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Large switched Ethernet networks are deployed in campus networks, data centers and metropolitan area networks to support 
various types of services. Congestion is usually handled by deploying more switches and installing higher bandwidth link bundles, 
although a better use of the existing infrastructure would allow to deal with congestion at lower cost. In this paper, we use constrained-
based local search and the COMET language to develop an efficient traffic engineering technique that improves the use of the 
infrastructure by the spanning tree protocol. We evaluate the performance of our scheme by considering several types of network 
topologies and traffic matrices. We also compare the performance of our technique with the performance that a routing-based 
deployment supported by an IP traffic engineering technique would obtain.
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I. INTRODUCTION

uring the last ten years, the Ethernet technology has 
replaced the other Local Area Network technologies in 

almost all enterprise and campus networks. Furthermore, 
many Service Providers deploy Ethernet switches in 
metropolitan and access networks. Last but not least, data
centers are largely based on Ethernet switches. In many of 
these environments, the required bandwidth is growing 
quickly and network operators need to find solutions to ensure 
that their switched network can sustain the traffic demand 
without having overloaded links.

In Ethernet networks, multiple active paths between 
switches ensure the service availability in case of link failures. 
Unfortunately, Ethernet networks can not contain active 
cycles. To avoid such cycles, Ethernet switches implement the
IEEE 802. 1d Spanning Tree Protocol (STP) [11] that reduces 
the topology of the switched network to a spanning tree. When 
a network segment is unreachable, the reconfiguration of the 
spanning tree ensures the recovery of connecting.
Consequently, the standby paths are reestablished by 
activating the ports in Blocking State on some switches [5]. 
The creation of the spanning tree is based on the least cost 
(shortest) path from each switch to an elected root switch [11]. 
In this paper, our objective is to provide a Traffic Engineering
(TE) technique that optimizes the link weights configuration 
in order to guide the STP to select an optimum spanning tree 
for a given traffic demand matrix.

To optimize the choice of the spanning tree by STP, two 
main approaches are possible. First, we can optimize the 
spanning tree by searching the link weight space: try to change 
the weight of each link and thus the shortest path from each 
switch to the root switch. The problem of this method is the 
size of the link weight space and the small impact of each 
change of link weights on the spanning tree. The second
possibility is to search the spanning tree space. This method 
seems better but the size of the search space is still exponential 
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with n the number of switches and m the number 

of links). This is the solution chosen in this paper. Once an 

optimal spanning tree is found, one has to determine link 
weights such that STP yields the same spanning tree.

Constraint Programming (CP) [14]  and Constraint-Based 
Local Search (CBLS) [17] are well suited for solving complex 
combinatorial problems. COMET [17] is an object-oriented 
language with several innovative modeling and control 
abstractions for CP and CBLS. In COMET, some classical 
problems can be modeled in only about a dozen lines of code. 
We chose a local search approach implemented in COMET for 
solving this TE problem.

Many TE techniques have been proposed for IP, MPLS and
optical networks in the last decade [2]. TE allows to optimize 
the network by redirecting flows to reduce the congestion in
the network. In IP networks, TE is usually performed by
tuning the OSPF link weights [1], [4]. In MPLS networks, TE
techniques use constrained MPLS Labeled Switched Paths to
redirect traffic flows around congested links [6]. In optical 
networks, TE techniques allocate traffic flows to wavelengths
[21]. Several approaches have been advocated for solving the 
TE problem for switched Ethernet networks with the IEEE
802.1s Multi Spanning Tree Protocol (MSTP) [12]. The 
construction algorithms in [16], [22] and the admission control 
algorithm in [23] aim to address the TE problem in Metro 
Ethernet using MSTP. These three works take into account 
multi-objectives ensuring the load balancing and avoiding the 
congestion of the spanning tree links. [7] proposes an 
optimization model for three different load balancing 
objectives  using the heuristic techniques.

However, to the best of our knowledge, there is no previous 
work dealing with the optimization on the link weight
configurations  for Ethernet networks using 802. 1d STP [11].
In this paper, we evaluate our work by the improvement of 
solution quality in each test and by comparing this solution 
with the one obtained with the IGP Weight Optimization
(IGPWO) in [9]. The goal of this comparison is to see if there 
is a large distance between our solutions and the ones of 
IGPWO where the routing is  offering of Equal Costs Multi 
Paths.

