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Evidence suggests that in developing countries, agents rely on mutual insurance agreements to deal with 
income or expenditure shocks. This paper analyzes which risk-sharing networks can be sustained in the 
long run when individuals are far- sighted, in the sense that they are able to forecast how other agents 
would react to their choice of insurance partners. In particular, we study whether the farsightedness of the 
agents leads to a reduction of the tension between stability and efficiency that arises when individuals are 
myopic. We find that for extreme values of the cost of establishing a mutual insurance agreement, myopic 
and farsighted agents form the same risk-sharing networks. For intermediate costs, farsighted agents form 
efficient networks while myopic agents don't. 
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1 Introduction

In this paper, we study the formation of risk-sharing networks. There are regions

in developing countries where the access to a formal insurance market is limited.

Some villages lack for instance institutions that can enforce contracts or repayments

of loans. Economic �uctuations, due to climate shocks, crop pests, illness or fu-

neral expenditures are important in those low income areas. Informal risk-sharing

appears to be one of the prominent strategy used to cope with these shocks (see the

survey of Alderman and Paxson, 1994). That is, households in need receive help

from others, in the form of free loans or transfers. A growing empirical literature

(see Fafchamps, 1992; Grimmard, 1997; Fafchamps and Lund, 2003; De Weerdt

and Dercon, 2006) has shown that a fully e¢ cient risk-pooling equilibrium is not

reached: risk-sharing does not take place within exogenous group such as the vil-

lage, but rather within networks involving agents having common characteristics

(neighborhood, professional or religious a¢ liation, kinship, etc).

Most of the theoretical papers on informal risk-sharing in developing countries

assume that no binding agreement can be enforced. In this context, if the risk occurs

only once, the fortunate agent has no incentive to transfer money ex-post. However,

this e¤ect disappears in a dynamic setting where multiple shocks are expected to

occur since agents who transfer money today may expect to be reciprocated at a

future date. This literature o¤ers a theoretical argument to explain the observed lack

of complete income pooling at the village level by analyzing the transfer schemes

which are such that each agent is willing to conform to the agreement once the

uncertain income shock occurs.1

1Kimball (1988) has shown that if individuals are su¢ ciently patient, then some �rst-best

allocation, i.e. allocations that would be e¢ cient if agents had the possibility to commit to a

transfer scheme, can be implemented as a subgame perfect equilibrium. Coate and Revallion

(1993) have studied the symmetric two-player model by restricting their analysis to stationary

transfers. They have improved upon Kimball (1988) in that they have endogenized the amount of

transfers while previous work had considered only the extreme cases of complete income pooling

or no transfer at all. Kocherlakota (1996) has further analysed the case of impatient agents and

has shown that the Pareto-undominated subgame perfect allocations imply a positive correlation

between individual consumption and current and lagged income. Ligon, Thomas and Worrall

(2002) have shown that allowing transfers to depend upon history of transfers is payo¤ improving

for the agents. Genicot and Ray (2003) have further studied this problem by adding the possibility

that groups of agents jointly deviate from the prescribed transfer scheme. Finally, Bloch, Genicot

and Ray (2005) have adapted previous work for situations where transfers occur through a network
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Platteau (2002) has argued that risk-sharing usually occurs among relatives and

even if the institutional context does not provide the tools to enforce contracts,

agents involved in a risk-sharing relationship may be committed to the agreement

because the social norm imposes it. Bramoullé and Kranton (2007a) have developed

a model, where agents establish their informal insurance relationships endogenously,

assuming that linked pairs can commit to share equally their income. They have

considered agents who are ex ante homogeneous, but di¤er through their position

in the network.2 They have shown that the e¢ cient risk-sharing networks are such

that each agent is indirectly connected to the others, involving the maximal level

of insurance in the population, and that networks formed by myopic agents connect

fewer individuals than the e¢ cient ones. They have thus provided another theoret-

ical explanation of the observation that informal insurance does not occur at the

village level.

Empirical studies support the idea that mutual risk-sharing agreements are

formed endogenously. For instance, Rosenweig and Stark (1989) have observed

that marriages between households from di¤erent regions in India occur to diver-

sify geographically the risks.3 Dekker (2004) has studied the endogenous formation

of risk-sharing networks in four resettlement villages in rural Zimbabwe. She has

found that in a social environment where blood relatives are scarce, resettled house-

holds have strongly invested in activities to establish links with surrogate relatives.

Comola (2008) has observed that the structure of the network, that is the social po-

sition of an agent with respect to the others, is critical to understand the choice of

risk-sharing partners. Based on data on the village Nyakatoke in Tanzania, she has

rather than through a group.

2There have been other attempts to model the formation of informal network in the spirit of

Jackson and Wolinsky (1996), where direct links involve bene�ts and costs, while indirect links

a¤ect positively or negatively the agents depending on the nature of the network externalities.

Bramoullé and Kranton (2007b) have studied the formation of risk-sharing networks among agents

living in two di¤erent villages, assuming that the shock to the income of households is village spe-

ci�c. Comola (2008) has proposed a model of network formation, where bene�ts and costs to links

formation are heterogeneous. Krishnan and Sciubba (2008) have extended the co-author model of

Jackson and Wolinsky (1996) to study bilateral labor exchange agreements among heterogeneous

agents.
3Grimmard (1997) has found evidence of transfers and migrations in Côte d�Ivoire supporting

this idea.
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found that "not only the characteristics of direct friends, but also the characteristics

of indirect contacts are taken into account when a link is created".

This paper analyzes which pattern of insurance relationships emerges in the long

run when agents are farsighted, rather than myopic, in the sense that they are able

to forecast how other agents would react to their choice of partners. In his survey

of models of network formation, Jackson (2005) has mentioned that farsightedness

is an important consideration in some appropriate context. He has stated that "in

large networks it might be that players have very little ability to forecast how the

network might change in reaction to the addition or deletion of a link. In such

situations the myopic solutions are quite reasonable. However, if players have very

good information about how others might react to changes in the network, then

these are things that one wants to allow for either in the speci�cation of the game

or in the de�nition of the stability concept". To our knowledge, no existing work

has attempted to establish whether agents are farsighted or not when creating their

network in rural areas of developing countries. However, we believe that the key

ingredients mentioned by Jackson (2005) for farsightedness to matter are present in

this framework: our focus is on small communities, where agents have good informa-

tion about each other. Agents in the model of Bramoullé and Kranton (2007a) are

strategic: they establish links with other agents, anticipating that these connections

might be pro�table in the future if they face negative income shocks. In this paper,

we assume that agents are a bit more strategic: in addition to forming connections

in anticipation of likely future negative shocks, they also realize that their choice of

partners may determine others�choices of partners. Such anticipation is consistent

with Comola (2008)�s observation that the full architecture of bilateral agreements

determines the incentives for a pair of agents to establish a partnership. We adopt

the notion of pairwise farsightedly stable set due to Herings, Mauleon and Vannetel-

bosch (2009) to determine which networks are formed by farsighted agents.4 We �nd

that for small costs of establishing and maintaining a partnership, farsighted agents

may form e¢ cient networks that involve full income pooling while myopic agents

form networks connecting fewer individuals. Two mechanisms explain this result: (i)

Farsighted agents belonging to small groups may decide to create new partnerships

4Other approaches to farsightedness in network formation are suggested by the work of Xue

(1998), Herings, Mauleon, and Vannetelbosch (2004), Mauleon and Vannetelbosch (2004), Page,

Wooders and Kamat (2005), Dutta, Ghosal, and Ray (2005), and Page and Wooders (2009).
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that are not directly pro�table to them, because they realize that other partners

will further join this bigger and more attractive group. In other words, the farsight-

edness of the agents may solve a coordination problem. (ii) Farsighted agents may

refrain from deleting costly links if they belong to a big group, as they understand

that this may induce others to rearrange their partnerships in a way that deters the

myopic incentives to delete the link at �rst. We have already mentioned that em-

pirical studies have revealed that risk-sharing occurs among agents having common

characteristics. Farsightedness may be a factor rationalizing this observation.

