
1

Using Local Search for Traffic Engineering in Switched Ethernet Networks

Ho Trong Viet, Olivier Bonaventure, Yves Deville, Pham Quang Dung, and Pierre Francois

Dept CSE, Université catholique de Louvain (UCL), Belgium

Large switched Ethernet networks are deployed in campus networks, data centers and metropolitan area networks to support
various types of services. Congestion is usually handled by deploying more switches and installing higher bandwidth link bundles,
although a better use of the existing infrastructure would allow to deal with congestion at lower cost. In this paper, we use constrained-
based local search and the COMET language to develop an efficient traffic engineering technique that improves the use of the
infrastructure by the spanning tree protocol. We evaluate the performance of our scheme by considering several types of network
topologies and traffic matrices. We also compare the performance of our technique with the performance that a routing-based
deployment supported by an IP traffic engineering technique would obtain.

Index Terms— Combinatorial Optimization, Local search, Spanning Tree Protocol, Traffic Engineering.

I. INTRODUCTION

uring the last ten years, the Ethernet technology has
replaced the other Local Area Network technologies in

almost all enterprise and campus networks. Furthermore,
many Service Providers deploy Ethernet switches in
metropolitan and access networks. Last but not least, data
centers are largely based on Ethernet switches. In many of
these environments, the required bandwidth is growing
quickly and network operators need to find solutions to ensure
that their switched network can sustain the traffic demand
without having overloaded links.

In Ethernet networks, multiple active paths between
switches ensure the service availability in case of link failures.
Unfortunately, Ethernet networks can not contain active
cycles. To avoid such cycles, Ethernet switches implement the
IEEE 802. 1d Spanning Tree Protocol (STP) [11] that reduces
the topology of the switched network to a spanning tree. When
a network segment is unreachable, the reconfiguration of the
spanning tree ensures the recovery of connecting.
Consequently, the standby paths are reestablished by
activating the ports in Blocking State on some switches [5].
The creation of the spanning tree is based on the least cost
(shortest) path from each switch to an elected root switch [11].
In this paper, our objective is to provide a Traffic Engineering
(TE) technique that optimizes the link weights configuration
in order to guide the STP to select an optimum spanning tree
for a given traffic demand matrix.

To optimize the choice of the spanning tree by STP, two
main approaches are possible. First, we can optimize the
spanning tree by searching the link weight space: try to change
the weight of each link and thus the shortest path from each
switch to the root switch. The problem of this method is the
size of the link weight space and the small impact of each
change of link weights on the spanning tree. The second
possibility is to search the spanning tree space. This method
seems better but the size of the search space is still exponential

(i.e. 







1n

m
with n the number of switches and m the number

of links). This is the solution chosen in this paper. Once an

optimal spanning tree is found, one has to determine link
weights such that STP yields the same spanning tree.

Constraint Programming (CP) [14] and Constraint-Based
Local Search (CBLS) [17] are well suited for solving complex
combinatorial problems. COMET [17] is an object-oriented
language with several innovative modeling and control
abstractions for CP and CBLS. In COMET, some classical
problems can be modeled in only about a dozen lines of code.
We chose a local search approach implemented in COMET for
solving this TE problem.

Many TE techniques have been proposed for IP, MPLS and
optical networks in the last decade [2]. TE allows to optimize
the network by redirecting flows to reduce the congestion in
the network. In IP networks, TE is usually performed by
tuning the OSPF link weights [1], [4]. In MPLS networks, TE
techniques use constrained MPLS Labeled Switched Paths to
redirect traffic flows around congested links [6]. In optical
networks, TE techniques allocate traffic flows to wavelengths
[21]. Several approaches have been advocated for solving the
TE problem for switched Ethernet networks with the IEEE
802.1s Multi Spanning Tree Protocol (MSTP) [12]. The
construction algorithms in [16], [22] and the admission control
algorithm in [23] aim to address the TE problem in Metro
Ethernet using MSTP. These three works take into account
multi-objectives ensuring the load balancing and avoiding the
congestion of the spanning tree links. [7] proposes an
optimization model for three different load balancing
objectives using the heuristic techniques.

However, to the best of our knowledge, there is no previous
work dealing with the optimization on the link weight
configurations for Ethernet networks using 802. 1d STP [11].
In this paper, we evaluate our work by the improvement of
solution quality in each test and by comparing this solution
with the one obtained with the IGP Weight Optimization
(IGPWO) in [9]. The goal of this comparison is to see if there
is a large distance between our solutions and the ones of
IGPWO where the routing is offering of Equal Costs Multi
Paths.

The remainder of this paper is organized as follows. We
first describe the principle of STP in Section II. Second, we
define the problem formulation in Section III. Next, we
present our local search algorithm with the techniques for
speeding up the search in Section IV. Our evaluation is

D

Manuscript received January 25, 2010. Corresponding author: Ho Trong
Viet (e-mail: trong.ho@uclouvain.be).

2

presented in Section V with an analysis of the experimental
results, and we conclude the paper in Section VI.

