary of
the continuation region). Two minimal conditions4 for this principle to hold in great
generality appear to be the regularity of the stochastic process5 and the differentiabibil-
ity of the reward function; these conditions hold respectively for (1) and (5). These
conditions are however not sufficient: there exist optimal stopping problems with regu-
lar stochastic process and differentiable reward function where the smooth fit principle
fails to hold (see for instance Peskir, 2007). Brekke and Øksendal (1991) provide (in a
wider context) a theorem that allows us to verify if a solution obtained via a smooth
fit assumption is indeed correct. This result was applied by Hu and Øksendal (1998) to
give the first rigorous proof of McDonald and Siegel (1986) result twelve years after its
publication.

It is the aim of this paper to approach the (n, m) exchange heuristically using the
principle of smooth fit, just as McDonald and Siegel (1986) and many other authors
did or still do.6 However, we shall see that solving a free boundary problem using the
smooth fit principle already leads to difficulties, implying that we cannot even reach
Brekke and Øksendal’s (1991) verification step.

These difficulties and intuition suggest considering an alternative approach based
on a parametrization of the problem by n + m − 1 variables: we solve the free bound-
ary problem (using the smooth fit principle) as if we knew with certainty the value
of (n + m − 1) components of the multidimensional stochastic process X at the op-
timal exchange time. This approach were adopted in independent works by Adkins
and Paxson (2006) and Gahungu and Smeers (2007,2009). Adkins and Paxson (2006)
develop a two uncertainties real options model on optimal renovation. This model can
be cast into a (1, 2) exchange problem where one of the two costs is deterministic. In
Gahungu and Smeers (2009), a general discussion is developed on the dimensionality
issue in exchange problems: it starts from a study of the (1, 2) exchange (with three
uncertainties) to finally derive an investment rule for general (n, m) exchanges (see e.g.
Rohlfs and Madlener (2010) for an application of this result in a three and a four un-
certainties power plants investment problem). From this general result, the model of
Adkins and Paxson (2006) can be retrieved as a particular case. Note that none of these
papers assess optimality of the introduced rule, neither on mathematical nor numerical
grounds.7

We find in this paper that the investment rule we derived for (n, m) exchanges in
Gahungu and Smeers (2009) is closed form determinable, and hence considerably easier
to use than conditions (12) and (13) in practice. Note that this rule depends on the entire
correlation matrix as the optimal stopping rule should do. If its optimality cannot be
rigorously proven, it can however be confronted with well-established characterizations
of the stopping region such as the sufficient condition for optimal stopping (12) and the
necessary conditions for optimal stopping (13). The tractability of our rule makes it

3The principle of smooth fit is also called high contact in stochastic finance or smooth pasting
condition in real options literature. It seems to appear for the first time in McKean (1965).

4It is easy to construct optimal stopping problems on irregular diffusions such that the smooth fit
principle fails to hold. However, it is unclear if these two conditions are necessary for the smooth fit
principle to hold.

5For a diffusion X : Ω × �+ → �, define τc � inf{t > 0 : Xt = c} for c ∈ �. X is said regular if
Px(τc < +∞) = 1 ∀x, c ∈ �.

6The smooth fit principle is applied widely in continuous-time real options analysis.
7Gahungu (2007) uses this parametrization approach to derive sufficient conditions for optimal

stopping in (n, m) exchanges of geometric Brownian motions.
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easy to implement on various examples provided in the literature. We show for these
examples that our rule is stronger than the necessary investment conditions (13) and
weaker than the sufficient condition (12); it is also better in terms of performance.
These examples suggest that the provided rule might be optimal. We leave the problem
of providing a rigorous proof of optimality as an open research issue.

Since this paper is based on an unpublished work (Gahungu and Smeers, 2009), we
try to make it as self-contained as possible. This leads to the following structure. Section
2 develops our intuition about the shape of the boundary of the stopping region. In
Section 3, we introduce the free boundary problem with smooth fit condition associated
to our optimal stopping problem. It comes up that the solution of this free boundary
problem is not unique, which leads to a difficulty.

The intuition developed in Section 2 and the difficulties encountered in Section 3
suggest an intuition based stopping rule (given by Definition 2) which is henceforth the
candidate stopping rule we analyze. This step is completed in Section 4. Section 5 gives
this candidate stopping rule in closed form. Section 6 discusses the interpretation to be
given to our candidate investment rule. Section 7 reports numerical results on various
examples and Section 8 concludes.

2 A trigger for the (n,m) exchange problem

Let ∂Sn,m be the boundary of the optimal stopping region Sn,m of the optimal stopping
problem (5). Intuition suggests that for all (x2, . . . , xn+m) ∈ �n+m−1

+ , there must exist
a critical value x�

1 (x2, . . . , xn+m) such that

(x�
1 (x2, . . . , xn+m) , x2, . . . , xn+m) ∈ ∂Sn,m (14)

with
x ∈ Sn,m ⇔ x1 ≥ x�

1 (x2, . . . , xn+m) . (15)

As an illustration consider the case n = 1 so that we are considering payment of several
costs to receive a unique asset X1. Eq. (14) suggests to proceed with the exchange for
a critical value of X1 which depends on all the costs. Defining the vector

x−i � (x1, . . . , xi−1, xi+1, . . . , xn+m) ∈ �n+m−1
+ (16)

condition (15) becomes
x ∈ Sn,m ⇔ x1 ≥ x�

1 (x−1) (17)

where x−1 = (x2, . . . , xn+m) is really understood as the parameter of the rule.
Note that the optimal investment rule should satisfy the natural consistency condi-

tion of being invariant w.r.t. the parametrization i.e.

∀x ∈ �n+m
+ , x�

1(x−1) = x1 ⇐⇒ x�
j (x−j) = xj ∀j = 2, . . . , n + m.

Moreover, since the value function of the problem is linearly homogeneous (see Olsen
and Stensland, 1992), the optimal investment rule should be linearly homogeneous as
well i.e.

∀α > 0, x�
1(αx−1) = αx�

1(x−1).

The next section provides a rule of the form (17) i.e. we provide a mapping x�1(·) :
�n+m−1

+ → �+ that associates to any x−1 ∈ �n+m−1
+ a trigger function x�1 (x−1). This

function x�1(·) satisfy parametrization invariance and linear homogeneity (see Lemma
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2 and 3). It is closed form determinable and depends on the entire correlation matrix
(see Proposition 3). This rule induces the stopping region

S�n,m �
�
x ∈ �n+m

+ : x1 ≥ x�1(x−1)
�

,

the stopping time

τ�(x, ω) � inf {t ≥ 0 : X1(t, ω) ≥ x�1 (X−1(t, ω))}

and the performance J(τ�, x). The fundamental question is whether x�1(·) is or could
be the optimal x�

1(·).
We start with a free boundary formulation (Problem 1) of the exchange problem (5)

where we invoke a principle of smooth fit. Our analysis of this free boundary problem
leads to two Propositions that show that its formal resolution is impossible but motivate
the formulation of a heuristic algorithm (given in Definition 2) that leads to an explicit
formula for x�1(x−1) (see Proposition 3).

3 A free boundary formulation

Following McDonald and Siegel (1986) (and the subsequent entire stream of real options
literature, see Dixit and Pindyck (1994) for a survey), we try to solve (5) by formulating
a free boundary problem.

Define the second order elliptic partial differential (∂i denotes the partial derivative
w.r.t. the variable xi) operator LX : C2(�n+m)→ C2(�n+m) by

LX �
n+m�

i=1

µixi∂i +
1
2

n+m�

i,j=1

ρijσiσjxixj∂i∂j .

LX is the Dynkin8 operator associated to the n + m dimensional geometric Brownian
motion (1). The boundary of a set S is denoted by ∂S; the gradient operator in �n+m

is noted ∇. Following the reasoning of McDonald and Siegel (1986), we formulate the
following problem.

Problem 1 (The free boundary problem). Determine the stopping region Sn,m and the
value function f ∈ C2(�n+m

+ \ ∂Sn,m) such that

LXf − rf = 0 x ∈ �n+m
+ \ Sn,m (18)

f = g x ∈ Sn,m (19)
∇f = ∇g x ∈ ∂Sn,m. (20)

In Problem 1, (18) expresses standard backward induction before exercising the
option and (19) is the natural exercise condition.

There is however no clear motivation for (20)—the multidimensional smooth-fit con-
dition—which claims that the value function should be once continuously differentiable
everywhere, including at the optimal exercise point (f ∈ C1(�n+m

+ )). If one manages to
find a smooth function f and a set Sn,m solving (18),(19) and (20), it is still necessary
to apply the verification theorem for optimal stopping (see e.g. Øksendal, 2007, Chapter
10, Theorem 10.4.1) on f and Sn,m. The next two Propositions show that we will never
have to go that far because we are actually not even able to solve Problem 1.

In order to see this we first analyze the partial differential equation (18). Proposition
1 gives its set of acceptable solutions.

8LXf(x) gives limt→0 [Exf(Xt)− f(x)] /t.
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Proposition 1. The solution of (18) relevant to the optimal stopping problem (5) is

f(x) = a
n+m�

i=1

xλi
i (21)

with a ∈ � and λ ∈ �n+m verifies

Qn,m(λ) = 0 (22)

where

Qn,m(λ) �
n+m�

i=1

µiλi +
1
2

n+m�

i,j=1

ρijσiσj [λi(λi − 1)δij + λiλj(1− δij)]− r (23)

with δij = 1 if i = j and 0 otherwise.

Proof. It is immediate by direct verification that (21) is a solution of the PDE (18).
Then, note that in the case n = m = 1, (21) is the value function of the two dimensional
case derived by McDonald and Siegel (1986). Thus (21) is the right choice among all
possible solutions of the PDE (18).

Remark 1. The quadratic (23) depends on all the correlations between the n+m assets
of the exchange problem.