The paper is organized as follows. In Section 2 we introduce some notations

and de�nitions for networks, and we present the model of risk-sharing networks of

Bramoullé and Kranton (2007a). In Section 3, we investigate the formation of risk-

sharing networks when agents are myopic. Section 4 provides a characterization of

the pairwise farsightedly stable set of risk-sharing networks. In Section 5, we analyze

more in detail the formation of risk-sharing networks when agents have a quadratic

utility function. In Section 6, we conclude.

2 Model and notation

Networks

A network (N; g) is de�ned by a set of agents N = f1; : : : ; ng and a list g of which
pairs of individuals among the agent set N are linked to each other. For sake of

notation we simply use the set of links g to refer to the network when the player setN

is �xed. The network relationships are reciprocal and the network is thus modelled

as a non-directed graph. Individuals are the nodes in the network and links indicate

bilateral relationships between individuals. We write ij 2 g to indicate that i and
j are linked under the network g. Let gN be the collection of all subsets of N with

cardinality 2, so gN is the complete network. The set of all possible networks on N is

denoted by G and consists of all subsets of gN . The network obtained by adding the
link ij to an existing network g is denoted g + ij and the network that results from

deleting the link ij from an existing network g is denoted g� ij. For any network g,
let N(g) = fi 2 N j 9 j such that ij 2 gg be the set of agents who have at least one
link in the network g. The degree of agent i in a network g is the number of links

that involve that agent: di(g) = #fj 2 N j ij 2 gg. The total number of links of a
network g is given by d(g) = �i2Ndi(g)=2. A path in a network g 2 G between i and
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j is a sequence of agents i1; : : : ; iK such that ikik+1 2 g for each k 2 f1; : : : ; K � 1g
with i1 = i and iK = j. A network g is connected if for each pair of agents i and

j such that i 6= j there exists a path in g between i and j. A component of a

network (N; g), is a nonempty subnetwork (N 0; g0) such that ; 6= N 0 � N , g0 � g

satisfying (i) (N 0; g0) is connected, and (ii) if i 2 N 0 and ij 2 g, then j 2 N 0 and

ij 2 g0.5 The set of components of g is denoted by C(g). A component of a network is
minimally connected if the path between any two agents in that component is unique.

The set of networks composed of minimally connected components is denoted Gm.

Formally, Gm = fg 2 G j #C(g) < #C(g � ij) for each ij 2 gg [ fg;g, where g; is
the empty network. A network is minimally connected if all the agents are in the

same minimally connected component. The set of minimally connected networks is

GM = fg 2 Gm j #C(g) = 1g. We use the measure of betweenness centrality of
Freeman (1977). Letting Pi(kj) denote the number of shortest paths between k and

j that i lies on, and P (kj) = �i=2fk;jgPi(kj), the betweenness centrality of an agent

i is given by CeBi (g) = (2=((n � 1)(n � 2)))�k 6=j:i=2fk;jgPi(kj)=P (kj). This measure
will be used to determine the central agents of a connected line. A connected line

is a minimally connected network (N; g) such that no agent in N has more than

two links. The set of connected lines is GL = fg 2 GM j di(g) � 2 for all i 2 Ng.
The central elements of a line g 2 GL are the agents with the highest measure of
betweenness centrality. Formally, for g 2 GL, Ce(g) = fi 2 N j CeBi (g) � CeBj (g)
for all j 2 Ng.
Model

We further investigate the model of Bramoullé and Kranton (2007a) where n

ex-ante identical individuals are risk averse and face shocks to their income. Each

individual�s income, yi, is a random variable which is independently and identically

distributed with mean y and variance �2. Agents have identical preferences, repre-

sented by the utility function v, which is increasing and strictly concave in monetary

holdings. Individuals may create links with each other. By doing so, they commit to

pool their income with the other agents in their component and to share it equally.6

5This de�nition of components is proposed by Jackson (2008) and implies that an agent without

links in a network is considered as a component.
6In reality, full income pooling is not observed. Ligon (1998) �nds that information asymmetry is

the main factor explaining incomplete income pooling in rural India. Lack of commitment (Coates

and Revallion, 1993) is another explanation of this observation. In our model, we assume full

information and that agents have the ability to commit to a future contingent transfer. As such,
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It follows that risk-sharing bene�ts only depend on the number of individuals in

the component. If agents 1; 2; :::; s belong to a component of size s, then the mon-

etary holdings of each agent in this component are (y1 + y2 + ::: + ys)=s and their

expected utility are given by u(s) = Ev((y1 + y2 + :::+ ys)=s), where E denotes the

expectation over the realization of incomes. The expected monetary holdings of an

agent are independent of the network, but the variance of her expected monetary

holdings is decreasing with the size of the component to which she belongs. Since

agents are risk-averse, the expected utility function u(s) is increasing in the size of

the component, that is u(s + 1) > u(s) for all integer s. In addition, we assume

that it increases at a decreasing rate, i.e. u(s + 2) � u(s + 1) < u(s + 1) � u(s)
for all s. That is, the bigger is the set of agents with whom an agent shares her

risk, the smaller is her bene�t to have a new insurance partner. Each direct link ij

results in a cost c to both i and j. This cost should be interpreted as an amount

of resources needed to ensure that the transfers are realized ex-post, once the shock

is realized. In other words, it is assumed that a richer agent will share her revenue

with a poorer agent to whom she is linked, because those agents have developed a

relationship of trust among themselves, which was costly to establish. We assume

that these costs are non-monetary and as such, they cannot be shared with other

members of the component. Bramoullé and Kranton (2007a) have motivated this

assumption by saying that "some costs, such as the time incurred to build a relation

are not easy to compensate or transfer". The payo¤ of agent i in the network g is

given by

Ui(g) = u(si)� di(g)c;

where di(g) indicates the number of links agent i has and si denotes the size of the

component to which she belongs, si = #S, where i 2 S and (S; h) 2 C(g).

E¢ ciency

A network g 2 G is e¢ cient if it maximizes the total societal value, that is

if �i2NUi(g) � �i2NUi(g
0) for all g0 2 G. E¢ cient networks are composed of

minimally connected components since otherwise, productive resources would be

wasted. The total utility of the agents in a network g composed of k minimally

connected components is given by �i2NUi(g) = �kj=1sju(sj) � 2c(n � k), where sj

the choice of the equal sharing rule seems appropriate as it is the optimal one.
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is the size of the component j. The assumption on the expected utility function

ensures that the total value of a component is increasing with the size of this com-

ponent, namely (s + 1)u(s + 1) > su(s). Bramoullé and Kranton (2007a) have

shown that this total value could increase at an increasing or decreasing rate, i:e:

(s + 2)u(s + 2) � (s + 1)u(s + 1) could be bigger or smaller than (s + 1)u(s + 1)�
su(s).7 We assume in this paper that the total value of a component is increasing

with the size of this component at a nondecreasing rate. E¢ cient networks can then

only be of two types: either nobody is linked or everybody is indirectly connected.

Let us note by c� = (n[u(n) � u(1)])=(2(n � 1)) the critical cost of link formation
such that the empty network generates the same total utility than a minimally con-

nected network. When (s + 2)u(s + 2)� (s + 1)u(s + 1) > (s + 1)u(s + 1)� su(s)
for all s 2 f1; 2; :::; n� 2g, the empty network is e¢ cient if c > c�, while an e¢ cient
network is composed of one component connecting minimally the n agents if c < c�.