II. SPANNING TREE PROTOCOL

 The purpose of the Spanning Tree Protocol (STP) [11] is to
reduce the topology of a switched network to a tree that spans
all switches. To calculate the spanning tree, special messages
called configuration bridge protocol data units (configuration
BPDUs) are sent by the switches. Each of these messages
contains the following information [20]:

- Root ID: ID of the switch assumed to be the root.
- Transmitting bridge ID: ID of the switch transmitting

this configuration message.
- Cost: Cost of the least-cost path to the root from the

transmitting switch.
At first, each switch assumes itself to be the root, sets the

Root ID to its ID, sets the Cost value to 0 and transmits its
configuration BPDU on every port. Configuration BPDUs are
distributed in the network so that each switch receives the
configuration BPDUs of its neighboring switches. The switch
with the smallest ID is elected as the root. Thus, each time a
switch receives such a message, it compares the Root ID
contained in the message and its current Root ID. If the new
Root ID is smaller, it generates its own configuration BPDU
(Root ID, Transmitting bridge ID, and new Cost to the root)
and transmits this BPDU on its ports. If there is more than one
least-cost path to the root, the switch selects the one which
passes via the lowest ID neighbor. The spanning tree is created
when all the switches have slected the same Root ID and their
cost of the shortest path to root are correctly calculated.

Obviously, the most important parameters that determine
the resulting spanning tree are the switch IDs and the link
costs. With STP these two parameters can be configured.

III. PROBLEM FORMULATION

We consider our Ethernet network as an undirected graph
G=(N,E) where N is the set of switches and E is the set of
links between switches. Each link (s, t) has a bandwidth
BW[s,t] (note that BW[s,t]=BW[t,s]). When link bundles are
used between switches, we consider each bundle as a single
link having the bandwidth of the bundle. We call W the matrix
of link weights (STP cost by default - 802.1d [11]) and TD the
matrix of traffic demands, TD[s,t] represents the traffic that
switch s sends to switch t. We call STP(G,W) the spanning tree
obtained by the Spanning Tree Protocol on graph G, with link
weights W. The traditional Ethernet switching problem is
defined as follows: for all pairs of nodes (s,t) so that
TD[s,t]>0, distribute the traffic demand over the unique path
from s to t in STP(G,W).

We call L the matrix of load on each link (s,t) in the
spanning tree: L[s,t]= flow over (s,t). For the

computation of L[s,t], the flow traffic is directed. This means
that on a link (s,t), L[s,t] is different from L[t,s].

The utilization of a link (s,t) is the ratio between its load and

its bandwidth
t]BW[s,

t]L[s,
],[tsU . Like the computation of link

load, the link utilization is directed. The link load is kept

within the capacity if U[s,t] 1 and U[t,s] 1. If the one of
these two values goes above 100%, the link (s,t) is overloaded.
These definitions of link load and utilization are equivalent to
those used in [4].

In this work, our objective is to find an optimal
configuration of link costs W* minimizing the maximal
utilization Umax :

Umax = max{max(U[s,t],U[t,s]) | (s,t)  E}
The formulation of this problem is the following:

Input: Graph G=(N,E), bandwidth matrix BW, traffic demand
matrix TD
Output: Link cost matrix W* such that STP(G,W) yields a
spanning tree minimizing Umax

 Solving this problem is a very difficult task as the search
space is exponential. Exact methods are not appropriate
especially for large instances. In this paper, we focus on
approximated methods based on local search.

IV. SPANNING TREE OPTIMIZATION USING LOCAL SEARCH

Local Search (LS) is a powerful method for solving
computational optimization problems such as the Vertex
Cover, Traveling Salesman, or Boolean Satisfiability. The
advantage of LS for these problems is its ability to find an
intelligent path from a low quality solution to a high quality
one in a huge search space. This can be done by iterating a
heuristic of exploration to the neighborhood solutions [17]. In
this section, we firstly present an overview of our local search
algorithm called LSA4STP (Local Search Algorithms for the
Spanning Tree Protocol problem). Then, we describe the

algorithms and the techniques allowing to break the
symmetries, to define the neighborhood structure, to
incrementally compute the link loads and to guide the search.
Furthermore, we show how to speed up queries on the
spanning tree and to generate the link cost matrix ensuring that
the STP computes the intended spanning tree with low
complexity.

Our local search algorithm LSA4STP aims to find the best
(possible) solution in the spanning tree space. Algorithm 1
provides the pseudo-code of our local search algorithm.