It is clear that except in the trivial case n = m = 1, (22) has an infinite number
of solutions which constitute a n + m − 1 surface. One may wonder if the fact that
(21) should verify (19) and (20) for a certain subset S ∈ �n+m

+ does not imply some
additional conditions on λ and on the shape of S. In fact we have:

Proposition 2. Suppose that (21) holds for some a �= 0 and λ ∈ �n+m. If (19) and
(20) hold for some set S, then:

a)
λi �= 0, ∀i = 1, . . . , n + m;

b)
n+m�

i=1

λi = 1;

c)

∂S = ∂(Sλ) �
�

x ∈ �n+m
+ :

xi

x1
= ci

λi

λ1
, i = 2, . . . , n + m

�

where c ∈ �n+m was defined by (3);

d)

a =
1

�n+m
i=1 (ciλi)λi

.

Proof. See Appendix A.

The two following subsections make two important observations regarding Proposi-
tion 2.
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3.1 Degeneracy

Our first observation is as follows. Proposition 2 do not allow some components of
points of ∂S to be zero. Indeed, Prop. 2 a) and c) imply that if (18), (19) and (20) hold
for a given set S, then points that belong to ∂S are such that

xi �= 0 ∀i = 1, . . . , n + m. (24)

It is clear that (24) holds for most points of the boundary of the true stopping regions
∂Sn,m which are of practical interest. However, for some points of ∂Sn,m, (24) may
fail to hold. These points belong to regions of �n+m

+ where the exchange problem is
degenerate i.e. regions where the exchange problem reduce to an exchange of smaller
dimension. The (n, m) exchange problem is degenerate in two cases.

1. Since the geometric Brownian motion is absorbed at zero (x = 0, X is a GBM
⇒ Xx

t (ω) = 0 ∀t, ω), if xi = 0 for some i = 1, . . . , n+m then the original problem
trivially reduces to a lower dimension exchange problem on assets Xj having a
strictly positive initial position for which xj �= 0. We refer to this situation as
trivial degeneracy. Note that one can consider xi �= 0 for all i = 1, . . . , n + m
without loss of generality (w.l.o.g.): if xi = 0 for some i = 1, . . . , n + m, one
reduces the dimension of the problem and consider a problem with xi �= 0 for all
i = 1, . . . , n� with n� < n + m. In other words, one can always get rid of trivial
degeneracy via a reduction of the problem dimension. Thus, in the following, we
assume that xi �= 0 for all i = 1, . . . , n + m i.e. that the problem is not trivially
degenerate.

2. Assume (w.l.o.g.) that the exchange problem is not trivially degenerate (i.e. xi �= 0
for all i = 1, . . . , n + m). Assume further that max(n, m) ≥ 2. Another type of
degeneracy is not trivial. It is introduced as follows.
Let us extend our previous notation x−1 by

x−1,−2 � (x3, . . . , xn+m). (25)

Consider the n + m − 1 dimensional optimal stopping problem obtained by re-
moving asset X1 from the original problem i.e.

τ�(x−1, ω) = arg sup
τ∈S

Ex−1
�
e−rτ (X2(τ) + . . .−Xn+m(τ))

�
. (26)

We call x�
2(x−1,−2) the threshold level of asset 2 such that it is optimal to stop for

(26). This is a slight abuse of notation since x�
2(x−1,−2) should not be confounded

with x�
2(x−2) which is the threshold level of asset 2 such that it is optimal to stop

for the original optimal stopping problem

τ�(x, ω) = arg sup
τ∈S

Ex
�
e−rτ (X1(τ) + . . .−Xn+m(τ))

�
(27)

using parametrization w.r.t. asset X2 in place of parametrization w.r.t. asset X1.
Because the geometric Brownian motion is absorbed at zero, we guess that if
x2 ≥ x�

2(x−1,−2), then x�
1(x−1) = 0. In other words, if x−1,−2 belongs to the

stopping region of the smaller (i.e. degenerate) problem (26), intuition suggests to
stop irrespectively of the value of X1. In such case we say that the problem is non-
trivially degenerate w.r.t. X1. Since trivial degeneracy can always be eliminated,
from now on, unless stated otherwise, when evoking degeneracy, we refer to non
trivial degeneracy given by the following general definition.
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Definition 1 (Degeneracy). For i = 1, . . . , n, we say that the optimal stopping
problem (5) is degenerate at x w.r.t. asset Xi if x�

i (x−i) = 0.

More generally, we say that the optimal stopping problem (5) is degenerate at x if
it is degenerate w.r.t. some asset(s). To develop our intuition, let us again consider
degeneracy w.r.t asset X1. We hinted that because the geometric Brownian motion
is absorbed at zero, to be in the stopping region of (26) should imply degeneracy
w.r.t. X1 i.e. x2 ≥ x�

2(x−1,−2) ⇒ x�
1(x−1) = 0 (note that, by parametrization

invariance, the condition x2 ≥ x�
2(x−1,−2) is equivalent to xi ≥ x�

i (x−1,−i) for all
i = 3, . . . , n). In fact, the converse is also true i.e. x�

1(x−1) = 0⇒ x2 ≥ x�
2(x−1,−2)

so that the optimal stopping rule should satisfy:

Lemma 1 (Degeneracy with respect to the asset i for x�). Let x�
1(x−1) be the

optimal stopping rule. Assume n ≥ 2. For any i = 1, 2, . . . , n one has

x�
i (x−i) = 0⇔ xj ≥ x�

j (x−i,−j) ∀j = 1, . . . , n such that j �= i. (28)

Proof. See Appendix B.

Recall that points of ∂Sn,m considered in most applications satisfy (24) (because
since all the assets are strictly positives, the trader will necessarily exercise the perpetual
American option before the problem degenerates). Nevertheless degeneracy has to be
introduced to treat the exchange problem in great generality. Later in the discussion,
when elaborating about our candidate trigger x�1(x−1), we will refer to points where the
problem degenerate w.r.t. X1 as points x such that x�1(x−1) = 0. We will be able to
prove that our candidate trigger satisfies a weak version of Lemma 1.

3.2 On the sign of the components of λ

Our second observation is as follows. If we require from our economic intuition that the
function

f(x) = a
n+m�

i=1

xλi
i

is positive for all x ∈ �n+m
+ , we need a ≥ 0. We see from Prop. 2 d) that this is possible

for arbitrary n and m if and only if ciλi ≥ 0 for all i = 1, . . . , n + m. Thus one should
have, from the economic point of view,

λi > 0 i = 1, . . . , n
λj < 0 j = n + 1, . . . , n + m.

(29)

Now the reader can remark that Prop. 2 c) is compatible with (29): if Prop. 2 c)
holds, then sign(λi) = −sign(λj) for all i = 1, . . . , n and all j = n + 1, . . . , n + m. In
other words, if Prop. 2 c) holds, then all the λi’s, i = 1, . . . , n have the same sign and
all the λ�js for j = n + 1, . . . , n + m are of opposite sign. Clearly this last condition
is necessary to have (29). Finally note that if Prop. 2 c) holds and λ1 > 0 then (29)
immediately holds.
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3.3 Proposition 2 alone leads to difficulties

Proposition 2 states that any function f(x) = a
�n+m

i=1 xλi
i satisfying conditions (22),

Prop. 2 a) and Prop. 2 b) solves Problem 1 for a set Sλ identified by Prop. 2 c). Since
the stopping region Sn,m is unique, it would be ideal that a unique vector λ satisfied
(22), Prop. 2 a) and Prop. 2 b). It is easy to see that this is unfortunately not the
case in general: Prop. 2 b) combined with (22) implies that the set of acceptable λ is a
n + m− 2 surface. Thus, except if n = m = 1 (the McDonald and Siegel (1986) case),
λ is not fully determinable. This is illustrated in the two following examples.
Example 1 (The (1,1) exchange). Assume f(x) = axλ1

1 xλ2
2 ; Q1,1(λ1, λ2) = 0. By Prop.

2 b), λ2 = 1 − λ1 so λ1 should be a root of Q1,1(λ1, 1 − λ1). Among the two possible
roots of Q1,1(λ1, 1 − λ1), one should pick one which is positive and greater than 1 in
order to satisfy (29).9 Then, using Prop. 2 c) and d), we successively have

∂S1,1 = ∂(Sλ1,λ2) �
�

x ∈ �2
+ :

x2

x1
= −λ2

λ1
=

λ1 − 1
λ1

�

a =
1

λλ1
1 (−λ2)λ2

=
1

λλ1
1 (λ1 − 1)1−λ1

.

We are unable to determine λ for n + m > 2, as shown in the following example.
Example 2 (The (1,2) exchange - Part 1). Assume now that f(x) = axλ1

1 xλ2
2 xλ3

3 ;
Q1,2(λ1, λ2, λ3) = 0. By Prop. 2 b) , λ3 = 1 − λ1 − λ2 so the couple (λ1, λ2) verifies
Q1,2(λ1, λ2, 1−λ1−λ2) = 0. There is however an infinite number of such couples. Prop.
2 c) and d) give

∂S1,2 = ∂(Sλ1,λ2,λ3) �
�

x ∈ �3
+ :

x2

x1
= −λ2

λ1
,
x3

x1
= −1− λ1 − λ2

λ1

�

a =
1

λλ1
1 (−λ2)λ2(−1 + λ1 + λ2)(1−λ2−λ3)

which are undetermined.

4 A definition of the candidate trigger

Example 2 shows that, starting from the candidate value function f(x) = a
�n+m

i=1 xλi
i ,

the standard protocol—which asks to first determine completely the vector λ, and
second, for this given λ, to use the n+m−1 equations given in Prop. 2 c) as investment
conditions—works for n = m = 1, but not for problems of higher dimensions.

In fact, the intuition given by (14) even suggests to proceed in the opposite order:
given some point x ∈ �n+m

+ , compute first the vector λ(x2, . . . , xn+m) = λ(x−1) using
(22), Prop. 2 b) and n + m− 2 relations of Prop. 2 c); second find x�1(x2, . . . , xn+m) =
x�1(x−1) such that the last equation of Prop. 2 c) holds. In other words, one finds the
level x�1(x−1) for which one can construct a vector λ(x−1) such that we satisfy the set
of conditions.