The remainder of this paper is organized as follows. We 
first describe the principle of STP in Section II. Second, we 
define the problem formulation in Section III.  Next, we 
present our  local search algorithm with  the techniques for 
speeding up the search in Section IV. Our evaluation is 
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presented in Section V with an analysis of the experimental 
results, and we conclude the paper in Section VI.

II. SPANNING TREE PROTOCOL

    The purpose of the Spanning Tree Protocol (STP) [11] is to 
reduce the topology of a switched network to a tree that spans 
all switches. To calculate the spanning tree, special messages 
called configuration bridge protocol data units (configuration 
BPDUs) are sent by the switches. Each of these messages 
contains the following information [20]:

- Root ID: ID of the switch assumed to be the root.
- Transmitting bridge ID: ID of the switch transmitting 

this configuration message.
- Cost: Cost of the least-cost path to the root from the 

transmitting switch.
At first, each switch assumes itself to be the root, sets the 

Root ID to its ID, sets the Cost value to 0 and transmits its 
configuration BPDU on every port. Configuration BPDUs are 
distributed in the network so that each switch receives the 
configuration BPDUs of its neighboring switches. The switch 
with the smallest ID is elected as the root. Thus, each time a 
switch receives such a message, it compares the Root ID 
contained in the message and its current Root ID. If the new
Root ID is smaller, it generates its own configuration BPDU
(Root ID, Transmitting bridge ID, and new Cost to the root) 
and transmits this BPDU on its ports. If there is more than one 
least-cost path to the root, the switch selects the one which 
passes via the lowest ID neighbor. The spanning tree is created 
when all the switches have slected the same Root ID and their 
cost of the shortest path to root are correctly calculated.

Obviously, the most important parameters that determine 
the resulting spanning tree are the switch IDs and the link 
costs. With STP these two parameters can be configured. 

III. PROBLEM FORMULATION

We consider our Ethernet network as an undirected graph 
G=(N,E) where N is the set of switches and E is the set of 
links between switches. Each link (s, t) has a bandwidth 
BW[s,t] (note that BW[s,t]=BW[t,s]). When link bundles are 
used between switches, we consider each bundle as a single 
link having the bandwidth of the bundle. We call W the matrix 
of link weights (STP cost by default - 802.1d [11]) and TD the 
matrix of traffic demands, TD[s,t] represents the traffic that 
switch s sends to switch t. We call STP(G,W) the spanning tree 
obtained by the Spanning Tree Protocol on graph G, with link 
weights W. The traditional Ethernet switching problem is 
defined as follows: for all pairs of nodes (s,t) so that 
TD[s,t]>0, distribute  the traffic demand over the unique path 
from s to t in STP(G,W). 

We call L the matrix of load on each link (s,t) in the 
spanning tree: L[s,t]= flow over (s,t). For the 

computation of L[s,t], the flow traffic is directed. This means 
that on a link (s,t), L[s,t] is different from L[t,s]. 

The utilization of a link (s,t) is the ratio between its load and 

its bandwidth 
t]BW[s,

t]L[s,
],[ tsU .  Like the computation of link 

load, the link utilization is directed. The link load is kept 

within the capacity if U[s,t] 1  and U[t,s] 1. If the one of 
these two values goes above 100%, the link (s,t) is overloaded.  
These definitions of link load and utilization are equivalent to 
those used in [4]. 

In this work, our objective is to find an optimal 
configuration of link costs W* minimizing the maximal 
utilization  Umax :

Umax =  max{max(U[s,t],U[t,s]) | (s,t)  E}
The formulation of this problem is the following:

Input: Graph G=(N,E), bandwidth matrix BW,  traffic demand 
matrix TD
Output: Link cost matrix W* such that STP(G,W) yields a 
spanning tree minimizing Umax

    Solving this problem is a very difficult task as the search 
space is exponential. Exact methods are not appropriate 
especially for large instances. In this paper, we focus on 
approximated methods based on local search. 

IV. SPANNING TREE OPTIMIZATION USING LOCAL SEARCH

Local Search (LS) is a powerful method for solving 
computational optimization problems such as the Vertex 
Cover, Traveling Salesman, or Boolean Satisfiability. The 
advantage of LS for these problems is its ability to find an 
intelligent path from a low quality solution to a high quality 
one in a huge search space. This can be done by iterating a 
heuristic of exploration to the neighborhood solutions [17]. In 
this section, we firstly present an overview of our local search 
algorithm called LSA4STP (Local Search Algorithms for the 
Spanning Tree Protocol problem). Then, we describe the 

algorithms and the techniques allowing to break the 
symmetries, to define the neighborhood structure, to 
incrementally compute the link loads and to guide the search. 
Furthermore, we show how to speed up queries on the 
spanning tree and to generate the link cost matrix ensuring that 
the STP computes the intended spanning tree with low 
complexity.