The method initSpanningTree(root, G) (Line 2) returns an
initial spanning tree as the initial solution for the local search
algorithm. In our implementation, we simply simulate the STP

ALGORITHM 1 PSEUDO-CODE FOR LSA4STP

1: root = getRoot(G)
2: SP = initSpanningTree(root, G)

3: U*max = getMaxUtilization(SP, BW, TD)
4: while (time_exec < time_window) do

5: /* link to (sO, tO) SP to be removed */
 selectRemove (sO, tO, SP)

6: /* link to (sI, tI)  SP to be added */
 selectAdd ((sI, tI), (sO, tO), SP)

7: SP = replaceEdge(SP, sO, tO, sI, tI)

8: Umax = getMaxUtilization(SP, BW, TD)
9: if Umax < U*max then
10: U*max = Umax
11: SP* = SP
12: end if
13: end while

3

(using some initial W) to compute this initial solution. We use
the time window as the termination criteria (Line 4). The
choice of time window depends on the test size (number of
nodes and number of links).

At each search step, we try to replace an edge in the current
spanning tree to minimize Umax.

A. Root Selection

Symmetry breaking [10] is a well-known technique in
Constraint Satisfaction Problems (CSPs) to speed up the
search. As described in Section II, to determine a spanning
tree, the STP needs an elected root switch and a link cost
matrix. For a spanning tree SP containing (n-1) edges, if the
root is not fixed, there are n instances of SP: SP1, SP2,.., SPn

with n different roots (n the number of nodes). This means that

our search space will be expanded to n. 







1n

m
spanning trees

(with m the number of links) if we must perform the search for
all the different possible roots.

To eliminate all the symmetries in this problem, we fix a
unique root during the whole search process. This has no
impact on the single path between any pair of nodes in the
spanning tree and has no impact on Umax. Although the root
determination does not change solution, it can change the
choice of the neighborhood solution in each search step. In
addition, the root influences also the balance of the tree.
Network operators normally configure the switches with the
highest capacity (ports x bandwidth) as the root of their
spanning trees. In our algorithm, we a priori select the node
with maximal sum of associated link capacities (bandwidth) as
the root. The method getRoot() in Line 1 of Algorithm 1
returns such a root.

B. Neighborhood Formulation

In the search process, we try to move in the spanning tree
space to find the solution with the smallest Umax. In this local
search, two spanning trees are considered as neighbors if they
differ by one unique edge. The principle of our algorithms is
that in each search step, we select an edge to be removed (Line
5 - Algorithm 1) and create a new spanning tree by adding
another edge (Line 6 - Algorithm 1). In local search, the
definition of the neighborhood is always a key design
decision.

1) Removing an edge
In order to reduce the maximal link utilization Umax, a

natural question is: how to lighten the load of the most
congested link in the spanning tree. An extreme solution is to
replace this link with another one. To determine an edge to be
removed, LSA4STP accomplishes the following steps.

First, we find the most congested oriented link (s,t)
(Umax=U[s,t]) of SP that is not in Tabu list (see Section IV.D).
Second, from (s,t), we obtain a set SR of candidate edges to
be removed that contains (s,t) and all the edges belonging to
the subtree dominated by s, as illustrated in Fig 1. Because
(s,t) is the most congested link, we can assume that this
congestion is caused by the traffic coming from the subtree
dominated by s. Third, we denote TR the tree with root t

containing the edges in SR. If we go from the leaves to root t,
the more we climb the more the traffic increases. Our heuristic

in this step is to assign to each edge in SR a probability to be
selected based on its level in TR, as illustrated in Figure 1.
The edges closer to the root have a higher probability to be
removed. The sum of the probabilities associated to the edges
at level i is 1/2i , except at the last level d, where it is 1/2d-1 to
make the probabilities sum to 1. Last, an edge (sO,tO) is
selected based on these probabilities. This selection is
performed in COMET by using selector selectPr. The idea
behind here is to have an effective choice strategy: balancing
intensification (greedy search for a solution) and
diversification (consider unexplored neighborhood).

2) Adding an edge
After having removed (sO,tO) from SP, we obtain two

separate trees. We de note TI the isolated subtree
(unconnected to the root). These two trees must be
reconnected with an edge. Our objective is to have more
bandwidth and a less congested solution. We consider two
criterions for choosing an edge to be added to form the new
spanning tree.

First, we define a set of edges SA that contains all the edges
that join SP\TR and TI. Second, we select k edges having the
highest bandwidth from SA to form into the set SmaxBW. Next,
we compute the resulting Umax when adding each edge of
SmaxBW. Last, the edge (sI, tI) in SmaxBW offering the minimal
value of Umax is selected, as illustrated in Fig 1. For this step,
we evaluate only k edges because it is more cost-effective than
evaluating all the edges in SA. In our experiments, (k=10)
gave the good results.

C. Speeding up Link Load Computation

For the local search algorithm, it is important to visit as
many points in the search space as possible. In this problem,
the computation of link loads in each search step is a complex
task. To compute the link loads, we must recompute all pairs
paths in spanning tree and then the loads over these paths.
These computations have a time complexity of O(n2log(n)).