Let us implement this. Note that Prop. 2 c) can equivalently be stated as

∂Sn,m =
�

x ∈ �n+m
+ :

x1

xn+m
= − λ1

λn+m
, (30)

xi

xn+m
= − ciλi

λn+m
, i = 2, . . . , n + m− 1

�
(31)

9Such a root always exists and is unique under the condition µ1 < r (recall that r > 0). See
Appendix E.1.
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where we have used the fact that cn+1 = −1. This formulation of Prop. 2 c) is useful
in practice as (31) only depends on the coordinates x2, . . . , xn+m of x−1. Thus one
only needs x−1 to compute the n + m − 2 relations (31) between the components of
λ. Note also that, with (31), (22) and Prop. 2 b), one has n + m relations for n + m
unknowns (the components of the vector λ). The condition (22) is quadratic in λ, but
the conditions (31) and Prop. 2 b) are linear in λ. Thus it is easy to eliminate the
n + m − 1 unknowns λ2, . . . , λn+m using the n + m − 1 equations given by (31) and
Prop. 2 b). One can then solve (22) as a quadratic on a single remaining unknown
λ1. This quadratic has two roots λ±1 ; thus there is two possibilities for λ: λ+ obtained
taking λ1 = λ+

1 and λ− obtained taking λ1 = λ−1 .
Choosing the appropriate (economically meaningful) λ among these two possibilities

is a critical part. Since we excluded trivial degeneracy, it should be clear that (31)
implies either

λi > 0 ∀i = 2, . . . , n and λj < 0 ∀j = n + 1, . . . , n + m; (32)

or
λi < 0 ∀i = 2, . . . , n and λj > 0 ∀j = n + 1, . . . , n + m. (33)

Because of a symmetry consideration10, for our solution to make sense, among the two
vectors λ+ and λ−, one should have one vector satisfying (32) while the other satisfies
(33). Referring to Subsection 3.2, we choose the one that satisfies (32) as the correct
λ(x−1).

Finally, the use of (30) to define the candidate trigger x�1(x−1) by

x�1(x−1) = − λ1

λn+m
xn+m

(note that by (31) we in fact have x�1(x−1) = λ1
ciλi

xi for all i = 2, . . . , n+m) is meaningful
only if λ1 > 0 since x�1(x−1) is negative otherwise. Referring to Subsection 3.1, we
deduce that cases λ1(x−1) ≤ 0 correspond to degenerate exchange problems, and define
for these cases x�1(x−1) = 0. This leads to the following definition of our candidate
trigger.

Definition 2 (A candidate trigger x�1(x−1)). Let x ∈ �n+m
+ , xi �= 0 for all i = 1, . . . , n+

m. Let λ(x−1) ∈ �n+m be the unique solution of the system:

a) Qn,m (λ) = 0;
10Recall that our original optimal stopping problem was

τ�(x, ω) = arg sup
τ∈S

Ex

"
e−rτ

 
n+mX

i=1

ciXi(τ)

!#
. (34)

Consider the symmetric problem

τ�(x, ω) = arg sup
τ∈S

Ex

"
e−rτ

 
n+mX

i=1

(−ci)Xi(τ)

!#
(35)

obtained by the transformation ci �→ −ci for all i = 1, . . . , n + m. Observe that the conditions (22),
(30) and (31) are invariant w.r.t the transformation ci �→ −ci. Thus for a given point x ∈ �n+m

+ , the
two vectors λ+ and λ− derived for the original problem (34) are exactly the two vectors derived for
the symmetric problem (35). In other words, the couple (λ+, λ−) is stable under the transformation
ci �→ −ci. Now, note that λ should satisfy (32) for (34) while it should satisfy (33) for (35). Thus,
among the two vectors λ+ and λ−, one should have one vector satisfying (32) while the other satisfies
(33).
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b)
�n+m

i=1 λi = 1;

c)

xi

xn+m
=

ciλi

cn+mλn+m
, i = 2, . . . , n + m− 1.

d)
λi > 0 ∀i = 2, . . . , n and λj < 0 ∀j = n + 1, . . . , n + m;

Then x�1(x−1) is defined as follows.

i) If λ1(x−1) > 0, then x�1(x−1) = ci
λ1
λi

xi for any i = 2, . . . , n + m.

ii) If λ1(x−1) ≤ 0, then x�1(x−1) = 0 i.e. the problem is degenerate w.r.t. X1.

The quickest way to grasp Definition 2 is probably to look at how it works on an
example. Coming back to Example 2 we proceed as follows.

Example 3 (The (1,2) exchange - Part 2). Let x ∈ �3
+ be some vector of state variables.

Find λ(x2, x3) and x�1(x2, x3) as follows. Def. 2 a) is Q1,2(λ1, λ2, λ3) = 0. By Def. 2 b),

λ3 = 1− λ1 − λ2. (36)

Def. 2 c) implies
x2

x3
=

λ2

λ3
. (37)

By (36) and (37) we find that

λ2(x2, x3) =
1− λ1
x3
x2

+ 1
=

x2

x3 + x2
(1− λ1) and (38)

λ3(x2, x3) =
x3

x3 + x2
(1− λ1). (39)

Now
Q1,2

�
λ1,

x2

x3 + x2
(1− λ1) ,

x3

x3 + x2
(1− λ1)

�

is a simple quadratic in λ1. By (38) and (39), among the two possible roots of this
quadratic, one should pick one which is positive and greater than 1 in order to satisfy
Def. 2 d).11 We call this root λ1(x2, x3). Thus in this example Def. 2 ii) can never
occur12 and x�1(x2, x3) obtains from Def. 2 i):

x�1(x2, x3) = −λ1(x2, x3)
λ2(x2, x3)

x2 = −λ1(x2, x3)
λ3(x2, x3)

x3

Using (38) or (39), one can obtain the very intuitive expression

x�1(x2, x3) =
�

λ1(x2, x3)
λ1(x2, x3)− 1

�
(x2 + x3) . (40)

With λ1(x1, x2) > 1, the level of asset 1 which triggers investment is higher than the
total cost. The policy suggested by (40) is to exercise the exchange option at x ∈ �n+m

+

if x1 ≥ x�1(x2, x3), for x�1(x2, x3) given by (40).
11Such a root always exists and is unique under the conditions 1

2σ2
i < µi < r (recall that r > 0). See

Appendix E.2.
12This is because there is a single price and we excluded trivial degeneracy.
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We conclude this section by showing that the candidate trigger x�1(x−1) defined
above (Definition 2) satisfies parametrization invariance and linear homogeneity.

Lemma 2 (Parametrization invariance).

∀x ∈ �n+m
+ , x�1(x−1) = x1 ⇐⇒ x�j (x−j) = xj ∀j = 2, . . . , n + m.

Proof. Let x ∈ �n+m
+ be a point such that x1 = x�1(x−1). From exclusion of trivial

degeneracy we have x1 �= 0 which implies x�1(x−1) �= 0. Therefore, there exists a
λ(x−1) ∈ �n+m such that Def. 2 a), b), c) and d) hold for x and λ(x−1); and this
λ(x−1) is such that λ1(x−1) > 0 so that we have

x1 = x�1(x−1) = ci
λ1

λi
xi for all i = 2, . . . , n + m.

Thus, more simply, there exists a λ(x−1) ∈ �n+m such that

• Def. 2 a) and b) hold

•
xi

x1
= ci

λi

λ1
, i = 2, . . . , n + m (41)

(note that (41) is an extension of Def. 2 c) to indice 1)

•
λi > 0 ∀i = 1, . . . , n and λj < 0 ∀j = n + 1, . . . , n + m (42)

(note that (42) is an extension of Def. 2 d) to index 1).

Note that Def. 2 a) and Def. 2 b) are invariant w.r.t. the parametrization (since Qn,m(λ)
and

�n+m
i=1 λi do not depend on the parametrization we choose). Eq. (42) is also

parametrization invariant. Finally, (41) is parametrization invariant since the set
�

x ∈ �n+m
+ :

xi

x1
= ci

λi

λ1
, i = 2, . . . , n + m

�

is identical to
�

x ∈ �n+m
+ :

xi

xj
=

ciλi

cjλj
, i = 1, . . . , n + m s.t. i �= j

�
(43)

for any j = 1, . . . , n + m. Thus the λ(x−1) that guarantees Def. 2 a), b), (41) and (42)
also guarantees Def. 2 a), b), (41�) and (42) with (41�) given by

xi

xj
=

ciλi

cjλj
, i = 1, . . . , n + m s.t. i �= j (41�)

(with parametrization by asset j) for any j = 2, . . . , n+m. Thus we have x�j (x−j) = xj

for all j = 1, . . . , n + m, as stated.

Since we proved parametrization invariance, we can define the investment frontier
∂S�n,m induced by our rule using parametrization with asset 1, without loss of generality

∂S�n,m � {x ∈ �n+m
+ : x1 = x�1(x−1)}. (44)

Lemma 3 (Linear homogeneity). ∀α > 0, x�1(αx−1) = αx�1(x−1).
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Proof. In Def. 2 c) replace x−1 by αx−1, α > 0. One sees that the α cancels out, so
that Def. 2 c) remains unchanged. Thus, using Def. 2 a), b) and d), we find λ(αx−1) =
λ(x−1). Thus

• if λ1(x−1) = λ1(αx−1) > 0, then Def. 2 i) changes to

x�1(αx−1) = ci
λ1(αx−1)
λi(αx−1)

· α · xi = ci
λ1(x−1)
λi(x−1)

· α · xi ∀i = 2, . . . , n + m

= αx�1(x−1);

• if λ1(x−1) = λ1(αx−1) ≤ 0, then by Def. 2 ii) we have x�1(x−1) = x�1(αx−1) = 0.
That completes the proof.