3 Stable risk-sharing networks when agents are

myopic

In this section, we investigate the formation of stable risk-sharing networks when

agents are myopic. We adopt the notion of pairwise myopically stable sets due to

Herings, Mauleon and Vannetelbosch (2009) which is a generalization of Jackson and

Wolinsky (1996) pairwise stability notion. A pairwise myopically stable set is such

that from any network outside this set, there is a myopic improving path leading

to some network in the set, and each deviation outside the set is deterred because

the deviating agents do not prefer the resulting network. The notion of myopic

improving path is due to Jackson and Watts (2002) and is de�ned as a sequence of

networks that might be observed when agents are adding or deleting links, one at a

time, in order to improve their current payo¤. Formally, a myopic improving path

from a network g to a network g0 6= g is a �nite sequence of networks g1; : : : ; gK with
g1 = g and gK = g0 such that for any k 2 f1; : : : ; K � 1g either: (i) gk+1 = gk � ij

7No general properties of v and y determine the curvature of su(s). Bramoullé and Kranton

(2007a) have shown that when the primitive utility function is CARA: v(y) = v0 � e��y, where
� > 0 denotes the level of absolute risk-aversion, and if income is normally distributed, then

su(s) is increasing with s at a decreasing rate, while if we consider the quadratic utility function:

v(y) = y � �y2, where � is a positive parameter, then su(s) is increasing linearly with s.
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for some ij such that Ui(gk+1) > Ui(gk) or Uj(gk+1) > Uj(gk), or (ii) gk+1 = gk + ij

for some ij such that Ui(gk+1) > Ui(gk) and Uj(gk+1) � Uj(gk). For a given network
g, we denote by M(g) the set of networks that can be reached through a myopic

improving path from g.

De�nition 1. A set of networks G � G is pairwise myopically stable if

(i) 8 g 2 G,

(ia) 8 ij =2 g such that g+ ij =2 G, (Ui(g+ ij); Uj(g+ ij)) = (Ui(g); Uj(g)) or Ui(g+
ij) < Ui(g) or Uj(g + ij) < Uj(g),

(ib) 8 ij 2 g such that g � ij =2 G, Ui(g � ij) � Ui(g) and Uj(g � ij) � Uj(g),

(ii) 8g0 2 G nG; M(g0) \G 6= ;;

(iii) @ G0  G such that G0 satis�es Conditions (ia), (ib), and (ii)..

Conditions (ia) and (ib) in De�nition 1 capture deterrence of external deviations.

In Condition (ia) the addition of a link ij to a network g 2 G that leads to a network
outside G is deterred because the two agents involved do not prefer the resulting

network to network g. Condition (ib) is a similar requirement, but then for the case

where a link is severed. Condition (ii) requires external stability. External stability

asks for the existence of a myopic improving path from any network outsideG leading

to some network in G. Notice that the set G (trivially) satis�es Conditions (ia), (ib),
and (ii) in De�nition 1. This motivates Condition (iii), the minimality condition.

Jackson and Watts (2002) have de�ned the notion of a closed cycle. A closed cycle

is a set of networks C such that for any pair of networks g; g0 2 C, where g 6= g0,
there exists a myopic improving path from g to g0, and each myopic improving

path emanating from a network in the set C does not reach a network outside C.

Each pairwise stable network is a closed cycle. Herings, Mauleon and Vannetelbosch

(2009) have proved that the pairwise myopically stable set coincides with the set of

networks that belong to a closed cycle.

Bramoullé and Kranton (2007a) have shown that the set of closed cycles consists

only of pairwise stable risk-sharing networks if some exist. In addition, they have

analyzed the architecture of pairwise stable networks and the conditions on the

parameters that guarantee their existence. To summarize their results, let s� be the
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critical size of a component such that the bene�t of adding another member to the

component is less than the cost of doing so:

s� = max fs 2 N j u(s)� u(s� 1) � cg :

Since the expected utility function u is increasing at a decreasing rate, an agent

belonging to a component of size s < s� is willing to add a link with a singleton

while an agent belonging to a component of size s > s� has incentives to cut a link if

she reaches a component of size s�1. Another threshold s�� de�nes the maximal size
of a component of a pairwise stable network if another component in the network

has size s�. The threshold s�� is de�ned as follows:

s�� = max fs � s� j u(s� + s)� u(s�) � c, with the inequality being strict if s < s�g :

An agent in a component of size s� is not willing to add a link with an agent in

a component of size smaller than or equal to s��. Each component of a pairwise

stable network is minimally connected and at least one of these components has

size s = minfs�; ng. If s� = s��, pairwise stable networks always exist. They are

composed of a maximal number of components of size s� and of one component of

smaller size. If s� > s��, pairwise stable networks exist if and only if s� + s�� � n.
They are then composed of one component size s� and of another of size n� s�. Let
G� be the set of networks composed of minimally connected components of size s�

and of one minimally connected component of size s = n � s� int(n=s�) if s 6= 0.8

Formally, G� = fg 2 Gm j if (S; h) 2 C(g) and #S 6= s�, then (i) #S < s� and (ii)
for all (S 0; h0) 2 C(g) with S 0 6= S, we have #S 0 = s�g. Bramoullé and Kranton
(2007a) have shown that the pairwise myopically stable set G is a superset of G�.

Furthermore, the two sets G and G� coincide if and only if s�+ s�� � n, or s� = s��.

Proposition 1. (Bramoullé and Kranton, 2007) The pairwise myopically

stable set G is such that G� � G. In addition, G� is the unique pairwise myopically
stable set if and only if either s� = s��, or n � s�� + s�.

All proofs are presented in the appendix. Let us introduce another threshold, s,

which is the maximal integer such that two agents in di¤erent components of size

s=2 are willing to add a link between them. Formally, it is de�ned as follows:

s = max fs 2 N j (i) s is even and (ii) u(s)� u(s=2) > cg :
8The operator int(x) gives the integer part of the real x.
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Notice that the addition of a link is not pro�table for at least one of the agents

involved if one of them belongs to a component of size bigger than s=2.9 The

following proposition states that each network in the pairwise myopically stable set

is composed of minimally connected components of size smaller than or equal to s,

and contains at least s� � 1 links, but no more than n� 1� int((n� 1)=s) links.

Proposition 2. Each network g in the pairwise myopically stable set G is such that

(i) g 2 Gm, (ii)#S � s for all (S; h) 2 g and (iii) s��1 � d(g) � n�1�int((n�1)=s).

Intuitively, there exists a myopic improving path from every network composed

of components which are not minimally connected to some network composed of

minimally connected components if the agents delete unnecessary links. However,

the converse does not hold. Once a network composed of minimally connected

components is reached, every myopic improving path leads to other networks in

Gm since the addition of a useless link is costly. In addition, from networks composed

of big-sized components, agents are willing to cut links with peripheral agents (agents

having only one link) as long as the size of their component is bigger than s�. On

the other hand, from networks composed of small-sized components, no myopic

improving path is leading to a network having a component of size bigger than s

since, if it was the case, an agent should add a link at some point in the path when

she is currently a member of a component of size s > s=2, but the addition of that

link is not pro�table. Each network of the pairwise myopically stable set has more

than s�� 1 links since no agent is willing to cut a link if there are s� agents or fewer
in her component. Finally, each network in G has less than n � 1 � int((n � 1)=s)
links as this number of links is obtained when the agents form a maximal number

of components of size s.

4 Stable risk-sharing networks when agents are

farsighted

Myopic agents are assessing the pro�tability of their decision to create new mutual

insurance agreements or to remove old ones by considering that their choice has no

impact on others�decisions. In this section, we analyze the formation risk-sharing

9This result is established in the appendix (see Lemma 3.A.2).
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networks when agents are farsighted, rather than myopic, in the sense that they are

able to anticipate how other agents would react to their choice of partners.