However, we can show that each time we replace an edge
(sO,tO) by another edge (sI, tI), the load changes only on the
links on the cycle C created by adding (sI, tI) (see Figure 2).
Thus, we can avoid recomputing the all pairs paths

Fig. 1. Selection of the edge to be removed and edge to be added

4

recomputation. We compute the link loads as follows: first,
assign 0 to the load of (sO,tO) because it is removed from the
tree. Next, for each pair of nodes (u,v) with TD[u,v]>0, we
verify whether the path from u to v passes the edges of C or
not. Then, we recompute the loads on the cycle C. We can
then benefit from the computations that we performed on the
spanning tree before replacing (sO,tO) by (sI, tI) to compute the
cycle C and its loads. The size (number of edges) of C
depends on the network topology. The size of C is seldom
larger than ten edges in our tests.

In our experiments, the speeding up computation gains
about 20% of execution time on each search iteration with the
tests where the number of vertices is greater or equal to 100
nodes.

D. Tabu List

We use tabu search [8] - a heuristic offering a diversified
search in each of its search steps. The goal of tabu search is to
prevent the search from visiting the same points in the search
space. In our problem, a solution is represented by a spanning
tree. We can not store and mark all the visited spanning trees

because of the expensive space complexity and time
complexity to detect if a spanning tree has already been
encountered. However, we implement tabu by forbidding the
repetitive replacement of a couple of edges in successive
iterations.

In LSA4STP, the considered (max congested) edge, the
removed edge and the added edge are inserted into the tabu list
at each search iteration. We freeze these edges for the next x
search iterations.

In our experiments, we obtained the good results by setting
(x=10).

E. Spanning Tree Query

In our algorithm, we manipulate a dynamic spanning tree
with two kinds of actions at each step of the local search
algorithm: (1) update the tree (i.e., edge replacement) and (2)
query the tree (i.e., nearest common ancestor of a two vertices,
the father of a given vertex, etc.). Queries are usually
performed many times in the neighborhood exploration phase.
For instance, in order to determine whether or not an edge can
be used to reconnect two disconnected sub-trees (by removing
an edge of the current tree), we must check whether or not a
given vertex belongs to a given subtree. This can be done by
querying the nearest common ancestor of two vertices. To

simplify the design of our algorithm and to increase its
efficiency, we use the VarSpanningTree abstraction of the
LS(Graph & Tree) framework [18] representing dynamic tree
of a given graph. LS(Graph & Tree) is a local search
framework (an extension of COMET [17]) which simplifies
the modeling of Constraint Satisfaction Optimization
Problems on graphs and trees. Using this framework, many
complex computations on trees are modeled and abstracted as
a simple query. Last, by using the incremental data structures
(auto-update after each change of the tree), all queries on
spanning tree mentioned above can be performed in time O(1)
and the update action is performed in O(n) where n is the
number of vertices of the given network.

F. Link Cost Generation

As defined in Section III, our objective is to find an optimal
configuration of the link costs W* such that STP(G,W) yields a
spanning tree minimizing Umax. From the spanning tree
obtained by LSA4STP, we generate the cost matrix W by
assigning a unit cost to all the edges in the spanning tree and
by assigning a cost of n (number of nodes) to all the other
edges in graph. After this assignment, we can see that the cost
of the longest possible path between a pair of nodes in
spanning tree is n-1 (passes n-1 edges) while the cost of the
shortest path between any pair of nodes with out using of
spanning tree edges is n (passes one edge). Consequently, the
802.1d protocol [11] will produce the intended spanning tree.

V. EXPERIMENTS AND RESULTS

We present in this section the method for generating
network topologies and traffic demand matrices for our tests
are described. Next, we analyze the obtained results by
evaluating the improvement of the link utilization in each test

and by comparing this solution with the one obtained with
IGPWO in [9] assuming that switches would be replaced by
routers.

A. Data Generation

For testing LSA4STP, we generated three types of generic
topologies: Grid, Cube, Expanded Tree and use two data
center topologies: the PortLand Data Center Network [19] and

Fig. 2. Loads computed incrementally

ALGORITHM 2 PSEUDO-CODE FOR GENERATING TREE TOPOLOGY

1: root = 1
2: in_tree = {root}

3: considered = 
4: while (#in_tree<n) do

5: select u  in_tree && u  considered
6: select num_branch  [min..max]
7: for all i  [1.. num_branch] do
8: if #in_tree<n then

9: select v  [1..n] && v  in_tree
10: createEdge(u, v)
11: in_tree = in_tree + {v}
12: end if
13: end for
14: considered = considered + {u}
15: end while

5

the Fat Tree [15]. The traffic demand matrices were generated
by using a uniform distribution for num_des (configurable)
pairs of switches in the network.

1) Generic topologies
We present in this section three generic topologies used in

our tests. The generation of these topologies has been done as
follows:

Grid In a grid topology, we consider each switch as a node
on the grid. We can see that in this grid topology, a node has
at most four edges. The size of the square grid is x2 with x
being the number of nodes on a line. To generate a grid
topology with n switches, we choose the smallest x such that
x2≥n. Among the x2 nodes square grid, we number the nodes
increasing from left to right and from top to bottom. Our grid
is the part of the square grid containing n nodes from node 1 to

node n.
Cube We can consider a cube as a composition of x square

grids, x being the number of nodes on a line. As for the
generation of the grid topology, we choose the smallest x so
that x3≥n. The cube network is the part containing the n first
nodes from the cube.