5 A formula for the trigger x�1(x−1)

The candidate trigger proposed in Definition 2 is in fact determinable in closed form.

Proposition 3 (A formula for x�1(x−1)). Define

A(x−1) �
n+m�

i=2

(−ci)xi,

B(x−1) � − 1
A

n+m�

j=2

cjxj

�
µj −

1
2
σ2

j

�
,

C(x−1) � 1
2A2

n+m�

i,j≥2

ρijσiσjcicjxixj ,

D(x−1) � 1
2
σ2

1 +
σ1

A

n+m�

j=2

ρ1jσjcjxj , and

∆(x−1) � (µ1 −B − 2C −D)2 − 4(D + C)(B + C − r).

Assume that 1
2σ2

i < µi < r for all i = 1, . . . , n+m. Under this assumption, ∆(x−1) > 0
and the real numbers λ+

1 (x−1) and λ−1 (x−1) defined by

λ±1 (x−1) � − (µ1 −B − 2C −D)±
√

∆
2 (C + D)

satisfy λ+
1 (x−1) > 1 and λ−1 (x−1) < 1. Furthermore, λ1(x−1) and x�1(x−1) are given as

follows.

a) If A(x−1) > 0 then λ1 = λ+
1 and

x�1(x−1) =
�

λ+
1 (x−1)

λ+
1 (x−1)− 1

�
A(x−1).

b) If A(x−1) < 0 then λ1 = λ−1 and

14



b1) if 0 < λ−1 < 1,

x�1(x−1) =
�

λ−1 (x−1)
λ−1 (x−1)− 1

�
A(x−1);

b2) if λ−1 ≤ 0, the problem is degenerated w.r.t. X1 i.e. x�1(x−1) = 0.

Proof. See Appendix C

Note that Proposition 3 do not give x�1(x−1) if13 A(x−1) = 0 though there is
physically no singularity in such configuration of the problem. If you consider e.g.
the (2,2) exchange, such a situation appears for x = (1, 2, 1, 1) where we see that
A(x−1) = −2 + 1 + 1 = 0. In the meantime, we also see that A(x−2) = −1 + 1 + 1 = 1.
Thus the apparent singularity A(x−1) = 0 is a coordinate singularity i.e. a singularity
which can be removed by choosing a different parametrization (e.g. parametrization
w.r.t. asset X2 in the previous small example). A natural way to prove this claim is to
show that the limit of x�1(x−1) as A(x−1)→ 0 is finite. Assuming A(x−1)→ 0 one sees
that C >> B, D which leads to Q(λ) ≈ Cλ2

1−2Cλ+C and λ±1 ≈ 1. Thus, qualitatively,
the limit

lim
A(x−1)→0

x�1(x−1) = lim
A(x−1)→0

�
λ1(x−1)

λ1(x−1)− 1

�
A(x−1)

multiplies a term which goes arbitrarily close to zero (A(x−1)) by a term which can be
arbitrarily high. We were not able to compute this limit explicitly, but we observed that
it converges to a finite value. Thus a simple way to proceed practically when A(x−1) = 0
is to compute x�1(x−1 + �) for � ∈ �n+m−1 very small. If one feels uneasy with the lack
of rigor of this approach, another way to proceed is to change parametrization: one
chooses a parametrization w.r.t a price j = 2, . . . , n such that A(x−j) �= 0 and compute
x�j (x−j).

Recall that the optimal stopping rule x�
1(x−1) satisfies parametrization invariance,

linear homogeneity and the following characterization of degeneracy (see Lemma 1):

x�
i (x−i) = 0⇔ xj ≥ x�

j (x−i,−j) ∀j = 1, . . . , n such that j �= i. (45)

We verified that our candidate trigger x�1(x−1) satisfies parametrization invariance and
linear homogeneity (Lemma 2 and 3 respectively). It would be nice to also prove that
x�1(x−1) satisfies the characterization of degeneracy given by (45) i.e. that we can write
Lemma 1 for x�1(x−1). Using Proposition 3 we were only able to prove the following
weaker result.

Lemma 4 (Degeneracy with respect to the asset i for x�). Let x�1(x−1) be the candidate
trigger. Assume n ≥ 2. For any i = 1, 2, . . . , n one has

x�i (x−i) = 0⇐ xj = x�j (x−i,−j) ∀j = 1, . . . , n such that j �= i. (46)

Proof. See Appendix D.

Let us close this section by a numerical example which illustrates how to use Propo-
sition 3. Consider the (2,2) exchange

τ�(x, ω) = arg sup
τ∈S

Ex
�
e−ρτ (X1(τ) + X2(τ)−X3(τ)−X4(τ))

�
(47)

in the following numerical setting
13Because if A(x−1) = 0 one cannot write Eq. (67): the denominator is equal to zero. Moreover, it

is wrong to conclude from a limit argument on Eq. (70) that x�1(x−1) is zero in this case because, as
we shall soon show, A(x−1)→ 0 implies λ1(x−1)→ 1.
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Dataset 0: r = 0.2, µ = (0.1, 0.06, 0.035, 0.12), σ = (0.4, 0.1, 0.15, 0.3). The correla-
tion matrix is described by ρ12 = 0.25, ρ13 = 0.35, ρ14 = −0.5, ρ23 = −0.25,
ρ24 = 0.2, ρ34 = −0.55.

We want to plot the candidate investment threshold x�1(x−1) = x�1(x2, x3, x4) of this
problem for x3 = x4 = 1 and x2 ∈ [0; 5]. Before we come to that, let us make the two
following observations.

1. Consider the degenerate problem obtained by removing asset 1 from the original
one (47), i.e.

τ�(x, ω) = arg sup
τ∈S

Ex
�
e−rτ (X2(τ)−X3(τ)−X4(τ))

�
. (48)

Let x�2(x−1,−2) = x�2(x3, x4) be the candidate investment threshold of problem
(48). Using Proposition 3 on this (1,2) exchange, we obtain x�2(1, 1) = 2.69.
Coming back to (47), we deduce from Lemma 4 that x�1(x2, 1, 1) = 0 for x2 = 2.69.
Consequently, one should observe x�1(x2, 1, 1) = 0 for x2 ≥ 2.69.

2. If you set x2 = 0 (i.e. trivial degeneracy w.r.t. asset 2), the problem trivially
reduces to

τ�(x, ω) = arg sup
τ∈S

Ex
�
e−ρτ (X1(τ)−X3(τ)−X4(τ))

�
. (49)

Let x�1(x−1,−2) = x�1(x3, x4) be the candidate investment threshold for problem
(49). Using Proposition 3 on this (1,2) exchange, we find x�1(1, 1) = 6.06. Coming
back to (47), one should thus observe x�1(0, 1, 1) = 6.06.

0 1 2 3 4 5
−3

−2

−1

0

1

2

3

x2

x
1

 

 

λ
1

+
λ

1

−
A(x

−1
)

Figure 1: The roots λ+
1 (x−1) and λ−1 (x−1), for x3 = x4 = 1 and x2 ∈ [0; 5].

We now come back to the main objective of the example (i.e. the determination of
x�1(x−1) for x3 = x4 = 1 and x2 ∈ [0; 5]) and show that our solution confirms the two
observations announced above.
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Using Proposition 3, we compute the roots λ+
1 (x−1) and λ−1 (x−1), for x3 = x4 = 1

and x2 ∈ [0; 5]. In Figure 1, we plot these roots and observe that λ+
1 (x−1) > 1 and

λ−1 (x−1) < 1. We plot also the reduced cost A(x−1) = −x2 + x3 + x4 = −x2 + 2. Thus
A(x−1) > 0 (resp. A(x−1) < 0) corresponds to x2 < 2 (resp. x2 > 2), region for which—
following Proposition 3—one sets λ1(x−1) = λ+

1 (x−1) (resp. λ1(x−1) = λ−1 (x−1)).
Thus we know λ1(x−1) on the entire interval [0; 5]; it is plotted in Figure 2. In this

Figure we see that λ1(x−1) is negative for (approximately) x2 ≥ 2.7. Thus for x2 ≥ 2.7
the problem is degenerate w.r.t. X1.

0 1 2 3 4 5
−3

−2

−1

0

1

2

3

x2

x
1

 

 
λ

1

A(x
−1

)

Figure 2: The λ1(x−1) of Definition 2 for x3 = x4 = 1 and x2 ∈ [0; 5].

In Figure 3 we finally plot the candidate investment threshold x�1(x−1) =
x�1(x2, x3, x4) of problem (47) for x3 = x4 = 1 and x2 ∈ [0; 5]. We see on this
figure that x�1(x2, 1, 1) = 0 for (approximately) x2 ≥ 2.7, and that x�1(0, 1, 1) ≈ 6. Thus
this figure confirms the two observations above.
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Our rule
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Figure 3: Plot of our candidate trigger x�1(x−1) = x�1(x2, x3, x4) for problem (47) with
x3 = x4 = 1 and x2 ∈ [0; 5]. The problem appears to degenerate w.r.t. asset 1 for
x2 ≥ 2.7.

6 Interpretation: a parametrized free boundary problem

Given an initial position x0 ∈ �n+m
+ of the random process X, the principle of our

algorithm is to test locally if immediate investment should occur. Thus we are using
the x0

−1 components of x0 = (x0
1, x

0
−1) as extra boundary conditions to solve a variant

of the unsolvable Problem 1. In fact we solve:

Problem 2 (x0
−1 as a parameter of the free boundary problem). Let x0 = (x0

1, x
0
−1) ∈

�n+m
+ . Find the investment trigger x�1(x0

−1) advising immediate investment at x0 if
x0

1 ≥ x�1(x0
−1) by solving the free boundary problem: find f(x0

−1)(x) ∈ C2(�n+m
+ ) and

x�1(x0
−1) s.t.