Herings, Mauleon and Vannetelbosch (2009) have proposed a solution concept to

address the question of stability when agents are farsighted: the pairwise farsightedly

stable set. Before de�ning the concept, let us introduce the notion of a farsighted

improving path, which is the counterpart of the myopic improving path described in

the previous section. A farsighted improving path is a sequence of networks that can

emerge when agents form or sever links based on the improvement the end network

o¤ers relative to the current network. Each network in the sequence di¤ers by one

link from the previous one. If a link is added, then the two agents involved must

both prefer the end network to the current network, with at least one of the two

strictly preferring the end network. If a link is deleted, then it must be that at least

one of the two agents involved in the link strictly prefers the end network. Formally,

it is de�ned as follows. A farsighted improving path from a network g to a network

g0 6= g is a �nite sequence of networks g1; : : : ; gK with g1 = g and gK = g0 such

that for any k 2 f1; : : : ; K � 1g either: (i) gk+1 = gk � ij for some ij such that
Ui(gK) > Ui(gk) or Uj(gK) > Uj(gk), or (ii) gk+1 = gk + ij for some ij such that

Ui(gK) > Ui(gk) and Uj(gK) � Uj(gk). For a given network g, let F (g) = fg0 2 G j
there is a farsighted improving path from g to g0g.
We now introduce the concept of pairwise farsightedly stable set. It is a set of

networks such that (i) the deletion or addition of any link from a network in the set

leading to a network outside the set is deterred by a credible threat of ending worse

o¤, once other agents further react to the initial deviation, (ii) from any network

outside the set, there is a farsighted improving path leading to some network in the

set, and (iii) no proper subset of this set satis�es the two �rst conditions. Formally,

pairwise farsightedly stable sets are de�ned as follows.

De�nition.2. A set of networks G � G is pairwise farsightedly stable with respect
v and Y if

(i) 8 g 2 G,

(ia) 8 ij =2 g such that g + ij =2 G, 9 g0 2 F (g + ij) \ G such that (Yi(g0; v); Yj(g0,
v)) = (Yi(g; v); Yj(g; v)) or Yi(g0; v) < Yi(g; v) or Yj(g0; v) < Yj(g; v),

(ib) 8 ij 2 g such that g � ij =2 G, 9 g0; g00 2 F (g � ij) \ G such that Yi(g0; v) �
Yi(g; v) and Yj(g00; v) � Yj(g; v),
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(ii) 8g0 2 G nG; F (g0) \G 6= ?:

(iii) @ G0  G such that G0 satis�es Conditions (ia), (ib), and (ii).

Condition (i) in De�nition 2 requires the deterrence of external deviations. Con-

dition (ia) captures that adding a link ij to a network g 2 G that leads to a network
outside of G; is deterred by the threat of ending in g0: Here g0 is such that there

is a farsighted improving path from g + ij to g0: Moreover, g0 belongs to G; which

makes g0 a credible threat. Condition (ib) is a similar requirement, but then for

the case where a link is severed. Condition (ii) in De�nition 2 requires external

stability and implies that the networks within the set are robust to perturbations.

From any network outside of G there is a farsighted improving path leading to some

network in G. Notice that the set G (trivially) satis�es Conditions (ia), (ib), and (ii)
in De�nition 2. This motivates the requirement of a minimality condition, namely

Condition (iii).

We now provide a partial characterization of the pairwise farsightedly stable sets

of risk-sharing networks. We analyze the case of very small costs of link formation,

the case of small costs of link formation and the case of high costs of link formation.

Very small costs of link formation

Proposition 3 characterizes partially the pairwise farsightedly stable sets when

the costs of link formation satisfy c < u(n)� u(n� 1). For such costs, we �nd that
(a) each pairwise farsightedly stable set contains at least one connected network,

(b) each set G composed of a minimally connected network eg 2 GM and all other

networks g 2 GM such that Ui(g) = Ui(eg) for all i 2 N is a pairwise farsightedly

stable set, and (c) each set G composed of a minimally connected network g1 2 GM

and another minimally connected network g2 2 GM such that Ui(g1) 6= Ui(g2) for

some agent i 2 N and g1 and g2 are not star networks (i.e. they are not such that

one agent connects directly all the others) is a pairwise farsightedly stable set.

Proposition 3. If 0 < c � u(n)� u(n� 1), then

(a) If G is a pairwise farsightedly stable set, then #C(g) = 1 for some g 2 G.

(b) For each eg 2 GM , the set G(eg) = fg 2 GM j Ui(g) = Ui(eg) for all i 2 Ng is a
pairwise farsightedly stable set.
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(c) The set G = fg1; g2g � GM such that Ui(g1) 6= Ui(g2) for some agent i 2 N and

both g1 and g2 are not star networks is a pairwise farsightedly stable set.

A connected line Pareto dominates each network composed of multiple com-

ponents for such costs. There are thus no farsighted improving paths from a con-

nected line to a network composed of multiple components. It then follows that

a set of networks that does not include at least one network that connects in-

directly all the agents is not externally stable. To prove part (b) and (c), we

�rst show that there is a farsighted improving path from any network outside

G(eg) = fg 2 GM j Ui(g) = Ui(eg) for all i 2 N , for some eg 2 GMg leading to
each network in G(eg). Intuitively, this holds since from any network g outside G(eg),
there always exists an agent willing to cut a link from g or a pair of agents willing

to add a link from g, looking forward to the formation of a network in G(eg). Thus,
the sets proposed in part (b) and (c) of the proposition are such that there are

farsighted improving paths from each network outside the set to some network in

the set. Notice in addition that each pairwise deviation from a network in one of

those sets is deterred by the threat of coming back at the same network in one step.

A star network as a singleton is a pairwise farsightedly stable set according to

part (b) of Proposition 3. It is thus required that g1 and g2 are not star networks in

part (c) of Proposition 3 as otherwise, the set of networks g1 and g2 would fail to be

minimal. In the last section of the paper, we analyze the quadratic utility function

case and we show that when there are four agents, some pairwise farsightedly stable

sets of networks are exclusively composed of networks connecting all the population

but not at the minimal cost. Whether this result holds for general utility function

and for any number of agents remains an open question.

Small costs of link formation

In the next proposition, we show that each set composed of connected line eg
and of all other lines where the payo¤ of the agents is equal to their payo¤ in eg
constitutes a pairwise farsightedly stable set if the cost of link formation satis�es

c < min fu(n)� u(int((n+ 1)=2)); (u(n)� u(1))=2g.

Proposition 4. If c < minfu(n) � u(int((n + 1)=2)), (u(n) � u(1))=2g, we have
that

(a) For each eg 2 GL, the set G(eg) = fg 2 GL j Ui(g) = Ui(eg) for all i 2 Ng is a
pairwise farsightedly stable set.
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(b) The set fg1; g2g where g1; g2 2 GL and Ui(g1) 6= Ui(g2) for some i 2 N is a

pairwise farsightedly stable set.

In the proof of this proposition, it is �rst established that there is a farsighted

improving path from any network outside G(eg) = fg 2 GL j Ui(g) = Ui(eg) for
all i 2 N , for some eg 2 GLg leading to each network in G(eg). From a network

outside G(eg), farsighted agents who have more links than in the connected line eg
or who have the same number of links but are indirectly connected to less than

n agents, cut their links until the empty network is reached, looking forward to

the formation of the network eg. From the empty network, the agents add links

in order to build eg such that the last link to be added is the central link of the
line. This last move is pro�table for the two agents involved in that link since

c < u(n) � u(int((n + 1)=2)). The addition of each other link from the empty

network to eg is pro�table for farsighted agents having already one link as this allows
them to move from a component of size smaller than int((n+1)=2) to the connected

network eg, and it is pro�table for isolated agents since u(n)� 2c > u(1). Notice in
addition that each pairwise deviation from a network in the set is deterred by the

threat of coming back at the same network.

The pairwise farsightedly stable sets described in Proposition 4 are not neces-

sarily unique. We will see in Section 5 that ine¢ cient networks may also belong to

some pairwise farsightedly stable sets.

High costs of link formation

In Proposition 5, we show that when the cost of link formation is su¢ ciently

high, (a) the set of all networks in which each agent belongs to a component of size

2 is the only pairwise farsightedly stable set if the number of agent is even, (b) the

set of all networks in which the same agent is not connected while the remaining

agents belong to a component of size 2 is a pairwise farsightedly stable set if the

number of agent is odd, and (c) the set composed of one network where a maximal

number of linked pairs forms among all the agents but agent k and of one network

where a maximal number of linked pairs forms among all the agents but agent l 6= k
is a pairwise farsightedly stable set if the number of agent is odd.