Our local search algorithm LSA4STP aims to find the best 
(possible) solution in the spanning tree space. Algorithm 1
provides the pseudo-code of our local search algorithm.

The method initSpanningTree(root, G) (Line 2) returns an 
initial spanning tree as the initial solution for the local search 
algorithm. In our implementation, we simply simulate the STP

ALGORITHM 1 PSEUDO-CODE FOR LSA4STP

1: root = getRoot(G)
2: SP = initSpanningTree(root, G) 

3: U*max = getMaxUtilization(SP, BW, TD)
4: while (time_exec < time_window) do

5:     /* link to (sO, tO) SP  to be removed  */   
   selectRemove (sO, tO, SP)         

6:     /* link to (sI, tI)  SP  to be added  */      
   selectAdd ((sI, tI), (sO, tO), SP)                       

7:    SP = replaceEdge(SP, sO, tO, sI, tI) 

8:    Umax = getMaxUtilization(SP, BW, TD)
9:     if    Umax < U*max then
10:             U*max = Umax
11:             SP* = SP   
12:    end if
13: end while
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(using some initial W) to compute this initial solution. We use 
the time window as the  termination criteria (Line 4). The 
choice of time window depends on the test size (number of 
nodes and number of links). 

At each search step, we try to replace an edge in the current 
spanning tree to minimize Umax.

A. Root Selection

Symmetry breaking [10] is a well-known technique in 
Constraint Satisfaction Problems (CSPs) to speed up the 
search. As described in Section II, to determine a spanning 
tree, the STP needs an elected root switch and a link cost 
matrix. For a spanning tree SP containing (n-1) edges, if the 
root is not fixed, there are n instances of SP: SP1, SP2,.., SPn

with n different roots (n the number of nodes). This means that 

our search space will be expanded to n. 







1n

m
spanning trees 

(with m the number of links) if we must perform the search for 
all the different possible roots. 

To eliminate all the symmetries in this problem, we fix a 
unique root during the whole search process. This has no 
impact on the single path between any pair of nodes in the 
spanning tree and has no impact on Umax. Although the root 
determination does not change solution, it can change the 
choice of the neighborhood solution in each search step. In 
addition, the root influences also the balance of the tree. 
Network operators normally configure the switches with the 
highest capacity (ports x bandwidth) as the root of their 
spanning trees. In our algorithm, we a priori select the node 
with maximal sum of associated link capacities (bandwidth) as 
the root. The method getRoot() in Line 1 of Algorithm 1 
returns such a root.

B. Neighborhood Formulation

In the search process, we try to move in the spanning tree 
space to find the solution with the smallest Umax. In this local 
search, two spanning trees are considered as neighbors if they 
differ by one unique edge. The principle of our algorithms is 
that in each search step, we select an edge to be removed (Line 
5 - Algorithm 1) and create a new spanning tree by adding 
another edge (Line 6 - Algorithm 1). In local search, the 
definition of the neighborhood  is always a key design 
decision.

1) Removing an edge
In order to reduce the maximal link utilization Umax, a 

natural question is: how to lighten the load of the most 
congested link in the spanning tree. An extreme solution is to 
replace this link with another one. To determine an edge to be 
removed, LSA4STP accomplishes the following steps.   

First, we find the most congested oriented link (s,t)
(Umax=U[s,t]) of SP that is not in Tabu list (see Section IV.D). 
Second, from (s,t), we obtain a set SR of candidate  edges to 
be removed that contains (s,t) and all the edges belonging to 
the subtree dominated by s, as illustrated in Fig 1. Because 
(s,t) is the most congested link, we can assume that this 
congestion is caused by the traffic coming from the subtree 
dominated by s. Third, we denote TR the tree with root t 

containing the edges in SR. If we go from the leaves to root t, 
the more we climb the more the traffic increases. Our heuristic 

in this step is to assign to each edge in SR a probability to be 
selected  based on its level in TR, as illustrated in Figure 1. 
The edges closer to the root have a higher probability to be 
removed. The sum of the probabilities associated to the edges
at level i is 1/2i , except at the last level d, where it is 1/2d-1 to 
make the probabilities sum to 1. Last, an edge (sO,tO) is
selected based on these probabilities. This selection is
performed in COMET by using selector selectPr. The idea 
behind here is to have an effective choice strategy: balancing 
intensification (greedy search for a solution) and 
diversification (consider unexplored neighborhood).