(LX − r) f(x0
−1) = 0 x ∈ �n+m

+ (50)

f(x0
−1) = g x =

�
x�1(x

0
−1), x

0
−1

�
(51)

∇f(x0
−1) = ∇g x =

�
x�1(x

0
−1), x

0
−1

�
. (52)

Note that in Problem 2, x0
−1 is a parameter,not a variable. The boundary conditions

(51) and (52) are conditions on a single point, not on a surface. Thus, inspecting
Proposition 2, we see that Problem 2 is solvable in terms of x0

−1. In particular, the
function f(x0

−1)(x) takes the form

f(x0
−1)(x) = a

�
x0
−1

� n+m�

i=1

x
λi(x0

−1)
i .

Note also that even though we parametrize by x0
−1, we still solve a n+m dimensional

PDE (50) for f(x0
−1)(x) : �n+m

+ → �. We thus do not consider that (locally) Xx0

−1 is
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deterministic. It thus appears relevant to ask what can be the meaning of f(x0
−1)(x);

and, more importantly, why could this resolution technique make sense.
Take x0 ∈ �n+m

+ \Sn,m with 0 < d (x0, ∂Sn,m) ≤ � where d is the Euclidean distance
in �n+m

+ . Since x0 is in the continuation region, one has

(LX − r) f(x) = 0 (53)

where f is the value function. Now, as �→ 0, (53) continues to hold and because X is
regular (it cannot go to ∞ in zero time), one should have

lim
�→0

Xx0
τ�(x0,ω) → x0 a.s. Px0 .

This suggests that when solving Problem 2 for x0 close to the stopping region, one can
use (locally) x0 as a parameter of the free boundary problem. Note that the key point
of this intuitive reasoning is regularity of the stochastic process.

This also indicates that f(x0
−1)(x) should not be seen as a good approximation of the

value function around x0
−1 i.e.

f(x0
−1)(x1, x

0
−1) �= lim

x−1→x0
−1

f(x1, x−1) ∀xi ∈ �+

but as a good approximation of the value function f around the optimal investment
point corresponding to x0

−1, that is,

lim
x1→x�

1(x0
−1)

f(x0
−1)(x1, x

0
−1) = f

�
x�

1(x
0
−1), x

0
−1

�
= g(x0).

7 Numerical examples

This section provides numerical tests for our investment rule x�1(x−1) given by Proposi-
tion 3. Some of the examples used here are taken from the literature, others are new. As
a general remark, note that it is difficult (probably impossible) to prove numerically that
a given stopping rule is optimal for our class (time-homogeneous and time-continuous)
of optimal stopping problems. The reason is as follows. To compute numerically the
stopping region, one uses two approximations: a finite horizon and a time-grid. Thus the
computation of the true stopping region suffers from errors that make hard to determine
whether the rule that we put to the test—in this case, x�1(x−1)—is optimal.

Note that rule x�1(x−1) is analytic, as well as the sufficient condition (12) and the
necessary conditions (13). It is thus possible to compare these rules with a strong
degree of confidence because they are unaffected by numerical errors. Needless to say
the comparison is limited to examples and the analysis of the Monte Carlo type and
hence cannot lead to general claims. The following compares these three rules for several
problem configurations. For each example, we plot the sufficient condition (12), the
“strictest” necessary condition one can find using a large sample of geometric Brownian
motions Xu and Xv in (13) and the stopping rule x�1(x−1). Then we use Monte Carlo
simulations to compare the performance accruing from these different policies. Recall
that we defined the performance J(τ, x) associated to a stopping time τ and initial point
x as

J(τ, x) � Ex
�
e−rτg(Xτ )

�
.
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7.1 An example from Olsen and Stensland (1992)

Olsen and Stensland (1992, Section 4) treat a particular (1,2) exchange

τ�(x, ω) = arg sup
τ∈S

Ex
�
e−rτ (X1(τ)−X2(τ)−X3(τ))

�

numerically. They use two numerical settings, corresponding to two cases where x1 and
x2 are respectively correlated and uncorrelated.

Dataset 1: µ1 = µ2 = µ3 = 0, σ1 = σ2 = 0.1, σ3 = 0, r = 0.1, ρ12 = ρ13 = 0, x3 = 0.5.
The second cost (asset 3) is deterministic. Assets are not correlated. See Olsen
and Stensland (1992, p. 48).

Dataset 2: µ1 = µ2 = 0.01, σ2
1 = σ2

2 = 0.02, µ3 = σ3 = 0, ρ12 = 0.5, ρ13 = ρ23 = 0,
r = 0.1, x3 = 0.5. The second cost (asset 3) is deterministic. The price and the
first cost are correlated, but the two costs are not. See Olsen and Stensland (1992,
p. 51).

Olsen and Stensland compare the optimal stopping region obtained numerically via
backward dynamic programming to the stopping region given by the rule (10) with
n = 1 and m = 2. For their two numerical settings, they assume that the second cost
X3 is deterministic, thereby bypassing the fact that their rule does not depend on inter-
cost correlations.14 They verify that the half-space (10) is a subset of the true stopping
region; they also find that these two sets are close, but distinct.

To compare the different rules in hand, we generate a cone of necessary conditions by
plotting the lines (11) for 106 different geometric Brownian motions Xu. This procedure
is the natural way to use (11) and (13) in practice. Note that no matter how large
the sample of GBMs is chosen, one cannot guarantee that one finds the true weakest
and strongest necessary conditions which is the general limitation of these necessary
conditions.

The sample of GBMs were randomly generated by extending the decoupled repre-
sentation of the SDE of X by normal random variables (see Appendix G for details).
For each example treated in this paper, we observe that the cone of these lines converges
relatively fast with the number of GBMs generated by this method: 1000 processes were
enough to have a fair representation of the cone. We thus conjecture that a sample of
106 GBMs is sufficient for a comparison of the different rules. Figure 4 shows how to
graphically isolate the weakest and strongest necessary conditions of the sample. The
strongest necessary condition is the one closest to the optimal stopping rule and is obvi-
ously of considerable practical importance: in Figure 4 it can be optimal to invest only
if x is in the area below the strongest necessary condition.

For Dataset 1 and 2 (the two settings of Olsen and Stensland, 1992) we plot the
sufficient condition (10), the weakest and strongest necessary conditions (11) as well as
our investment rule x�1(x−1). The horizontal axis is x1 in these figures and the stopping
region associated to a given investment rule is thus the area below the rule line. Figures
5 and 6 (resp. 7 and 8) show that the stopping region S�1,2 provided by the rule x�1(x−1)
is such that S−1,2 ⊂ S�1,2 ⊂ S+

1,2 for Dataset 1 (resp Dataset 2). Thus, S�1,2 could be the
true stopping region S1,2.

14One can always (via adjustment of parameters) reformulate the problem so that one of the cost
becomes deterministic (see Olsen and Stensland, 1992, p. 46). In the three assets case (specifically)
we thus obtain a problem where the two costs are uncorrelated. However, in problems involving more
than 3 assets, this technique only allows to remove one inter-cost correlation.
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Figure 4: Dataset 1. The cone of necessary conditions obtained from (11) using 1000000
randomly generated geometric Brownian motions Xu. We isolate the weakest and
strongest necessary condition.
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Figure 5: Dataset 1. The three assets are not correlated. It appears that our investment
rule x�1(x−1) lies between the sufficient condition (10) and the necessary condition (11);
but one could use a closer look.
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Figure 6: Dataset 1. A closer look: x�1(x−1) lies between the sufficient condition (10)
and the necessary condition (11).
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Figure 7: Dataset 2. The price x1 is correlated to the cost x2, but the two costs x2

and x3 are not correlated. It appears that our investment rule x�1(x−1) lies between the
sufficient condition (10) and the necessary condition (11).
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Figure 8: Dataset 2. A closer look: our investment rule x�1(x−1) lies between the
sufficient condition (10) and the necessary condition (11).

One can also compare the performances of the sufficient condition (10), the necessary
condition (11) and of our rule x�1(x−1) using Monte Carlo simulations. We generate
sample paths for X1(t) and X2(t) (with X1(0) = X2(0) = x1 = x2 = 1; X3(t) = x3 = 0.5
for all t) for 106 scenarios and stop the processes when (10), (11) and x�1(x−1) hold,
respectively (see Appendix F for details on the Monte Carlo procedure). We obtain the
performances of these three rules starting the processes at x = (x1, x2, x3) = (1, 1, 0.5).

For Dataset 1 (uncorrelated assets, see Table 1), the average performance of the
three triggers (0.0254) is not significantly different. We cannot distinguish the three
rules at 99.9% confidence interval (C.I.).

Rule Performance Error (99.9% C.I.)
Olsen and Stensland (1992) 0.02543 18× 10−5

Hu and Øksendal (1998) 0.02548 14× 10−5

Our rule 0.02544 16× 10−5

Table 1: Comparison of the performances at x = (1, 1, 0.5) for Dataset 1.

For Dataset 2 (correlation between the price and one cost, see Table 1), the perfor-
mance of our rule x�1(x−1) is better than the performance of the sufficient condition (10)
at 99.9% C.I. For the same C.I., one cannot however compare fairly x�1(x−1) with the
strictest necessary condition (11); the two rules appears to have the same performance.

Rule Performance Error
99 % C.I. 99.9% C.I.

Olsen and Stensland (1992) 0.03667 20× 10−5 26× 10−5

Hu and Øksendal (1998) 0.03719 19× 10−5 25× 10−5

Our rule 0.03717 20× 10−5 25× 10−5

Table 2: Comparison of the performances at x = (1, 1, 0.5) for Dataset 2. The price is
correlated to one of the costs.
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7.2 Impact of inter-cost correlation

7.2.1 A (1,2) exchange

We pursue the study of the (1,2) exchange by using different data. We mentioned that
the sufficient condition provided by Olsen and Stensland (1992) does not depend on
inter-cost correlations. The preceding parameter settings (Datasets 1, 2) overlook the
effect of those correlations by assuming that the third cost is deterministic. Introducing
a negative correlation between the two costs of this example reduces the uncertainty
over the payoff. Our intuition is that it would be optimal to invest earlier i.e. the
true stopping region Sn,m should be consequently larger than S−n,m. We examine this
situation.