Proposition 5. If u(n)� u(2) < c < u(2)� u(1), then

(a) The set G = fg 2 G j di(g) = 1 for all i 2 Ng is the unique pairwise farsightedly
stable set if n is even.
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(b) For k 2 N , the set Gk = fg 2 G j di(g) = 1 for all i 2 N n fkg, and dk(g) = 0g
is a pairwise farsightedly stable set if (u(3)� u(1))=2 < c and n is odd,

(c) For k; l 2 N with k 6= l, the set G = fgk; glg, where for m 2 fk; lg, Gm = fg 2
G j di(g) = 1 for all i 2 N n fmg, and dm(g) = 0g is a pairwise farsightedly
stable set if (u(3)� u(1))=2 < c, n is odd and n � 5.

When the costs of link formation satisfy u(n)�u(2) < c < u(2)�u(1), each agent
prefers to be in a network in which she is a member of a component of size two rather

than in any network in which her number of links is di¤erent than one. From any

network that does not belong to the set of networks composed of a maximal number

of linked pairs, agents having more than one link are willing to cut a link, and agents

having no links are willing to add a link, looking forward to a network composed of

a maximal number of linked pairs. Part (a) of the proposition is then derived from

the fact that there are no farsighted improving paths emanating from a network

composed of a maximal number of linked pairs if n is even. When the number of

agents is odd, an agent, say k, is not connected in a network composed of a maximal

number of linked pairs g 2 Gk. Then, part (b) and part (c) of the proposition follow
from the fact that from each network outside Gk, there is a farsighted improving

path to each network in Gk. Also, each deviation from Gk is deterred by the threat

of coming back at the same network in one step.

The characterization of pairwise farsightedly stable sets when the cost of link

formation is intermediate, i.e. when minf(u(n) � u(1))=2; u(n) � u(n=2)g � c �
u(n) � u(2) for n even, or when minf(u(n) � u(1))=2; u(n) � u((n + 1)=2)g � c �
maxf(u(3)� u(1))=2; u(n)� u(2)g for n odd, remains an open question.
Let us summarize the results obtained concerning the structure of risk-sharing

networks formed by farsighted agents and compare them with the networks formed

by myopic agents and the e¢ cient ones. For very small costs of link formation

(c � u(n)�u(n�1)) or high ones (u(n)�u(2) < c when the population size is even,
or maxfu(n) � u(2); (u(3) � u(1))=2g < c if the population size is odd), farsighted
and myopic agents form the same networks. For very small costs of link formation,

the pairwise myopically stable set is the set of e¢ cient networks (each e¢ cient

network is pairwise stable since s� � n for such costs), and each e¢ cient network

belongs to some pairwise farsightedly stable set. For high costs of link formation,

the pairwise myopically stable set contains all networks composed of a maximal
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number of linked pairs (s� = 2 = s�� when u(n)� u(2) < c < u(2)� u(1), implying
that each network in the pairwise myopically stable set is pairwise stable). The

union of the pairwise farsightedly stable sets coincides with the pairwise myopically

stable set when n is even, and contains the pairwise myopically stable set when

n is odd. Whether a network not contained in the pairwise myopically stable set

belongs to some pairwise farsightedly stable set when n is odd remains an open

question. The networks formed di¤er however for small costs of link formation.

When u(n)� u(n� 1) < c < minfu(n)� u(int((n+ 1)=2)), (u(n)� u(1))=2g, each
line connecting all the agents and other lines in which the degree of the agents is

similar constitutes a pairwise farsightedly stable set. Farsighted agents may form

e¢ cient networks, while myopic agents cannot sustain those networks at equilibrium

since from an e¢ cient network, the agents have myopic incentives to cut a link with

a peripheral agent as long as u(n)� u(n� 1) < c. Farsighted agents are not willing
to cut those links as they fear that the others will in turn modify sequentially their

choice of insurance partners so that the network that will form in the end will be

the same line connecting all the agents.

5 Application: the quadratic utility function

In this section, we analyze more in detail the formation of risk-sharing networks

when agents have a quadratic utility function. We illustrate through this example

the implications of the theorems presented in the previous sections about the for-

mation of risk-sharing networks by farsighted and myopic agents. In particular, we

investigate three questions. First, we analyze what is the impact of the risk-aversion

of the agents, of their initial wealth, and of the variance of the income shock on the

formation of risk-sharing networks. Second, we study to which extent the range of

costs for which farsightedly stable networks can be identi�ed shrinks as the size of

the population increases. Third, we investigate whether additional results can be

obtained when the characterization we have established is incomplete, that is when

the cost of link formation is very small, small or intermediate.

Let v be a quadratic utility function v(y) = y � �y2 where � represents the
level of risk-aversion of an individual. As shown in Bramoullé and Kranton (2007a),

the expected utility function is then u(s) = v(y) � (��2)=s where y and �2 are
respectively the mean and the variance of the income distribution. This expected
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utility function is increasing at a nondecreasing rate, and the total utility of the

members of a component (su(s)) is increasing at a constant rate, so that quadratic

utility functions verify our assumptions.

The stability of sets of networks is determined by comparing the expected utility

of an agent when she belongs to components of di¤erent sizes. For quadratic utility

functions, the variation of expected utility of an agent if she moves from a component

of size k to a component of size l is u(l)�u(k) = ��2(l�k)=lk. As far as stability is
concerned, the mean of income (y) thus does not matter. The relevant parameters

of the utility functions are the variance of the shock (�2) and the parameter that

represents the risk aversion (�). In addition, only their product matters so that

uncertainty and risk aversion play the same role.

We have depicted in Figure 1 the evolution of the thresholds of link cost that are

relevant for the theorems as a function of the number of agents.10 The uncertainty

(�2) and the risk aversion (�) change the scale of Figure 1 but not its shape since

a modi�cation of one of those parameters a¤ects the various thresholds in the same

way. We assume in Figure 1 and in the rest of this section that ��2 = 9. When the

number of agents increases, the range of costs for which Propositions 3.3, 3.4 and

3.5 applies shrinks while the range of intermediate costs (i.e. for which we have not

characterized the pairwise farsightedly stable sets) increases. For high costs of link

formation (u(n)�u(2) < c < u(2)�u(1) when n is even andmaxfu(n)�u(2); (u(3)�
u(1))=2g < c < u(2) � u(1) when n is odd), the lower bound of the interval is
nondecreasing with n while the upper bound is �xed. For very small costs of link

formation (0 < c � u(n)� u(n� 1)), the upper bound of the interval is decreasing
with n since by assumption, the bigger is the set of agents with whom an agent shares

her risk, the smaller is her bene�t to have a new insurance partner. When n is even,

the range of costs for which Proposition 4 applies (u(n) � u(n � 1) < c < u(n) �
u(int(n + 1)=2)) decreases with n as long as n � 4. Similarly, this range decreases
with n when n is odd for n � 5. The range of intermediate costs is determined by
the condition u(n)� u(n=2) � c � u(n)� u(2) when n is even and by the condition
u(n)� u(int((n+1)=2)) � c � maxfu(n)� u(2); (u(3)� u(1))=2g when n is odd. It
is increasing with n since the lower bound of the interval (u(n)� u(int((n+ 1)=2)))
is decreasing in n while the upper bound is nondecreasing in n.