Expanded tree Tree or hierarchical network is a topology
where there is no cycle and the nodes are organized by levels.
The generation of the tree topology is described in Algorithm
2. First, we fix the node 1 as the root of tree (Line 1). At each
next step, we randomly select a node u that has not yet been
considered in the current tree (Line 5). The variable
num_branch in Line 6 contains the number of child nodes of
u. The value of num_branch is an arbitrary number in interval
[min..max]. We set (min=2) and (max=6) to generate our tree
topologies. Next, num_branch free nodes are selected
randomly to be inserted into the tree by creating num_branch
edges between u and these free nodes (Line 7 to Line 13). The
node u is marked as considered so that we do not consider it
any more in the next steps (Line 14). This step is iterated until
all the nodes from 1 to n have been inserted into the tree (Line
4).

The tree obtained by Algorithm 2 is a spanning tree. We
add to this tree two types of edges ensuring that we obtain a
biconnected tree (see Figure 3). The advantage of a
biconnected tree is: if any edge is removed, the tree remains
connected. This property ensures that STP has always an
alternative solution in case of link failures. In Figure 3, the

edges of type (1) connect a leaf with a higher level node while
the edges of type (2) connect a non-leaf node (except the root)
with a same or lower level node of a different branch. For each
tree, (n-1) new edges are added to create the biconnected tree.

To simulate networks in which a switch has many ports, we
define a ratio r ensuring that each node in the tree is connected
to at least r edges. In each test, from the generated biconnected
tree, we create three more trees with ratio r15=n/15, r10=n/10
and r5=n/5 (where n is the number of nodes).

Link bandwidths and link weights generation
For the topologies above, we use two types of link

bandwidth: Fast Ethernet 100 Mb/s and Gigabit Ethernet
1Gb/s. In our tests, 80% of the links are Fast Ethernet links
and 20% of the links are Gigabit Ethernet links.

The initial link cost matrix W is generated based on the link
bandwidths configuration BW. According to 802.1d [11], the
default link cost for Fast Ethernet is 19 and 4 for Gigabit
Ethernet.

2) Portland Data Center Network
Figure 4 depicts the PortLand Data Center Network

proposed in [19] consisting of 24 rows. There are 12 racks in
each row. Each rack contains 40 machines interconnected by a
ToR (top of rack) switch. Each ToR switch has 48 GigE ports:
44 ports of 1 GigE and 4 ports of 10 GigE. Each row has one
EoR (end of row) switch containing 96 ports of 10 GigE. Each
EoR switch connects to 12 ToR switches via one of the four
ports of 10 GigE of the ToR. 24 EoR switches connect to a
Core Switch Layer consisting of 1296 ports of 10 GigE. So we
have 313 switches in a PortLand topology.

This PortLand design creates a 3-level spanning tree
topology. As for the trees in the previous section, we do the
same steps to obtain a biconnected tree. However, for the
PortLand topology, we must consider the available ports on
ToR, EoR and Core Switch Layer when adding the edges.

Fig. 3. Expanded tree

Fig. 4. PortLand Data Center Network

6

Because PortLand tree has only 3 levels, we aggregate the
two types of edges (1) and (2) in Figure 3 as the edges (*)
between ToR and EoR as depicted in Figure 4. Each ToR has
4 ports of 10 GigE, one of them is connected to an EoR, so we
have 3 available ports of 10 GigE for each ToR. Each EoR
has 96 ports of 10 GigE, 12 of these ports are connected to 12
ToRs, 1 another port is used to connect to the Core Switch
Layer, and so we have 83 free ports of 10 GigE for each EoR.
Core Switch Layer has 1296 ports of 10 GigE, 24 ports have
connected to 24 EoRs, and so it has 1272 free ports of 10
GigE. The generated biconnected trees of PortLand are
considered in our tests.

3) Fat Tree
Fat Tree described in [15] is another topology for Data

Center Network. It is called Fat Tree because it is not a
spanning tree like PortLand. All the ports on each switch are
used to connect to the hosts or to the other switches. The Fat
Tree topology is constructed as follows.

All the switches in Fat Tree have k ports. There are k pods.
Each pod contains k switches divided into 2 layers:
Aggregation and Lower Level. Each layer consists of k/2
switches. Each switch in Lower Level connects to k/2 hosts
and the remaining k/2 ports connect to k/2 switches of the
Aggregation layer of the same pod. There are (k/2)2 switches
in the Core layer of a Fat Tree. Each Core switch connects to
one switch in the Aggregation layer of all the k pods. We
number the switches in the Aggregation layer of each pod
from 1 to k/2. We split (k/2)2 switches in the Core layer into
k/2 portions, each containing k/2 switches. We number the
switches in each of these portions from 1 to k/2. The ith switch
in each portion of the Core layer is connected to the ith switch
in the Aggregation layer of all the k pods. In our tests, we set
k=16, so we have 320 switches for each Fat Tree topology.