Dataset 3: µ1 = µ2 = µ3 = 0.02, σ2
1 = σ2

3 = 0.08, σ2
2 = 0.12, ρ12 = 0.8165,

ρ13 = −0.5, ρ23 = −0.8165, r = 0.3. The two costs (assets 2 and 3) are correlated.

We compare our stopping region S�1,2 with S−1,2 and S+
1,2 for Dataset 3 in Figure 9.

Because the stopping regions in this example are surfaces in �3
+, we enable a 2 dimen-

sional representation by fixing x3 = 0.5. We see that S−1,2 ⊂ S�1,2 ⊂ S+
1,2. Moreover, we

note that, for this parameter setting, these three stopping regions are not close at all.
This reveals a case where there is a significant gap between S−1,2 and S+

1,2.
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Figure 9: Dataset 3. A comparison of the stopping regions in presence of inter-cost cor-
relation for x3 = 0.5. There is consequent gap between the strictest necessary condition
(11) and the sufficient condition (10).

We then use 1000000 Monte Carlo simulations to evaluate the performance of the
three associated rules at x = (1, 1, 0.5). Table 3 shows that, at the confidence level
99.9%, the performance (0.068844) of our rule x�1(x−1) is 6.73% higher than the per-
formance (0.064505) of the sufficient condition (10) and 20.89% higher than the perfor-
mance (0.056943) of the strictest necessary condition (11).

7.2.2 A (1,3) exchange

Consider the (1,3) exchange

τ�(x, ω) = arg sup
τ∈S

Ex
�
e−rτ (X1(τ)−X2(τ)−X3(τ)−X4(τ))

�

under the numerical setting
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Rule Performance Error (99.9% C.I.)
Olsen and Stensland (1992) 0.06464 56× 10−5

Hu and Øksendal (1998) 0.05694 43× 10−5

Our rule 0.06884 53× 10−5

Table 3: Comparison of the performances at x = (1, 1, 0.5) for Dataset 3. An example
with inter-cost correlation.

Dataset 4: µ1 = µ2 = µ3 = µ4 = 0.02, σ2
1 = 0.08, σ2

2 = 0.13, σ2
3 = 0.17, σ2

4 = 0.11,
ρ12 = 0.7845, ρ13 = −0.3430, ρ14 = 0.2132, ρ23 = −0.3363, ρ24 = −0.2509,
ρ34 = 0.5119, r = 0.3.

We see from Figure 10 and Table 4 that the same comments generally apply in this
new example with inter-cost correlations: S−1,3 ⊂ S�1,3 ⊂ S+

1,3; these sets are not close
and our rule has the better performance.
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Figure 10: Dataset 4. A comparison of the stopping regions in presence of inter-cost
correlations for x3 = x4 = 0.5. There is a consequent gap between the strictest necessary
condition (11) and the sufficient condition (10).

Rule Performance Error (99.9% C.I.)
Olsen and Stensland (1992) 0.9703 27× 10−4

Hu and Øksendal (1998) 1 0
Our rule 1.0298 22× 10−4

Table 4: Dataset 4. Comparison of the performances at x = (3, 1, 0.5, 0.5) for Dataset
4. Note that x ∈ S+

1,3 (see Figure 10). Thus the rule (11) of Hu and Øksendal (1998)
advises immediate investment with payoff 3− 1− 0.5− 0.5 = 1. At the confidence level
99.9%, the performance of our rule x�1(x−1) is 6.13 % greater than the performance of
the sufficient condition (10) and 2.98 % greater than the performance of the strictest
necessary condition (11).
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7.3 An example from Nishide (2010)

The following example is borrowed from the earliest draft (Nishide, 2010) of Nishide
and Rogers (2011). Nishide (2010) treats the (2, 2) exchange

τ�(x, ω) = sup
τ∈S

Ex
�
e−rτ (X1(τ) + X2(τ)−X3(τ)−X4(τ))

�
. (54)

To compare his results with ours we again use the same data.

Dataset 5: r = 0.2, µ1 = µ2 = 0.1, µ3 = µ4 = 0.05 and the variance-covariance matrix
of asset price returns per unit time given by

1
dt

Cov
�

dXi

Xi
,
dXj

Xj

�

i,j=1,...,4

= (ρijσiσj)i,j=1,...,4

=





0.0125 0.01 0.0075 0.0075
0.01 0.0125 0.0075 0.0075

0.0075 0.0075 0.0214 0.0210
0.0075 0.0075 0.0210 0.0214



 .

Nishide (2010) constructs this example because of its symmetry property. In fact,
the variance covariance matrix is “almost” singular: its eigenvalues being given by the
ordered vector λ = (0.0004, 0.0025, 0.0144, 0.0505), we compute λmax/λmin = λ4/λ1 =
126.25 and λ4/λ2 = 20.2. Thus this 4 dimensional problem is in fact close to a problem
of dimension 2, and the sufficient condition (12) and the necessary conditions for optimal
stopping (13) are close. Indeed, the author finds that the sufficient condition (12) for
immediate investment takes the simple form

S−2,2 =
�
x ∈ �4

+ : (x1 + x2) ≥ µ(x3 + x4)
�

(55)

with µ = 1.7249. On the other hand, the necessary condition (13) is written

S+
2,2 =

�
x ∈ �4

+ : (x1 + x2) ≥ µ(x3 + x4)
�

(56)

with µ = 1.7003 < µ i.e. S−2,2 ∈ S+
2,2.

The “µ” of our method is defined by

µ�(x2, x3, x4) � x�1(x2, x3, x4) + x2

x3 + x4
. (57)

It is natural to wish to compute µ�(x−1) for arbitrary values of x−1 = (x2, x3, x4),
having in mind that if our candidate x�1(·) is the optimal stopping rule x�

1(·), then for
points x−1 such that x�1(x−1) > 0 one should have µ�(x−1) ∈ [µ;µ].15

Because of the linear homogeneity of x�1(x−1) one has µ�(x2, x3, x4) = µ�(x2
x3

, 1, x4
x3

)
thus it is sufficient to compute µ�(p1, 1, p2) for different values of p1 and p2.16 Table

15Observing (57), note that for x3 and x4 given, when x2 increases the investment threshold x�1(x−1)
decreases. This compensation effect however breaks when x2 is so high compare to x3 and x4 than
the problem degenerates: taking x2 arbitrarily high we see that µ�(x−1) can become arbitrarily high
because x�1(x−1) is bounded below by zero. Thus we in fact want µ�(x−1) to range between µ and µ
in non degenerate problem configurations.

16By linear homogeneity of x�1(x−1), one has

µ(x1, x2, x3) =
x�1(x2, x3, x4) + x2

x3 + x4
=

x3x
�
1

“
x2
x3

, 1, x4
x3

”
+ x2

x3 + x4

=
x�1
“

x2
x3

, 1, x4
x3

”
+ x2

x3

1 + x4
x3

= µ�
„

x2

x3
, 1,

x4

x3

«
.
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p1

0.001 0.1 1 10 100 105

0.001 1.72481 1.72011 1.70376 � � �
0.1 1.72444 1.72013 1.70282 � � �

p2 1 1.72367 1.72124 1.70565 � � �
10 1.72448 1.72403 1.72013 1.70282 � �
100 1.72485 1.72483 1.72465 1.72289 1.70372 �
105 1.72487 1.72487 1.72487 1.72487 1.72475 1.70378

Table 5: Dataset 5. µ�(p1, 1, p2) for different values of p1 and p2. The ‘�’ indicates
degenerate configurations i.e. points where x�1(x−1) = 0. Note that µ�(p1, 1, p2) ∈
[1.7003; 1.7249] for non degenerate configurations.

Rule Performance Error (95% C.I.)
µ 0.18968 30× 10−5

µ 0.18959 30× 10−5

µ 0.18966 30× 10−5

Table 6: Dataset 5. A comparison of the performances for this example. At the confi-
dence level 95%, the estimation error is around 3.10−4 and we cannot distinguish the
performance of the different methods.

5 gives µ�(p1, 1, p2) for different values of p1 and p2. We see that µ�(p1, 1, p2) always
range between µ and µ. Thus so is µ�(x−1) i.e. we have S−2,2 ⊂ S�2,2 ⊂ S+

2,2 for points
x−1 where the problem is not degenerate w.r.t. asset 1. This suggests that the proposed
method could be optimal.

In order to compare the performance of the three investment rules, we use 1000000
Monte Carlo simulations to find the performance associated respectively to µ, µ and µ.
Table 5 shows that there is no significant differences in performance for this number of
simulations, even at the confidence interval 95%. This is not surprising as the trigger
rules are analytically close.

8 Conclusion

In this paper, we use a heuristic principle of smooth fit to find an investment trigger
for the multi-asset exchange of geometric Brownian motions. The method consists of
parameterizing the n + m assets exchange by n + m − 2 exit conditions. Our solution
procedure is easier to apply than those currently known to characterize the stopping
region. The use of the parametrization reduces the determination of the immediate
investment condition to the problem of finding the roots of a quadratic. It is considerably
easier to obtain a trigger by this method than to characterize a superset and a subset
of the stopping region.

We tested the solution procedure on various examples, most of which were selected
from the literature. For those examples, we show that (a) the stopping region we
provide might be the true stopping region: it contains the subset of the stopping region
characterized by Olsen and Stensland (1992) and is contained by the superset of the
stopping region characterized by Hu and Øksendal (1998); (b) its performance is never
lower than the performance of sufficient or necessary conditions associated to these sub-
or super-sets, in some case it is significantly higher; (c) its performance is particularly
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better when there is a strong positive correlation between costs, which comforts the
intuition than the sufficient condition provided by Olsen and Stensland (1992) (which
does not depend on inter-cost correlation) may be too strong in more general settings.
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A Proof of Proposition 2

Proof. Assume that (21) holds for some λ ∈ �n+m. If (20) holds for some S, then ∀x ∈ ∂S we have

∂if(x) = aλix
λi−1
i

n+mY

j=1
j �=i

x
λj
j = ci ∀i = 1, . . . , n + m. (58)

Thus if λi = 0 (resp. xi = 0) then ∂if(x) = 0 and it is impossible to have ∂if(x) = ci �= 0. We have
proved Prop. 2 a).