10We have not represented the threshold (u(n) � u(1))=2 since minf(u(n) � u(1))=2;u(n) �
u(int((n+ 1)=2))g = u(n)� u(int((n+ 1)=2)) when the utility function is quadratic.
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Figure 1. Cost thresholds and population size

The characterizations proposed in the theorems are not complete. The theorems

identify some equilibrium candidates but there may exist other equilibria. We have

developed an algorithm that aims at identifying all the pairwise farsightedly stable

sets to investigate whether additional results can be obtained when the character-

ization we have established is incomplete.11 Among n agents, there are possibly

K = �
n(n�1)=2
i=0 C

n(n�1)=2
i networks and �Ki=1C

K
i equilibrium set candidates.12 It is

thus increasingly complex to fully characterize the pairwise farsightedly stable sets

since the number of candidates explodes as n increases. When n = 3, there are

8 di¤erent networks that can form 256 di¤erent equilibrium set candidates and for

n = 4, there are 64 di¤erent possible networks and 1; 8447 E + 19 candidates.13

Having associated to each network a number between 1 and K, the output of the

algorithm is (i) a square matrix F of dimension K�K, where K is the total number

of networks among n agents, such that F (i; j) = 1 if there is a farsighted improving

path from the network number i 2 f1; Kg leading to the network j 2 f1; Kg and (ii)
a matrix PFFS of dimension L �K, where L is the total number of pairwise far-
sightedly stable sets such that a set composed of networks associated with non-zero

elements of a line is a pairwise farsightedly stable set of networks.

We have used the algorithm to determine the farsightedly stable sets of networks

formed among 3 agents. For more than 3 agents, we are not able to build a matrix

11The algorithm is available upon request from the author. We explain in Appendix 3.B the

main steps for its construction.
12Cnk gives the combination of n things taken k at a time without repetition and is equal to

n!=(k!(n� k)!).
13When n = 5, there are 1024 di¤erent networks and an in�nite number of candidates.
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whose number of lines corresponds to the number of candidates. We then have

considered subsets of the full set of equilibrium candidates.
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Figure 2. Risk-sharing networks among 3 agents.

In Figure 2, we depict the risk-sharing networks that could be formed among

three agents. We assume that ��2 = 9 = v(y) so that the payo¤ of the agents is

normalized to 0 in the empty network. Proposition 1 completely characterizes the

pairwise myopically stable set of networks which coincides with the set of pairwise

stable networks. The simulations reveal that when c � 1; 5 and c > 3 there are

no other pairwise farsightedly stable sets than those described in Theorems 3.4 and

3.5. When 1; 5 < c � 3, a set composed of two networks connecting 2 agents is a

pairwise farsightedly stable set, and a set composed of one network connecting 2

agents and a star network, where the hub in the star is not connected in the linked

pair network is a pairwise farsightedly stable set of networks.14 Farsighted agents

thus form e¢ cient networks while myopic agents do not. Table 1 summarizes these

results.

14The hub in a star is the agent who is directly connected to all the other agents.
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Cost Pairwise farsightedly stable set Pairwise myopically stable set

0 < c � 1; 5 fg5g,fg6g,fg7g fg5; g6; g7g

1; 5 < c � 3
fg2; g3g,fg2; g4g,fg3; g4g,
fg2; g7g,fg3; g6g,fg4; g5g

fg2; g3; g4g

3 < c < 4; 5 fg2g,fg3g,fg4g fg2; g3; g4g
c = 4; 5 fg1; g2; g3; g4g fg1; g2; g3; g4g
c > 4; 5 fg1g fg1g

Table 1. Farsightedly and myopically stable sets when n=3 and ��2=9.

In Figure 3, we have depicted all the networks that could be formed among 4

agents. Table 2 summarizes the results obtained with the simulations. To simplify

the presentation, we have not written down all the equilibrium candidates, but rather

all the classes of equilibrium candidates. The candidates that are symmetric to those

identi�ed in Table 2 are also farsightedly stable. By Proposition 5, the only pairwise

farsightedly stable set is the set of all linked pairs networks when 2; 25 < c < 4; 5.

When c < 2; 25, each set composed of two lines of 4 agents is a pairwise farsightedly

stable set (Proposition 4). Also, when c � 0; 75, each star network as a singleton is
a pairwise farsightedly stable set (Proposition 3). These propositions cover all the

costs but c = 2; 25, and as long as c < 2; 25, the characterization may be incomplete.

The simulations we have realized do not allow us to provide a complete identi�cation

of the pairwise farsightedly stable sets. We have however considered all candidates

of at most six networks for all costs of link formation. We have also considered sets

of more than six networks, by focusing our attention on speci�c candidates.15

15For instance, we have considered sets of ten networks by eliminating the candidates involving

networks that are not minimally connected. By doing so, we have identi�ed pairwise farsightedly

stable sets of more than six networks when 1; 5 < c � 2; 25.
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Figure 3: Risk-sharing networks among four agents

When c = 2; 25, there are no farsighted improving paths from the networks

composed of a maximal number of linked pairs, implying that they belong to each

pairwise farsightedly stable sets of networks. The setG of all networks composed of a

maximal number of linked pairs and of the lines of 4 agents is a pairwise farsightedly

stable set. Indeed, there is a farsighted improving path from each network other than

the lines of 4 agents or the circles16 of 4 agents leading to each network composed

16A circle is a network where each agent has two links.

21



of a maximal number of linked pairs. The set G thus satis�es external stability.

The deviations from the networks composed of a maximal number of linked pairs

leading to a network outside the set necessarily involve the deletion of a link. These

deviations are deterred by the threat of coming back at the same network in one

step (see Lemma A.3). Deviations from lines of 4 agents involving the addition of

a link are deterred by application of Lemma A.3, while those involving the deletion

of a link are deterred by the threat of ending in a network composed of a maximal

number of linked pairs. Minimality is satis�ed since any subset of G would violate

external stability. A set G composed of the three networks involving a maximal

number of linked pairs, two networks of one link such that each agent has a total of

one link in those two networks, and three lines of 3 agents (ga; gb; gc) such that each

agent has a total of three links in those three networks, is also a pairwise farsightedly

stable set. We have g 2 F (g0) for some g 2 fga; gb; gcg, for all g0 2 GL [ Gc, where
Gc is the set of circles of 4 agents. External stability is thus guaranteed since there

is a path from any other network not in the set leading to a network composed of a

maximal number of linked pairs. The addition of a link from a network in the set

leading to a network outside the set is never pro�table by application of Lemma A.3.

For the same reason, a deviation involving the deletion of one link from a component

of size 2 is deterred. Also, the hub of a line of 3 agents has no incentives to delete

one of her links because she may fear to end up without connections in a network of

one link. Minimality holds since external stability would be violated for any G0 � G
such that less than three lines of 3 agents belong to G0 while deterrence of external

deviations would be violated for any G0 � G such that less than two lines of 2 agents
belong to G0. The class of candidates we have just identi�ed remains farsightedly

stable when 1; 5 < c < 2; 25. However, the set composed of all the lines of 4 agents

and all the networks composed of a maximal number of linked pairs is not since it

fails to satisfy minimality.17

For 0; 75 < c � 1; 5, a set composed of two lines of 3 agents such that the

isolated agent is not the same agent in the two lines and the set of peripheral

agents is di¤erent in the two networks is a pairwise farsightedly stable set. This

candidate trivially satis�es external stability and minimality, and external deviations

are deterred by application of Lemma A.3. If the two lines of 3 agents shared the

17Any set composed of two lines of 4 agents is a pairwise farsightedly stable set by Proposition

4.
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same set of peripheral agents, external stability would be violated since there are no

farsighted improving paths from a line of 4 agents leading to a line of 3 agents such

that the peripheral agents are identical in those two networks. External stability

would also be violated if the isolated agent was the same agent in the two lines of

3 agents because there are no farsighted improving paths from a star leading to a

line of 3 agents such that the hub in the star is not connected in the line. It follows

that a set composed of three networks, two lines of 3 agents such that the isolated

agent is the same agent in those lines and a star where the hub in the star is not

connected in the lines, is also a pairwise farsightedly stable set. When c > 1; 5,

those candidates fail to satisfy external stability because there are no farsighted

improving paths from a network composed of components of size 2 or less leading to

a line of 3 agents. The simulations reveal that another class of candidates is pairwise

farsightedly stable when 0; 75 < c � 1; 5. A set composed of one line of 4 agents and
another line of 3 agents such that the set of peripheral agents in the two lines is not

identical is a pairwise farsightedly stable set. External stability holds by application

of Lemma A.5, which establishes that there is a farsighted improving path from every

network leading to a line of 4 agents provided the payo¤ of the agents is di¤erent

in the initial and �nal networks. The deletion of a link from a line of 4 agents is

deterred by the threat of coming back to the same network (see Lemma A.5) while

every other deviation is deterred by application of Lemma A.3. When c > 1; 5, such

candidates are no longer pairwise farsightedly stable because the hub in the line of