Link bandwidths and link weights generation
Like PortLand topologies, all the links of Fat Tree in our

tests are 10 GigE and according to 802.1d [11], their link costs
are 1.

4) Traffic Demand Matrix
Several authors have recently analyzed the traffic matrices

that are found in real datacenters [3], [13]. Unfortunately,
these datasets are private and there are no methods that can be
used to generate traffic demands that are representative of
datacenter networks. For this reason, we wrote a simple traffic

matrix generator that allows to test several types of traffic
matrices. We first start with a uniform traffic matrix where all
switches send traffic to all other switches in the network.
Then, we generate traffic matrices that are less and less
uniform by considering that most of the traffic is sent to a
subset of the switches. These non-uniform matrices could

correspond to storage servers or routers that often sink a large
fraction of the traffic in datacenters.

The pseudo-code in Algorithm 3 is used to generate the
traffic demand matrix for all our tests. We consider that there
is a subset of the switches that receive most traffic. In practice,
these switches would be the ones attached to routers in data
centers or the ones attached to high end servers in Campus
networks. The method getDestinationsSet(num_des) in Line 1
returns the set of destinations for which all switches send the
traffic to. From the input parameter num_des, this method
generates the set of destinations by selecting randomly
num_des nodes out of n (number of nodes) to insert into
destinations. In our experiments, we generate for each
network topology 5 traffic demand matrices: all switches
receive traffic – uniform matrix (num_des=n), 50% of
switches receive traffic (num_des=n/2), 20% of switches
receive traffic (num_des=n/5), 10% of switches receive traffic
(num_des=n/10) and 5% of switches receive traffic
(num_des=n/20). For each network topology, we fix a sum of
traffic demand (sumTD in Table 1) for all of these 5 traffic
demand matrices. This sumTD depends on the network type,

network size, number of links and link bandwidths (see Table
1). For each pair of switches, the method getUniformTD in
Line 4 generates a traffic demand in the interval
[minTD..maxTD]. The minTD and maxTD values are
computed based on sumTD.

B. Experiments

We generated the 7 topologies as described in Table I. Each
topology has 5 traffic demand matrices as described in Section
V.A.4. For each Expanded Tree, we have four topologies
(biconnected tree, r15=n/15, r10=n/10 and r5=n/5) with the
same traffic demand matrix. The input of each test is one
network topology Graph G=(N,E), one bandwidth matrix BW,
and traffic demand matrix TD. We generated 50 tests for Cube
(10 topologies x 5 traffic demand matrices), 50 tests for Grid
(10 topos x 5 tdms), 200 tests for each of Expanded Tree from
1 to 3 (40 topos (10 for each of biconnected tree, r15=n/15,
r10=n/10 and r5=n/5) x 5tdms), 50 tests for Fat Tree (10 topos
x 5 tdms), and 50 tests for PortLand (10 topos (biconnected
tree) x 5 tdms). So we have 800 tests. These tests are available
online in [26]. The time window for running LSA4STP for
each topology type is described in Table I.

C. Evaluation

We consider the improvement of the maximal utilization
Umax as the criterion to evaluate the performance of LSA4STP.
We also measure Umax obtained with the default weights by

ALGORITHM 3 PSEUDO-CODE GENERATING THE TRAFFIC DEMAND MATRIX

1: destinations = getDestinationsSet(num_des);
2: for all i  [1.. n] && j  destinations do
3: if i ≠ j then
4: td[i,j] = getUniformTD(minTD, maxTD, sumTD);
5: end if
6: end for

TABLE I
DATA GENERATION AND TIME WINDOW FOR LSA4STP

No Topo. Type
Num.
Nodes

sumTD(Mb)
Time Window

(s)
1 Grid 50 400 300
2 Cube 50 400 300
3 Expanded Tree 1 50 1000 300
4 Expanded Tree 2 100 1500 600
5 Expanded Tree 3 200 2600 1200
6 PortLand 313 120000 1800
7 Fat Tree 320 56000 1800

7

STP 802.1d.
We present in Figure 5 our results obtained for the 2 generic

networks: Cube, Grid as well as Fat Tree and PortLand. For
these 4 networks, LSA4STP gives the best results for the Cube
since it reduces on average the value of Umax up to 50% for all
the 5 types of traffic demand matrices. For the Grid, Fat Tree
and PortLand Umax is also reduced to about 60%-80%.
LSA4STP works better for the Cube, Grid than for the Fat
Tree, PortLand because the link bandwidths in the Fat Tree,
PortLand are homogeneous (all 10 Gb/s) while the ones in the
Cube, Grid are not (100 Mb/s and 1 Gb/s). But the reason is
not the difference of the sum of link bandwidths between the

spanning trees. In our tests, this sum of the initial (802.1d) and
best Umax (LSA4STP) one is almost the same. However, for
the Cube and Grid, in the 802.1d solutions the most congested
links are the links of 100 Mb/s while the 1 Gb/s ones are not
efficiently used as in the solutions obtained with LSA4STP.