2) Adding an edge
After having removed (sO,tO) from SP, we obtain two 

separate trees. We de note TI the isolated subtree 
(unconnected to the root). These two trees must be 
reconnected with an edge. Our objective is to have more 
bandwidth and a less congested solution. We consider two 
criterions  for choosing an edge to be added to form the new 
spanning tree. 

First, we define a set of edges SA that contains all the edges 
that join SP\TR and TI. Second, we select  k edges having the 
highest bandwidth from SA to form into the set SmaxBW. Next, 
we compute the resulting Umax when adding each edge of 
SmaxBW. Last, the edge (sI, tI) in SmaxBW offering the minimal 
value of Umax is selected, as illustrated in Fig 1. For this step, 
we evaluate only k edges because it is more cost-effective than 
evaluating all the edges in  SA. In our experiments, (k=10)
gave the good results.

C. Speeding up Link Load Computation

For the local search algorithm, it is important to visit as 
many points in the search space as possible. In this problem, 
the computation of link loads in each search step is a complex 
task. To compute the link loads, we must recompute all pairs 
paths in spanning tree and then the loads over these paths. 
These computations have a time complexity of O(n2log(n)).  

However, we can show that each time we replace an edge  
(sO,tO) by another edge  (sI, tI), the load changes only on the 
links on the cycle C created by adding  (sI, tI) (see Figure 2). 
Thus, we can avoid recomputing the all pairs paths 

Fig. 1.  Selection of the edge to be removed and edge to be added
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recomputation. We compute the link loads as follows: first, 
assign 0 to the load of (sO,tO) because it is removed from the 
tree. Next,  for each pair of nodes (u,v) with TD[u,v]>0, we 
verify whether the path from u to v passes the edges of C or 
not. Then, we recompute the loads on the cycle C. We can 
then benefit from the computations that we performed on the 
spanning tree before replacing (sO,tO) by (sI, tI) to compute the 
cycle C and its loads. The size (number of edges) of C
depends on the network topology. The size of C is seldom 
larger than ten edges in our tests.

In our experiments, the speeding up computation gains
about 20% of execution time on each search iteration with the 
tests where the number of vertices is greater or equal to 100 
nodes.

D. Tabu List

We use tabu search [8] - a heuristic offering a diversified 
search in each of its search steps. The goal of tabu search is to 
prevent the search from visiting the same points in the search 
space. In our problem, a solution is represented by a spanning 
tree. We can not store and mark all the visited spanning trees 

because of the expensive space complexity and time 
complexity to detect if a spanning tree has already been 
encountered. However, we implement tabu by forbidding the 
repetitive replacement of a couple of edges in successive
iterations. 

In LSA4STP, the considered (max congested) edge, the 
removed edge and the added edge are inserted into the tabu list 
at each search iteration. We freeze these edges for the next x
search iterations. 

In our experiments, we obtained the good results by setting
(x=10).

E. Spanning Tree Query

In our algorithm, we manipulate a dynamic spanning tree 
with two kinds of actions at each step of the local search 
algorithm: (1) update the tree (i.e., edge replacement) and (2) 
query the tree (i.e., nearest common ancestor of a two vertices, 
the father of a given vertex, etc.). Queries are usually 
performed many times in the neighborhood exploration phase. 
For instance, in order to determine whether or not an edge can 
be used to reconnect two disconnected sub-trees (by removing 
an edge of the current tree), we must check whether or not a 
given vertex belongs to a given subtree. This can be done by 
querying the nearest common ancestor of two vertices. To 

simplify the design of our algorithm and to increase its 
efficiency, we use the VarSpanningTree abstraction of the 
LS(Graph & Tree) framework [18] representing dynamic tree 
of a given graph. LS(Graph & Tree) is a local search 
framework (an extension of  COMET [17]) which simplifies 
the modeling of Constraint Satisfaction Optimization 
Problems on graphs and trees. Using this framework, many 
complex computations on trees are modeled and abstracted as 
a simple query. Last, by using the incremental data structures 
(auto-update after each change of the tree), all queries on 
spanning tree mentioned above can be performed in time O(1) 
and the update action is performed in O(n) where n is the 
number of vertices of the given network.