We have also proved that ∀x ∈ ∂S, xi �= 0 for all i = 1, . . . , n + m. Consequently, from (58) we
can write

a =
ci

λix
λi−1
i

Qn+m
j=1
j �=i

x
λj
j

∀i = 1, . . . , n + m. (59)
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By taking i �= k, one has
ci

λix
λi−1
i

Qn+m
j=1
j �=i

x
λj
j

=
ck

λkxλk−1
k

Qn+m
j=1
j �=k

x
λj
j

that is
ci

λix
λi−1
i xλk

k

Qn+m
j=1

j �=i,k

x
λj
j

=
ck

λkxλk−1
k xλi

i

Qn+m
j=1

j �=i,k

x
λj
j

which is simply
xi

xk
=

ck

ci

λi

λk
∀i, k = 1, . . . , n + m such that i �= k

for all x ∈ ∂S. We have proved Prop. 2 c).
If, in addition, (19) holds, we successively have for x ∈ ∂S :

ci

λix
λi−1
i

„Qn+m
j=1
j �=i

x
λj
j

«xλi
i

0

BB@
n+mY

j=1
j �=i

x
λj
j

1

CCA =
n+mX

j=1

cjxj

cixi

λi
=

n+mX

j=1

cj

„
xi

λj

λi

ci

cj

«

where we have used Prop. 2 c) to transform the RHS. We thus obtain

1 =
n+mX

j=1

λj

that is Prop. 2 b).
Prop. 2 d) is easily obtained by simplification of (59) using Prop. 2 b) and Prop. 2 c).

B Proof of Lemma 1

Proof. To avoid a useless complexity of exposition, we prove the statement for i = 1 and j = 2. For a
given i, that the statement holds for any j = 1, . . . , n such that j �= i is immediate by parametrization
invariance. To prove the result for i �= 1, it suffices to permute subscripts of asset 1 and asset i (the
problem is invariant to such permutation for i = 1, . . . , n) and apply the same proof. Note that the
geometric Brownian motion is absorbed at zero: if x1 = 0, Xx1

1 (t, ω) = 0 for all t.
(⇐) Let x ∈ �+

n+m such that x1 = 0 and x2 ≥ x�
2(x−1,−2). Because assets 1 starts and stays at

zero, the problem degenerates to

sup
τ∈S

Ex ˆe−rτ (X1(τ) + . . .−Xn+m(τ))
˜

=

sup
τ∈S

Ex ˆe−rτ (X2(τ) + . . .−Xn+m(τ))
˜
. (60)

On the other side, because x2 ≥ x�
2(x−1,−2), one has

sup
τ∈S

Ex ˆe−rτ (X2(τ) + . . .−Xn+m(τ))
˜

= x2 + . . .− xn+m. (61)

Combining (60) and (61), one has

sup
τ∈S

Ex ˆe−rτ (X1(τ) + . . .−Xn+m(τ))
˜

= 0 + x2 + . . .− xn+m = g(x) (62)

i.e. it is optimal to stop at x. We deduce that it is also optimal to stop for any x such that x1 > 0 and
x2 ≥ x�

2(x−1,−2). Thus if x2 ≥ x�
2(x−1,−2) then x�

1(x−1) = 0.
(⇒) Let x−1 ∈ �n+m−1

+ such that x�
1(x−1) = 0. This is equivalent to: x = (0, x−1) belongs to

the stopping region Sn,m. Because, asset 1 starts and stays at zero, the problem degenerates following
(60). On the other side, because x ∈ Sn,m one has

sup
τ∈S

Ex ˆe−rτ (X1(τ) + . . .−Xn+m(τ))
˜

= 0 + x2 + . . .− xn+m (63)

Thus, combining (60) and (63) one has

sup
τ∈S

Ex ˆe−rτ (X2(τ) + . . .−Xn+m(τ))
˜

= x2 + . . .− xn+m.

which is possible if and only if x2 ≥ x�
2(x−1,−2).
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C Proof of Proposition 3

Proof. From Def. 2 c), we get

λj(x−1) =

„
ciλi

xi

«„
xj

cj

«
i, j = 2, . . . , n + m. (64)

We insert (64) in the homogeneity condition Def. 2 b):

n+mX

j=1

λj = λ1 +
n+mX

j=2

λj = λ1 +

„
ciλi

xi

« n+mX

j=2

xj

cj
= 1

This leads to

λ1 − 1 =

„
ciλi

xi

« n+mX

j=2

(−cj)xj ∀i = 2, . . . , n + m (65)

Pn+m
j=2 (−cj)xj can be interpreted as a reduced cost (it is not related to the notion of reduced cost in

linear programming). Thus we define

A(x−1) �
n+mX

j=2

(−cj)xj . (66)

Assume A(x−1) �= 0. From (65) we obtain

λi(x−1) =
(λ1 − 1)cixi

A(x−1)
i = 2, . . . , n + m (67)

that is, each component of the vector λ−1(x−1). We see that Def. 2 d) holds if (λ1 − 1)/A(x−1) is
positive i.e. if
Condition 1: when A(x−1) > 0, λ1 > 1;
Condition 2: when A(x−1) < 0, λ1 < 1.

Using the n + m − 1 relations (67), we can now solve for λ1 the quadratic equation Def. 2 a).
Substituting (67) in the quadratic form (23), we obtain

Qn,m(λ1) = (C + D) λ2
1 + (µ1 −B − 2C −D) λ1 + (B + C − r) (68)

with

B � − 1
A

n+mX

j=2

cjxj

„
µj −

1
2
σ2

j

«

C � 1
2A2

n+mX

i,j≥2

ρijσiσjcicjxixj

D � 1
2
σ2

1 +
σ1

A

n+mX

j=2

ρ1jσjcjxj .

Note that, like A, B, C and D are only functions of the parameters x−1. The roots of (68) are easily
obtained

∆ � (µ1 −B − 2C −D)2 − 4(D + C)(B + C − r)

λ±1 (x−1) =
− (µ1 −B − 2C −D) ±

√
∆

2 (C + D)
. (69)

One still has to chose, between λ+
1 (x−1) and λ−1 (x−1), which root is the appropriate one.

Note that if the problem is not degenerate (i.e. x�1(x−1) > 0) the trigger is given by Def. 2 i) i.e.

x�1(x−1) = ci
λ1

λi
xi ∀i = 2, . . . , n + m

which—using (67)—can be re-expressed as

x�1(x−1) =

„
λ1(x−1)

λ1(x−1)− 1

«
A(x−1). (70)

Depending on the sign of A(x−1), we thus discuss conditions on λ1 such that x�1(x−1) > 0.
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Condition 3: If A(x−1) > 0, x�1(x−1) > 0 requires λ1(x−1) > 1.

Condition 4: If A(x−1) < 0, x�1(x−1) > 0 requires 0 < λ1(x−1) < 1.

Note that Conditions 3 and 4 ensure Conditions 1 and 2 i.e. that Def. 2 d) holds.
It turns out that under the very reasonable assumptions

1
2
σ2

j < µj < r ∀j = 1, . . . , n + m (71)

one can prove that λ+
1 (x−1) > 1 and λ−1 (x−1) < 1 for any x−1 ∈ �n+m−1

+ (see Appendix E.2). Thus,
under assumptions (71), Conditions 3 and 4 require to proceed as follows:

1. If A(x−1) > 0, set λ1(x−1) = λ+
1 (x−1) in (70). We have proved Prop. 3 a).

2. If A(x−1) < 0 and 0 < λ−1 (x−1) < 1, set λ1(x−1) = λ−1 (x−1) in (70). We have proved Prop. 3
b1).

3. If A(x−1) < 0 and λ−1 (x−1) ≤ 0, we still have to set λ1(x−1) = λ−1 (x−1) since by choosing
λ+

1 (x−1) we violate Condition 2. Thus, by Def. 2 ii) we have x�1(x−1) = 0. We have proved
Prop. 3 b2) and the proof is complete.

D Proof of Lemma 4

The proof of Lemma 4 relies on the following result (recall that x−1,−2 was defined by Eq. 25).

Lemma 5. Assume n ≥ 2. Let x ∈ �n+m
+ . The following two statements are equivalent.

a)
x2 = x�2(x−1,−2) (72)

where x�2(x−1,−2) is the candidate trigger for the degenerate problem

τ�(x−1, ω) = arg sup
τ∈S

Ex−1
ˆ
e−rτ (X2(τ) + . . .−Xn+m(τ))

˜

which satisfies Definition 2 for a certain vector λ−1(x−1,−2) ∈ �n+m−1
+ .

b) The unique vector λ which satisfies Definition 2 a) b) c) and d) for the original problem

τ�(x, ω) = arg sup
τ∈S

Ex ˆe−rτ (X1(τ) + . . .−Xn+m(τ))
˜

is λ = (0, λ−1(x−1,−2)) ∈ �n+m.

Proof. (⇔) The proof goes both ways.
Let x ∈ �n+m

+ be a point such that (72) holds. From exclusion of trivial degeneracy (x2 �= 0), we
have x�2(x−1,−2) �= 0. Therefore, there exists a unique λ−1(x−1,−2) = (λ2, . . . , λn+m) ∈ �n+m−1

+ such
that Def. 2 a), b), c) and d) hold for x and λ−1(x−1,−2); and this λ−1(x−1,−2) is such that λ2 > 0 so
that we have

x2 = x�2(x−1,−2) = ci
λ2

λi
xi for i = 3, . . . , n + m.