Our local search algorithm is especially efficient for the

tests of Expanded Tree in which high quality solutions exist in
a large search space. Figure 6 depicts the results of LSA4STP
with the tests of Expanded Tree 100 in which the value of Umax

is dropped to about 49% for the Biconnected Tree, 47% for
r15, 64% for r10 and 78% for r5. The reason is always the
efficient use of 1Gb/s links. With the ratio r5, the average

number of 1 Gb/s links is 97 out of 99 links of spanning tree

(almost homogeneous of link bandwidths). This number of
Biconnected Tree is 32, of r15 is 53, of r10 is 76. That
explains why with the ratio r5, LSA4STP has the similar
results as Fat Tree and PortLand.

In both of Figure 5 and Figure 6, we can see the same
decreasing order of Umax for each test from left to right. With
the same topology and the same sum of traffic demand
(sumTD), each traffic demand matrix gives a different Umax

(obtained with 802. 1d or LSA4STP). Higher Umax values are
observed with the more biased traffic demand matrices.
Because for all these 5 traffic demand matrices, all switches
send traffic to a number of switches (num_des). So the more
switches receive traffic the more balancing traffic is

distributed to the links. Obviously, the uniform traffic demand
matrix always gives the lowest Umax.

We describe in Table II the average time for LSA4STP to
find the best solution for each test of the 7 topologies. This
time for the topologies of: 50 nodes (Cube, Grid, Expanded
Tree 1) is about 2 minutes, 100 nodes (Expanded Tree 2) is ~
4 minutes, 200 nodes (Expanded Tree 3) is ~ 5 minutes and
313 (PortLand) and 320 (Fat Tree) nodes are ~ 6 minutes. We
can state that LSA4STP works well for the large scale tests
when the time complexity of link load computations in each
search iteration is collapsed.

D. Comparison with IGP Weight Optimization

Several IGP Weight Optimization (IGPWO) techniques
have been proposed for IP networks [4], [9], [1], [2]. In this
section we compare the performance of LSA4STP to a local
search algorithm (LSA4IGPWO) in the COMET language [9].
IGP weight optimization is not applicable to existing Ethernet
networks as it only applies to IP routers. Compared to Ethernet

Fig. 6. Result for Expanded Tree 100

Fig. 7. LSA4STP vs LSA4IGPWO

Fig. 5. Result for Cube, Grid, Fat Tree & PortLand

TABLE II
AVERAGE TIME FOR LSA4STP FINDING THE BEST SOLUTION (IN S)

Topo. Type #des=n #des=n/2 #des=n/5 #des=n/10 #des=n/20

Grid 192 188 170 185 124
Cube 91 165 130 130 206

Exp.Tree 1 108 103 130 128 143
Exp.Tree 2 222 224 211 306 271
Exp.Tree 3 251 232 298 321 258
PortLand 350 339 418 427 412
Fat Tree 409 392 438 385 395

8

switches, IP routers have the advantage of being able to send
packets over all links in the network while the STP disables a
subset of the links. Given the price difference between IP
routers and switches, large datacenters will not replace their
switches with IP routers. However, there is ongoing work
within the IETF to develop standards to allow next-generation
switches to use the IS-IS routing protocol instead of the
802.1d protocol [24], [25]. This solution requires more
powerful switches and it can be expected that it will only be
supported on new high-end switches initially.

To compare IGPWO with LSA4STP, we performed an
experiment with the Expanded Tree containing 50 nodes and
the uniform traffic demand matrix (num_des=n). The time
windows for running IGPWO and LSA4STP are the same
(300s). To evaluate the impact of the number of alternate paths
in the topology, we varied the number of additional links in
the Expanded Tree. Figure 7 shows on the x axis the number
of links that were added to the Tree (see section V.A.1) and on
the y axis the maximum utilization for IGPWO and LS4STP.
When there are less than 6 links, LS4STP is within 20% of the
solution obtained by IGPWO. When the number of additional
links in the Expanded Tree grows, the distance between
LSA4STP and IGPWO grows as well. This is normal since
LSA4STP uses only a fraction of the links while IGPWO is
able to send traffic over all links. For example, regarding
Figure 7, at 25 added links, to obtain an Umax ~ 0.3, IGPWO
must use all the 74 links. So when there are link failures, this
solution given by IGPWO has no reserved link to ensure the
service availability while the number of reserved links of the
one obtained with LSA4STP is 25.

VI. CONCLUSION

In this paper, we have proposed a new TE technique based
on local search that finds the best spanning tree that minimizes
congestion for a given traffic matrix in Ethernet network.

Our choice of directly optimizing spanning trees instead of
link weights reduces the size of the search space. We have
proposed an efficient technique to recompute the link loads at
each search iteration that can avoid the all pairs paths
computation.

Our local search heuristic has been implemented in the
Comet language and our simulations show promising results.

Our further work is to extend our framework to support
multiple traffic matrices and multiple VLANs.