F. Link Cost Generation

As defined in Section III, our objective is to find an optimal 
configuration of the link costs W* such that STP(G,W) yields a 
spanning tree minimizing Umax. From the spanning tree 
obtained by LSA4STP, we generate the cost matrix W by 
assigning a unit cost to all the edges in the spanning tree and 
by assigning a cost of n (number of nodes) to all the other 
edges in graph. After this assignment, we can see that the cost
of the longest possible path between a pair of nodes in 
spanning tree is n-1 (passes n-1 edges) while the cost of the 
shortest path between any pair of nodes with out using of 
spanning tree edges is n (passes one edge). Consequently, the 
802.1d protocol [11] will produce the intended spanning tree.

V. EXPERIMENTS AND RESULTS

We present in this section the method for generating
network topologies and traffic demand matrices for our tests 
are described. Next, we analyze the obtained results by 
evaluating the improvement of the link utilization in each test 

and by comparing this solution with the one obtained with
IGPWO in [9] assuming that switches would be replaced by 
routers.

A. Data Generation

For testing LSA4STP, we generated three types of generic 
topologies: Grid, Cube, Expanded Tree and use two data 
center topologies: the PortLand Data Center Network [19] and 

Fig. 2.  Loads computed incrementally

ALGORITHM 2 PSEUDO-CODE FOR GENERATING TREE TOPOLOGY

1: root = 1
2: in_tree = {root}

3: considered = 
4: while (#in_tree<n) do

5:    select  u  in_tree  &&   u  considered
6:    select  num_branch  [min..max]
7:    for all   i  [1.. num_branch]  do
8:        if  #in_tree<n then

9:            select  v  [1..n]  &&  v  in_tree
10:            createEdge(u, v)
11:            in_tree = in_tree + {v}
12:        end if
13:    end for 
14:    considered = considered + {u}
15: end while
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the Fat Tree [15]. The traffic demand matrices were generated 
by using a uniform distribution for num_des (configurable) 
pairs of switches in the network.

1) Generic topologies
We present in this section three generic topologies used in 

our tests. The generation of these topologies has been done as 
follows:

Grid In a grid topology, we consider each switch as a node 
on the grid. We can see that in this grid topology, a node has 
at most four edges. The size of the square grid is x2 with x
being the number of nodes on a line. To generate a grid 
topology with n switches, we choose the smallest x such that 
x2≥n. Among the x2 nodes square grid, we number the nodes 
increasing from left to right and from top to bottom. Our grid 
is the part of the square grid containing n nodes from node 1 to 

node n.
Cube We can consider a cube as a composition of x square 

grids, x being the number of nodes on a line. As for the 
generation of the grid topology, we choose the smallest x so 
that x3≥n. The cube network is the part containing the n first 
nodes from the cube.

Expanded tree Tree or hierarchical network is a topology 
where there is no cycle and the nodes are organized by levels. 
The generation of the tree topology is described in Algorithm 
2. First, we fix the node 1 as the root of tree (Line 1). At each 
next step, we randomly select a node u that has not yet been 
considered in the current tree (Line 5). The variable 
num_branch in Line 6 contains the number of  child nodes of 
u. The value of  num_branch is an arbitrary number in interval 
[min..max]. We set (min=2) and (max=6) to generate our tree 
topologies. Next, num_branch free nodes are selected 
randomly to be inserted into the tree by creating num_branch
edges between u and these free nodes (Line 7 to Line 13). The 
node u is marked as considered so that we do not consider it 
any more in the next steps (Line 14). This step is iterated until 
all the nodes from 1 to n have been inserted into the tree (Line 
4). 

The tree obtained by Algorithm 2 is a spanning tree. We 
add to this tree two types of edges ensuring that we obtain a 
biconnected tree (see Figure 3). The advantage of a 
biconnected tree is: if  any edge is removed, the tree remains 
connected. This property ensures that STP has always an
alternative solution in case of link failures. In Figure 3, the 

edges of type (1) connect a leaf with a higher level node while 
the edges of type (2) connect a non-leaf node (except the root) 
with a same or lower level node of a different branch. For each 
tree, (n-1) new edges are added to create the biconnected tree.

To simulate networks in which a switch has many ports, we 
define a ratio r ensuring that each node in the tree is connected 
to at least r edges. In each test, from the generated biconnected 
tree, we create three more trees with ratio r15=n/15, r10=n/10
and r5=n/5 (where n is the number of nodes). 

Link bandwidths and link weights generation
For the topologies above, we use two types of link 

bandwidth: Fast Ethernet 100 Mb/s and Gigabit Ethernet 
1Gb/s. In our tests, 80% of the links are Fast Ethernet links 
and 20% of the links are Gigabit Ethernet links. 