3 agents cannot be deterred from cutting one link. Indeed, the only stable outcome

she might reach by doing so is a line of four agents. When c < 0; 75, a set composed

of six networks that are not minimally connected, three networks where one agent

has three links while 2 other agents are connected and three networks where another

agent has three links while 2 other agents are connected, is a pairwise farsightedly

stable set. To see that such candidates satisfy external stability, notice that from

a line of 4 agents, there is always an agent i with two links in the line who may

cut successively her two links, looking forward to the following succession of moves:

one agent deletes the remaining link, then the 3 agents other than agent i add a

link between them, starting �rst with the links involving the agent j who has three

links in the �nal network.18 Finally, agents i and j form a link. Deviations from a

18The two agents already connected to agent j add a link between them in this step. This move

is pro�table for them as long as c < 0; 75. When c � 0; 75, there are no farsighted improving paths
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network in the set are deterred: an agent who cuts a link may always fear to come

back in the set with at least the same number of links, and a pair of agents who add

a link between them are worse o¤ by doing so, and could come back to the same

network in one step by cutting the link they have just added.

Cost Pairwise farsightedly stable sets Pairwise myopically stable sets

0 < c < 0; 75

fg27g; fg28g; fg29g; fg30g;
fg31; g32g,fg31; g33g,...,fg31; g42g;
fg46; g47; g48; g49; g50; g51g

fg27; g28; :::; g42g

c = 0; 75
fg27g; fg28g; fg29g; fg30g;
fg31; g32g,fg31; g33g,...,fg31; g42g

fg27; g28; :::; g42g

0; 75 < c � 1; 5

fg11; g12g,fg11; g13g,fg11; g15g,
fg11; g16g,fg11; g17g,fg11; g19g,
fg11; g20g,fg11; g22g;
fg11; g33g,fg11; g34g,...,fg11; g42g;
fg31; g32g,fg31; g33g,...,fg31; g42g;
fg11; g18; g28g,fg11; g21; g28g

fg11; g12; :::; g22g

1; 5 < c < 2; 25
fg31; g32g,fg31; g33g,...,fg31; g42g;
fg2; g7; g8; g9; g10; g12; g14; g18g

fg2; g3; :::; g22; g31; g32; :::; g42g

c = 2; 25
fg8; g9; g10; g31; g32; :::; g42g;
fg2; g7; g8; g9; g10; g12; g14; g18g

fg8; g9; g10g

2; 25 < c < 4; 5 fg8; g9; g10g fg8; g9; g10g
Table 2. Farsightedly and myopically stable sets when n=4 and ��2=9.

It is not easy to determine whether farsightedness helps reducing a con�ict be-

tween myopic stability and e¢ ciency, mainly because it implies a comparison of

the e¢ ciency of sets of networks. In addition, the pairwise myopically stable set

is unique by de�nition while pairwise farsightedly stable sets are not. In what

follows, we summarize the new insights obtained with the simulations when four

agents form a risk-sharing network. To compare the same object when discussing

the issue of stability versus e¢ ciency, we contrast the set of networks that belong

to some pairwise farsightedly stable set with the pairwise myopically stable set. (i)

from a network composed of minimally connected components leading to a network composed of

components that are not minimally connected.

24



For very small costs of link formation (c � 0; 75), myopic agents always form ef-

�cient networks. Each e¢ cient network also belongs to some pairwise farsightedly

stable but it is not excluded that an equilibrium candidate is composed of networks

that are not minimally connected when agents are farsighted, because farsighted

agents can move from an e¢ cient network looking forward to an ine¢ cient network

where her situation has improved. (ii) When the costs of link formation are small

(0; 75 < c < 2; 25), we should further distinguish two cost thresholds. (ii.1) When

c � 1; 5, the pairwise myopically stable set consists of all lines of three agents, which
are pairwise stable. The set of networks included in some farsightedly stable sets

are all the lines of three and four agents, and the star networks. This set is thus the

union of the pairwise myopically stable set and the set of e¢ cient networks. (ii.2)

When c > 1; 5, the set of networks included in some pairwise farsightedly stable set

and those included in the pairwise myopically stable set consist in all the networks

composed of one link, two links, and the lines of four agents. (iii) For intermedi-

ate costs of link formation (c = 2; 25), the pairwise stable networks are composed

of a maximal number of linked pairs. Those network also belong to some pairwise

farsightedly stable set in addition to the networks composed of lines involving two,

three, and four agents (iv) for high costs of link formation (c > 2; 25), Proposition

5 characterizes completely the farsightedly stable set of networks. It is the set of all

the networks composed of a maximal number of linked pairs, and coincides with the

pairwise myopically stable set.

In some cases, the set of networks belonging to some pairwise farsightedly stable

set coincides with the pairwise myopically stable set. In others, the two sets are

di¤erent. When the two sets are di¤erent, the pairwise myopically stable set is

included in the set of networks belonging to some pairwise farsightedly stable set,

and each pair of networks in the pairwise myopically stable set generates the same

value. The networks that are farsightedly stable but not myopically stable do not

necessarily generate more value than the networks that are pairwise stable. This

is indeed the case when the costs of link formation are very small or intermediate.

When the costs are small on the other hand, each network that is farsightedly stable

but not myopically stable is e¢ cient.
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6 Conclusion

In this paper, we have analyzed the formation of risk-sharing networks. A growing

empirical literature (see Fafchamps, 1992; Grimmard, 1997; Fafchamps and Lund,

2003; De Weerdt and Dercon, 2006) has shown that a fully e¢ cient risk-pooling equi-

librium is not reached: risk-sharing does not take place within exogenous group such

as the village, but rather within networks involving agents having common charac-

teristics (neighborhood, professional or religious a¢ liation, kinship, etc). Most of

the theoretical papers on informal risk-sharing in developing countries assume that

no binding agreement can be enforced (see Kimball (1988); Coate and Revallion

(1993); Kocherlakota (1996); Ligon, Thomas and Worrall (2002); Genicot and Ray

(2003); Bloch, Genicot and Ray (2005). These papers model the risk-sharing process

as a dynamic game where agents have incentives to transfer money today because

they expect to be reciprocated at a future date. The self-enforcing transfer schemes

identi�ed involve incomplete income pooling, providing a theoretical argument to

explain the observed pattern of informal insurance relationships.

Platteau (2000) has argued that kinship groups, membership of a clan or of

a religious group are factors that help to imposing norms on members, enhancing

trust and that increase the ability to punish deviant behaviors, thereby making risk-

sharing easier. Thus, the lack of formal institutions allowing agents to commit to

future transfers may be relevant at the village level, but not within the aforemen-

tioned communities.

Bramoullé and Kranton (2007a) have developed a model of insurance network

formation, where agents invest in costly bilateral relationships in order to become

members of a group of agents insuring each other against income or expenditure

shocks. Their model is a decentralized model of coalition formation, where a coali-

tion is a set of agents that are directly or indirectly connected to each other. Each

member of a coalition commits to share her income with her insurance partners.

They have shown that the e¢ cient network is such that each agent is indirectly con-

nected to each other, leading to the maximal level of insurance in the population,

while strategic agents form networks involving income pooling in smaller groups,

because the gain for an agent from adding new insurance partners to the group is

decreasing with the size of the group while its cost is constant. They have thus

provided another theoretical explanation of the observation that full income pooling
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is not achieved in rural areas of developing countries, but they fail to explain why

risk-sharing occurs within networks involving agents having common characteristics.

This paper analyzes which pattern of insurance relationships emerges in the long

run when agents are farsighted, rather than myopic, in the sense that they are able

to forecast how other agents would react to their choice of partners. In his survey

of models of network formation, Jackson (2005) provides support to this behavioral

assumption by mentioning that farsightedness is important when agents have good

information about each other, which we suspect is the case in the aforementioned

communities.