Thus, more simply, there exists a unique λ−1(x−1,−2) = (λ2, . . . , λn+m) ∈ �n+m−1
+ s.t.

Qn−1,m(λ) = 0 (73)
n+mX

i=2

λi = 1 (74)

xi

xn+m
=

ciλi

cn+mλn+m
for i = 2, . . . , n + m (75)

with

Qn−1,m(λ) �
n+mX

i=2

µiλi +
1
2

n+mX

i,j=2

ρijσiσj [λi(λi − 1)δij + λiλj(1− δij)]− r. (76)

Note that
Qn,m(λ) = Qn−1,m(λ) + S(λ)
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with

S(λ) � µ1λ1 +
1
2
· 2

n+mX

j=1

ρ1jσ1σj [λ1(λ1 − 1)δ1j + λ1λj(1− δ1j)]

= λ1

 
µ1 +

n+mX

j=1

ρ1jσ1σj [(λ1 − 1) δ1j + λj(1− δ1j)]

!
.

It is clear from the expression of S(λ) that λ1 = 0 is a sufficient condition to have S(λ) = 0. Furthermore
λ1 = 0 is necessary to have λ1 +

Pn+m
i=2 (λ−1)i = 1. Thus it exists a unique λ−1(x−1,−2) ∈ �n+m−1

such that (74), (75) and (73) holds if and only if

1) it exists a unique λ(x−1) ∈ �n+m such that

n+mX

i=1

λi = 1

Qn,m(λ) = 0

xi

xn+m
=

ciλi

cn+mλn+m
for i = 2, . . . , n + m. (77)

2) and this λ is given by λ = (0, λ−1(x−1,−2)).

We can now prove Lemma 4.

Proof. For the reasons invoked in the proof of Lemma 1, it is sufficient to prove the statement for i = 1
and j = 2. Let x ∈ �n+m

+ be such that x2 = x�2(x−1,−2). By Lemma 5 (see Appendix D), we have
λ1(x−1) = 0. Thus by Def. 2 ii) we have x�1(x−1) = 0. That completes the proof.

E The quadratic Qn,m(λ1)

E.1 The roots of Q1,0(λ)

Consider the following quadratic

Q(λ) =
1
2
σ2λ2 +

„
µ− 1

2
σ2

«
λ− ρ (78)

with ρ > 0. The roots of the quadratic (78) are required to solve our optimal stopping problem in the
one dimensional case. Note that we only assumed the discount rate ρ is positive. We do not (for the
time being) make hypothesis on the sign of µ. The discriminant of (78) is

∆ =

„
µ− 1

2
σ2

«2

+ 2σ2ρ. (79)

It is positive since we assumed ρ > 0. Consequently the roots of (78) are the two real numbers

λ± =

„
1
2
− µ

σ2

«
±

s„
1
2
− µ

σ2

«2

+
2ρ
σ2

. (80)

If we impose µ < ρ (this condition ensures that the discounted geometric Brownian motion do not
explode) one finds that

s„
1
2
− µ

σ2

«2

+
2ρ
σ2

>

s„
1
2
− µ

σ2

«2

+
2µ
σ2

=

˛̨
˛̨1
2

+
µ
σ2

˛̨
˛̨ .

Thus

1)

λ+ >

„
1
2
− µ

σ2

«
+

˛̨
˛̨1
2

+
µ
σ2

˛̨
˛̨

• If 0.5 + µ/σ2 > 0, λ+ > 1.
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• If 0.5 + µ/σ2 < 0, λ+ > −2µ/σ2 > 1.

2)

λ− <

„
1
2
− µ

σ2

«
−
˛̨
˛̨1
2

+
µ
σ2

˛̨
˛̨

• If 0.5 + µ/σ2 > 0, λ− < −2µ/σ2 < 1.

• If 0.5 + µ/σ2 < 0, λ− < 1.

Thus, we see that, under the assumptions ρ > 0 and µ < ρ (which are reasonable from an economic
point of view), λ+ > 1 and λ− < 1. Note that if we further assume that µ > 0 (which is also reasonable
in the one dimensional case, and make impossible the case 0.5+µ/σ2 < 0), we find λ+ > 1 and λ− < 0.

E.2 The roots of Qn,m(λ1)

Using the analysis in Appendix E.1, we now study the roots of (68) which, we recall, is given by

Qn,m(λ1) = (C + D) λ2
1 + (µ1 −B − 2C −D) λ1 + (B + C − r) (68’)

with

B � − 1
A

n+mX

j=2

cjxj

„
µj −

1
2
σ2

j

«

C � 1
2A2

n+mX

i,j≥2

ρijσiσjcicjxixj

D � 1
2
σ2

1 +
σ1

A

n+mX

j=2

ρ1jσjcjxj .

Observe that if C + D > 0 then (68’) has the form (78) with

0.5σ2 = C + D

µ = µ1 −B − C

ρ = r −B − C

and one can use the conclusions of Appendix E.1. Therefore the three conditions C+D > 0, r−B−C >
0, and µ1 −B − C < r −B − C will guarantee λ+

1 > 1 and λ−1 < 1. We now find conditions such that
these three conditions hold.

1) The third condition µ1 − B − C < r − B − C is easy to work out: we need r > µ1. And since the
problem should be solvable using any parametrization, we will require

µj < r ∀j = 1, . . . , n + m (Assumption 1). (81)

2) Can we find conditions such that C + D ≥ 0?

C + D =
1

2A2

2

4
n+mX

i,j≥2

ρijσiσjcicjxixj + A2σ2
1 + 2A

n+mX

j=2

ρ1jσ1σjcjxj .

3

5

Recall that A(x−1) � Pn+m
i=2 (−ci)xi. Thus A2(x−1) =

Pn+m
i,j=2 cicjxixj ≥ 0 and C +D ≥ 0 becomes

n+mX

i,j≥2

ˆ
ρijσiσjcicjxixj + σ2

1cicjxixj − 2ρ1jσ1σjcicjxixj

˜
≥ 0

n+mX

i,j≥2

ˆ
ρijσiσj + σ2

1 − 2ρ1jσ1σj

˜
cicjxixj ≥ 0 (82)

We were not able to prove that the condition (82) holds for any variance covariance matrix
(ρijσiσj)ij , but in a large sample of randomly generated example, it was always the case thus we
think that (82) always holds.
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3) Can we find conditions such that r − (B + C) > 0? Note that

r = r

Pn+m
i,j=2 cicjxixj

A2(x−1)
=

Pn+m
i,j=2 2rcicjxixj

2A2(x−1)

so that

r − C −B =
1

2A2

2

4
n+mX

i,j≥2

(2r − ρijσiσj) cicjxixj + 2A
n+mX

j=2

cjxj

„
µj −

1
2
σ2

j

«3

5

=
1

2A2

2

4
n+mX

i,j≥2

(2r − ρijσiσj) cicjxixj + 2
n+mX

i,j=2

„
µj −

1
2
σ2

j

«
cicjxixj

3

5

=
1

2A2

n+mX

i,j≥2

`
2(r + µj)− ρijσiσj − σ2

j

´
cicjxixj .

Thus the conditions

r + µj >
1
2

`
σ2

j + ρijσiσj

´
∀i, j = 1, . . . , n + m (83)

guarantee r − C − B > 0. Note that we previously required r > µj ∀j = 1, . . . , n + m (Eq. 81).
By further assuming

µj >
1
2
σ2

j ∀j = 1, . . . , n + m (Assumption 2) (84)

we have

∀i, j 1
2
(σ2

j + ρijσiσj) ≤
1
2
σ2

j +
1
2
σ2

max < µj + r

i.e. (83) holds.

Summing up Assumptions 1 and 2, under the conditions

1
2
σ2

j < µj < r ∀j = 1, . . . , n + m

we have λ+
1 > 1 and λ−1 < 1.

F Monte Carlo

Random processes were generated starting from the SDE (1) in normal form. Recall that Xt, µ ∈ �n+m.
Suppose Σ ∈ �(n+m)×u and B : Ω→ �u is the u-dimensional Brownian motion. (1) is equivalent to

dXt = µ · diag(Xt) · dt + diag(Xt) · Σ · dBt

(diag(Xt) ∈ �(n+m)×(n+m) is the diagonal matrix of diagonal Xt) under the condition ΣΣT =
(ρijσiσj)i,j=1,...,n+m that is, if ΣΣT is the variance-covariance matrix of the formulation (1).

To compute the performances, random processes were generated using

Xt+∆t = µ · diag(Xt) · ∆t + diag(Xt) · Σ ·
√

∆t · Z

with Z a (n + m)-dimensional normal random variable, ∆t = 0.001 and a time horizon of T = 50.

G On generating the cone of necessary conditions

The cone of necessary conditions were generated using a wide sample of different geometric Brownian
motions.

Consider Dataset 1 in its normal form:

Bt ∈ �2, µ =

2

4
0
0
0

3

5 Σ =

2

4
0.1 0
0 0.1
0 0

3

5 .

34



Take a three dimensional normal random variable Z : Ωz → �3. An additional geometric Brownian
motion Xu is incorporated in the previous setting by considering the new problem configuration:

Bt ∈ �2, X =

»
X
Xu

–
µ =

2

664

0
0
0

Z(1)

3

775 Σ =

2

664

0.1 0
0 0.1
0 0

Z(2) Z(3)

3

775 .

By generating a particular realization z of Z, one obtains the particular SDE (see Appendix F)

dXt = d

»
X
Xu

–
= µ(z) · diag(Xt) · dt + diag(Xt) · Σ(z) · dBt.

which leads to a variance-covariance matrix ΣΣT (z) and to a superset S+
n,m(z) given by (13). Generating

a large sample ΩZ,N = {z1, . . . , zN} of realizations of Z leads to a collection {S+
n,m(zi)}i=1,...,N from

which one can isolate the smallest and the larger set.
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