The initial link cost matrix W is generated based on the link 
bandwidths configuration BW. According to 802.1d [11], the 
default link cost for Fast Ethernet is 19 and 4 for Gigabit 
Ethernet.

2) Portland Data Center Network
Figure 4 depicts the PortLand Data Center Network 

proposed in [19] consisting of 24 rows. There are 12 racks in 
each row. Each rack contains 40 machines interconnected by a 
ToR (top of rack) switch. Each ToR switch has 48 GigE ports:  
44 ports of 1 GigE and 4 ports of 10 GigE. Each row has one
EoR (end of row) switch containing 96 ports of 10 GigE. Each 
EoR switch connects to 12 ToR switches via one of the four 
ports of 10 GigE of the ToR.  24 EoR switches connect to a 
Core Switch Layer consisting of 1296 ports of 10 GigE. So we 
have 313 switches in a PortLand topology.

This PortLand design creates a 3-level spanning tree 
topology. As for the trees in the previous section, we do the 
same steps to obtain a biconnected tree. However, for the 
PortLand topology, we must consider the available ports on
ToR, EoR and Core Switch Layer when adding the edges. 

Fig. 3.  Expanded tree

Fig. 4.  PortLand Data Center Network
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Because PortLand tree has only 3 levels, we  aggregate the 
two types of edges (1) and (2) in Figure 3 as the edges (*) 
between ToR and EoR as depicted in Figure 4. Each ToR has 
4 ports of 10 GigE, one of them is connected to an EoR, so we 
have 3 available ports of 10 GigE  for each ToR. Each EoR 
has 96 ports of 10 GigE, 12 of these ports are connected to 12 
ToRs, 1 another port is used to connect to the Core Switch 
Layer, and so we have 83 free ports of 10 GigE for each EoR. 
Core Switch Layer has 1296 ports   of 10 GigE, 24 ports have 
connected to 24 EoRs, and so it has 1272 free ports of 10 
GigE. The generated biconnected trees of PortLand are 
considered in our tests.

3) Fat Tree
Fat Tree described in [15] is another topology for Data 

Center Network. It is called Fat Tree because it is not a 
spanning tree like PortLand. All the ports on each switch are 
used to connect to the hosts or to the other switches. The Fat 
Tree topology is constructed as follows.

All the switches in Fat Tree have k ports. There are k pods. 
Each pod contains k switches divided into 2 layers: 
Aggregation and Lower Level. Each layer consists of  k/2
switches. Each switch in Lower Level connects to k/2 hosts 
and the remaining k/2 ports connect to k/2 switches of the 
Aggregation layer of the same pod. There are (k/2)2 switches 
in the Core layer of a Fat Tree. Each Core switch connects to 
one switch in the Aggregation layer of all the k pods. We 
number the switches in the Aggregation layer of each pod 
from 1 to k/2. We split (k/2)2 switches in the Core layer into 
k/2 portions, each containing k/2 switches. We number the 
switches in each of these portions from 1 to k/2. The ith switch 
in each portion of the Core layer is connected to the ith switch 
in the Aggregation layer of all the k pods. In our tests, we set 
k=16, so we have 320 switches for each Fat Tree topology.

Link bandwidths and link weights generation
Like PortLand topologies, all the links of Fat Tree in our 

tests are 10 GigE and according to 802.1d [11], their link costs 
are 1.

4) Traffic Demand Matrix
Several authors have recently analyzed the traffic matrices 

that are found in real datacenters [3], [13]. Unfortunately, 
these datasets are private and there are no methods that can be 
used to generate traffic demands that are representative of 
datacenter networks. For this reason, we wrote a simple traffic 

matrix generator that allows to test several types of traffic 
matrices. We first start with a uniform traffic matrix where all 
switches send traffic to all other switches in the network. 
Then, we generate traffic matrices that are less and less
uniform by considering that most of the traffic is sent to a 
subset of the switches. These non-uniform matrices could

correspond to storage servers or routers that often sink a large 
fraction of the traffic in datacenters.