VII. ACKNOWLEDGEMENT

Ho Trong Viet is supported by the FRIA (Fonds pour la
formation à la Recherche dans l’Industrie et dans
l’Agriculture, Belgium). Pierre Francois is supported by the
FRNS (Fonds National de la Recherche Scientifique,
Belgium).

REFERENCES

[1] A. Sridharan, R. Guerin and C. Diot, “Achieving Near-Optimal Traffic
Engineering Solutions for Current OSPF/IS-IS Networks”, IEEE/ACM
Transaction on Networking, Jan, 2005.

[2] Antonio Nucci, and Konstantina Papagiannaki, “Design, Measurement
and Management of Large-Scale IP Networks: Bridging the Gap
Between Theory and Practice”, Cambridge University Press, 2009.

[3] Benson, T., Anand, A., Akella, A., and Zhang, M, “Understanding data
center traffic characteristics”, SIGCOMM Comput. Commun. 2010.

[4] Bernard Fortz, and Mikkel Thorup, “Internet Traffic Engineering By
Optimizing OSPF Weights, ” IEEE INFOCOM, 2000.

[5] Cisco Systems, “Understanding Spanning Tree Protocol Appendix C,”
Cisco Systems 1989-1999pp, C-1 through C-12.

[6] D.O. Awduche, “MPLS and Traffic engineering in IP Networks”, IEEE
Communications Magazine, Dec. 1999, pp. 42-47.

[7] Dorabella Santos, et al., “Traffic Engineering of Multiple Spanning Tree
Routing Networks: the Load Balancing Case”, Next Generation Internet
Networks NGI '09, 2009.

[8] Glover, F. and M. Laguna, “Tabu Search”, Kluwer Acadenic Publishers,
Norwell, MA, 1997.

[9] HO Trong Viet, P. Francois, Y. Deville, and O. Bonaventure,
“Implementation of a Traffic Engineering technique that preserves IP
fast reroute in COMET,” Proceedings of the 2009 AlgoTel, June 16-19,
2009.

[10] I. Gent, and B. Smith, “Symmetry breaking in constraint programming,”
Proc. ECAI00, 2000.

[11] IEEE Standard 802.1D, “Information technology-Telecommunications
and information exchange between systems-Local and metropolitan area
networks-Common specifications-Part 3: Media Access Control (MAC)
Bridges,” ,1998.

[12] IEEE Standard 802.1S, “Virtual Bridged Local Area Networks -
Amendment 3: Multiple Spanning Trees”, 2002

[13] Kandula, S., Sengupta, S., Greenberg, A., Patel, P., and Chaiken, R,
“The nature of data center traffic: measurements & analysis”,
Proceedings of the 9th ACM SIGCOMM Conference on internet
Measurement Conference , Chicago, Illinois, USA, November 04 - 06,
2009.

[14] Krysztof R. Apt, “Principles of Constraint Programming”, Cambridge
University Press, 2003.

[15] M. Al-Fares, A. Loukissas, and A. Vahdat, “A Scalable, Commodity
Data Center Network Architecture,” SIGCOMM 2008.

[16] M. Padmaraj , et al., “Metro Ethernet traffic engineering based on
optimal multiple spanning trees”, Wireless and Optical Communications
Networks, 2005. WOCN 2005.

[17] P. V. Hentenryck, and L. Michel, “Constraint-based Local Search,” MIT
Press, 2005.

[18] Pham Quang Dung, Y. Deville, and P. V. Hentenryck, “LS(graph &
tree): a local search framework for constraint optimization on graphs and
trees,” Proceedings of the 2009 ACM Symposium on Applied
Computing (SAC), 2009.

[19] R. N. Mysore, and al., “PortLand: A Scalable Fault-Tolerant Layer 2
Data Center Network Fabric,” SIGCOMM 2009.

[20] Radia Perlman, “Interconnections: Bridges, Routers, Switches, and
Internetworking Protocols (2nd Edition),” Addison-Wesley, 1999.

[21] Ramaswami, R. and Sivarajan, K. N, “Routing and wavelength
assignment in all-optical networks. IEEE/ACM Trans. Netw, 1995.

[22] Wentao Chen, Depeng Jin, and Lieguang Zeng, “Design of Multiple
Spanning Trees for Traffic Engineering in Metro Ethernet”, International
Conference on Communication Technology ICCT '06, 2006.

[23] Xiaoming He, Mingying Zhu, and Qingxin Chu, “Traffic Engineering
for Metro Ethernet Based on Multiple Spanning Trees”, Conference on
Mobile Communications and Learning Technologies, 2006.

[24] R. Perlman, “RBridges: Transparent Routing”, Proc. IEEE INFOCOM
2005.

[25] R. Perlman et al., “RBridges: Base Protocol Specification”, Internet
draft, Jan. 2010.

[26] Ho Trong Viet et al., “Using Local Search for Traffic Engineering in
Switched Ethernet Networks”, 2010.
http://becool.info.ucl.ac.be/page/datas-lsa4stp