The pseudo-code in Algorithm 3 is used to generate the 
traffic demand matrix for all our tests. We consider that there 
is a subset of the switches that receive most traffic. In practice, 
these switches would be the ones attached to routers in data 
centers or the ones attached to high end servers in Campus 
networks. The method getDestinationsSet(num_des) in Line 1 
returns the set of destinations for which all switches send the 
traffic to. From the input parameter num_des, this method 
generates the set of destinations by selecting randomly 
num_des nodes out of n (number of nodes) to insert into 
destinations. In our experiments, we generate for each 
network topology 5 traffic demand matrices: all switches
receive traffic – uniform matrix (num_des=n), 50% of 
switches receive traffic (num_des=n/2), 20% of switches 
receive traffic (num_des=n/5), 10% of switches receive traffic
(num_des=n/10) and 5% of switches receive traffic
(num_des=n/20). For each network topology, we fix a sum of 
traffic demand (sumTD in Table 1) for all of these 5 traffic 
demand matrices. This sumTD depends on the network type, 

network size, number of links and link bandwidths (see Table 
1). For each pair of switches, the method getUniformTD in 
Line 4 generates a traffic demand in the interval 
[minTD..maxTD]. The minTD and maxTD values are
computed based on sumTD. 

B. Experiments

We generated the 7 topologies as described in Table I.  Each 
topology has 5 traffic demand matrices as described in Section 
V.A.4. For each Expanded Tree, we have four topologies
(biconnected tree, r15=n/15, r10=n/10 and r5=n/5) with the 
same traffic demand matrix. The input of each test is one 
network topology Graph G=(N,E), one bandwidth matrix BW,  
and traffic demand matrix TD. We generated 50 tests for Cube 
(10 topologies x 5 traffic demand matrices), 50 tests for Grid 
(10 topos x 5 tdms), 200 tests for each of Expanded Tree from 
1 to 3 (40 topos (10 for each of biconnected tree, r15=n/15, 
r10=n/10 and r5=n/5) x 5tdms), 50 tests for Fat Tree (10 topos
x 5 tdms), and 50 tests for PortLand (10 topos (biconnected 
tree) x 5 tdms). So we have 800 tests. These tests are available 
online in [26]. The time window for running LSA4STP for 
each topology type is described in Table I.

C. Evaluation

We consider the improvement of the maximal utilization 
Umax as the criterion to evaluate the performance of LSA4STP. 
We also measure Umax  obtained with the default weights by 

ALGORITHM 3 PSEUDO-CODE GENERATING THE TRAFFIC DEMAND MATRIX

1: destinations = getDestinationsSet(num_des);
2: for all   i  [1.. n]  &&  j   destinations do
3:      if i ≠ j  then
4:          td[i,j] = getUniformTD(minTD, maxTD, sumTD);
5:     end if
6: end for

TABLE I
DATA GENERATION AND TIME WINDOW FOR LSA4STP

No Topo. Type
Num. 
Nodes

sumTD(Mb)
Time Window 

(s)
1 Grid 50 400 300
2 Cube 50 400 300
3 Expanded Tree 1 50 1000 300
4 Expanded Tree 2 100 1500 600
5 Expanded Tree 3 200 2600 1200
6 PortLand 313 120000 1800
7 Fat Tree 320 56000 1800
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STP 802.1d. 
We present in Figure 5 our results obtained for the 2 generic 

networks: Cube, Grid as well as Fat Tree and PortLand. For 
these 4 networks, LSA4STP gives the best results for the Cube 
since it reduces on average the value of Umax up to 50% for all 
the 5 types of traffic demand matrices. For the Grid, Fat Tree
and PortLand Umax is also reduced to about 60%-80%.
LSA4STP works better for the Cube, Grid than for the Fat 
Tree, PortLand because the link bandwidths in the Fat Tree, 
PortLand are homogeneous (all 10 Gb/s) while the ones in the 
Cube, Grid are not (100 Mb/s and 1 Gb/s). But the reason is 
not the difference of the sum of link bandwidths between the 

spanning trees. In our tests, this sum of the initial (802.1d) and 
best Umax (LSA4STP) one is almost the same. However, for 
the Cube and Grid, in the 802.1d solutions the most congested 
links are the links of 100 Mb/s while the 1 Gb/s ones are not 
efficiently used as in the solutions obtained with LSA4STP. 

Our local search algorithm is especially efficient for the 

tests of Expanded Tree in which high quality solutions exist in 
a large search space. Figure 6 depicts the results of LSA4STP 
with the tests of Expanded Tree 100 in which the value of Umax

is dropped to about 49% for the Biconnected Tree, 47% for  
r15, 64% for r10 and 78% for r5. The reason is always the 
efficient use of 1Gb/s links. With the ratio r5, the average 

number of 1 Gb/s links is 97 out of 99 links of spanning tree

(almost homogeneous of link bandwidths). This number of  
Biconnected Tree  is 32, of r15 is 53, of r10 is 76. That 
explains why with the ratio r5, LSA4STP has the similar 
results as Fat Tree and PortLand.

In both of Figure 5 and Figure 6, we can see the same 
decreasing order of Umax  for each test from left to right. With 
the same topology and the same sum of traffic demand 
(sumTD), each traffic demand matrix gives a different Umax

(obtained with 802. 1d or LSA4STP).  Higher Umax values are 
observed with the more biased traffic demand matrices.
Because for all these 5 traffic demand matrices, all switches 
send traffic to a number of switches (num_des). So the more 
switches receive traffic the more balancing traffic is 

distributed to the links. Obviously, the uniform traffic demand 
matrix always gives the lowest Umax.   

We describe in Table II the average time for LSA4STP to 
find the best solution for each test of  the 7 topologies. This 
time for the topologies of: 50 nodes (Cube, Grid, Expanded 
Tree 1) is about 2 minutes, 100 nodes (Expanded Tree 2) is ~ 
4 minutes, 200 nodes (Expanded Tree 3) is ~ 5 minutes and 
313 (PortLand) and 320 (Fat Tree) nodes are ~ 6 minutes. We 
can state that LSA4STP works well for the large scale tests 
when the time complexity of link load computations in each 
search iteration is collapsed.

D. Comparison with IGP Weight Optimization

Several IGP Weight Optimization (IGPWO) techniques 
have been proposed for IP networks [4], [9], [1], [2]. In this 
section we compare the performance of LSA4STP to a local 
search algorithm (LSA4IGPWO) in the COMET language [9]. 
IGP weight optimization is not applicable to existing Ethernet 
networks as it only applies to IP routers. Compared to Ethernet 

Fig. 6.  Result for Expanded Tree 100

Fig. 7.  LSA4STP vs LSA4IGPWO

Fig. 5.  Result for Cube, Grid, Fat Tree & PortLand

TABLE II
AVERAGE TIME FOR LSA4STP FINDING THE BEST SOLUTION (IN S)

Topo. Type #des=n #des=n/2 #des=n/5 #des=n/10 #des=n/20

Grid 192 188 170 185 124
Cube 91 165 130 130 206

Exp.Tree 1 108 103 130 128 143
Exp.Tree 2 222 224 211 306 271
Exp.Tree 3 251 232 298 321 258
PortLand 350 339 418 427 412
Fat Tree 409 392 438 385 395
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switches, IP routers have the advantage of being able to send
packets over all links in the network while the STP disables a 
subset of the links. Given the price difference between IP 
routers and switches, large datacenters will not replace their 
switches with IP routers. However, there is ongoing work 
within the IETF to develop standards to allow next-generation 
switches to use the IS-IS routing protocol instead of the 
802.1d protocol [24], [25]. This solution requires more 
powerful switches and it can be expected that it will only be 
supported on new high-end switches initially.

To compare IGPWO with LSA4STP, we performed an 
experiment with the Expanded Tree containing 50 nodes and 
the uniform traffic demand matrix (num_des=n). The time 
windows for running IGPWO and LSA4STP are the same 
(300s). To evaluate the impact of the number of alternate paths 
in the topology, we varied the number of additional links in 
the Expanded Tree. Figure 7 shows on the x axis the number 
of links that were added to the Tree (see section V.A.1) and on
the y axis the maximum utilization for IGPWO and LS4STP. 
When there are less than 6 links, LS4STP is within 20% of the
solution obtained by IGPWO. When the number of additional 
links in the Expanded Tree grows, the distance between 
LSA4STP and IGPWO grows as well. This is normal since
LSA4STP uses only a fraction of the links while IGPWO is 
able to send traffic over all links. For example, regarding 
Figure 7, at 25 added links, to obtain an Umax ~ 0.3, IGPWO 
must use all the 74 links. So when there are link failures, this 
solution given by IGPWO has no reserved link to ensure the 
service availability while the number of reserved links of the 
one obtained with LSA4STP is 25.

VI. CONCLUSION

In this paper, we have proposed a new TE technique based 
on local search that finds the best spanning tree that minimizes
congestion for a given traffic matrix in Ethernet network.

Our choice of directly optimizing spanning trees instead of
link weights reduces the size of the search space. We have 
proposed an efficient technique to recompute the link loads at
each search iteration that can avoid the all pairs paths 
computation.

Our local search heuristic has been implemented in the 
Comet language and our simulations show promising results.

Our further work is to extend our framework to support 
multiple traffic matrices and multiple VLANs.
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