We �nd that for small costs of establishing and maintaining a partnership, far-

sighted agents may form e¢ cient networks that involve full income pooling while

myopic agents form networks connecting fewer individuals. Two mechanisms ex-

plain this result: (i) Farsighted agents belonging to small groups may decide to

create new partnerships that are not directly pro�table to them, because they real-

ize that other partners will further join this bigger and more attractive group. In

other words, the farsightedness of the agents may solve a coordination problem. (ii)

Farsighted agents may refrain from deleting costly links if they belong to a big group,

as they understand that this may induce others to rearrange their partnerships in

a way that deters the myopic incentives to delete the link at �rst. Farsightedness

may thus reconcile the theory with the data observed in small communities. This

conclusion does not hold for all cost values. In particular, for very small cost of

link formation, myopic agents form e¢ cient networks only while farsighted agents

may form ine¢ cient networks. These ine¢ cient networks nonetheless involve full

risk-sharing, but not at the minimal cost.

To our knowledge, no existing work has attempted to establish whether agents are

farsighted or not when creating their network in rural areas of developing countries.

This paper o¤ers a characterization of farsightedly and myopically stable networks

that could be used in future work to estimate the degree of farsightedness of agents

by comparing the observed networks with the predicted ones under the two di¤erent

behavioral assumptions.
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Appendix A. Proofs.

The following lemma is useful in establishing Proposition 1.

Lemma A.1. (Bramoullé and Kranton, 2007a) For all g0 2 G n G�, we have
g 2M(g0) for some g 2 G�.

Proof. Take a network g0 2 G nG�. Start with g0 and let agents successively delete
unnecessary links (links connecting agents who are indirectly connected) until a

minimally connected network g00 is reached. Then, let some pair of agents belonging

to di¤erent components of size smaller than s� add a link between them. Repeating

this operation leads to a network g000 in which less than two components have a size

smaller than s�. From g000, take successively a component of size strictly bigger than

s� and let an agent from this component delete a link with an agent who has exactly

one link in that component. When all these links are deleted, we end up at network

g0000 such that if (S; h) 2 C(g0000), then either (i) #S = 1 or (ii) #S = s�, or (iii)

1 < #S < s� and no other component (S 0; h0) 2 C(g0000) satis�es 1 < #S 0 < s�. From
g0000, build a sequence of networks where at each step k, a link is added between a

singleton and an agent belonging to the biggest component of size strictly smaller

than s� in the network of that step gk. When all these links have been added, we

end up in a network g 2 G�. Each move in the sequence of networks going from g0

to g is pro�table, establishing the result. �

Proof of Proposition 1.

Let G be the pairwise myopically stable set. Suppose that s� = s�� or s� > s��

and n � s��+s�, so thatG� consists only of pairwise stable networks. By Lemma A.1,
there is a myopic improving path from every network outside G� to some pairwise

stable network in G�. However, the converse does not hold since each network in G�

is by itself a closed cycle. This establishes that there are no other closed cycle than

the pairwise stable networks, that is G = G�. If on the other hand s� > s�� and

n > s� + s��, then no pairwise stable network exists. By Lemma A.1, we have that

G \ G� 6= ?. Let g� 2 G \ G�. Starting from the network g�, we can reach any

network g 2 G� by adding links between members of di¤erent components of size s
and s0 where s; s0 2 fs��+1; s�g, by letting agents delete links with peripheral agents
from components connecting more than s� agents, and by adding links between a

singleton and a member of a component connecting less than s� agents. Since each

of the suggested move is pro�table for the agents involved, we have g 2 M(g�) for
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all g 2 G�. We then conclude that G� � G. �

The following lemma is used in the proof of Proposition 2.

Lemma A.2. Let a network g be such that (S; h) 2 C(g), #S > s=2 and i 2 S. If
Ui(g + ij) > Ui(g), then Uj(g + ij) < Uj(g) for all j 2 N .

Proof. Let g 2 G be such that (S; h),(S 0; h0) 2 C(g) and #S > s=2. Take agent
i 2 S and agent j 2 S 0. (i) If #S = #S 0 > s=2, then we have that Ui(g+ ij) < Ui(g)
and Uj(g + ij) < Uj(g) by de�nition of s. (ii) If #S 0 > #S > s=2, then at least

agent j 2 S 0 is not willing to add the link ij. Indeed, by de�nition of s, she would
not be willing to add a link with an agent of another component of size #S 0. She

is thus not willing to add a link with agent i who belongs to a component of size

smaller than #S 0. (iii) Similarly, if #S > #S 0, then at least agent i 2 S is not
willing to add the link ij.�

Proof of Proposition 2.

Let G be the pairwise myopically stable set.

(i) By contradiction, suppose that a network g0 2 G is such that g0 =2 Gm. Take
a network g composed of minimally connected components obtained from g0

by deleting unnecessary links. Formally, g is such that g 2 Gm, and for all
(S 0; h0) 2 C(g0), we have (S 0; h) 2 C(g) for some h � h0. Starting from g0 and

letting agents delete successively a link that belong to g0 but not to g, we �nd

that g 2 M(g0). Thus the network g belongs to the same closed cycle C as

the network g0. However, g0 =2M(g), contradicting the fact that C is a closed
cycle. Thus g0 =2 G.

(ii) By contradiction, suppose that g0 2 G and (S; h) 2 C(g0) with #S > s. Since
#S > s � s�, there is an agent i 2 S willing to cut a link ij where dj(g0) = 1
(such link exists since g0 2 Gm by part (i)). Thus, g0 � ij 2 M(g0), implying
that g0 and g0 � ij are in the same closed cycle C. However g0 =2 M(g0 � ij)
since every path going from g0 � ij to g0 implies, at some step, that an agent
belonging to a component of size bigger than s=2 should add a link. By Lemma

A.2, this move is not pro�table. This in turn contradicts the fact that C is a

closed cycle. It follows that g0 =2 G:

(iii.a) By contradiction, suppose that g0 2 G such that d(g0) = s� � 1� t � 0, where
t 2 N+0 . Notice that each network whose total number of links is strictly
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smaller than s� � 1 is composed of components of size strictly smaller than
s�. By de�nition of s�, it follows that every pair of agents can pro�tably add

a link from the network g0, i.e. g0 + ij 2 M(g0) 8ij =2 g0. Thus g0 and g0 + ij
are in the same closed cycle C. However g0 =2 M(g0 + ij) since every path
going from g0 + ij to g0 involves, at some step, the deletion of a link kl from a

network g00 such that d(g00) = d(g0) + 1. Since the network g00 is composed of

components of size smaller than or equal to s�, the deletion of the link kl is

neither pro�table for agent k, nor for agent l. This contradicts the fact that

g0 and g0 + ij are in the same closed cycle. Thus g0 =2 G.

(iii.b) Take a network g 2 G. We show that d(g) � n � 1 � int((n � 1)=s). By
part (i) of this proposition, we have that d(g) = n � #C(g). By part (ii)
of this proposition, there are no networks in G with fewer components than

a network composed of a maximal number of components of size s and of

one component with the remaining agents. Let g0 be such a network. We have

#C(g0) = 1+int((n�1)=s), implying that d(g) � d(g0) = n�1�int((n�1)=s).
�

The following lemma provides su¢ cient conditions to have a farsighted improving

path from one network to an adjacent one. It implies that the addition of a link

from a network such that at least one deviating agent is strictly worse o¤ in the

resulting network, or the deletion of a link from a network such that one of the two

agents involved in the link is strictly worse o¤ in the resulting network while the

other agent is not strictly better o¤, are deviations that are deterred.

Lemma A.3. Let g 2 G. If Ui(g+ ij) < Ui(g), then g 2 F (g+ ij). If Ui(g� ij) <
Ui(g) and Uj(g � ij) � Uj(g), then g 2 F (g � ij).

Proof. Trivial.

Proof of Proposition 3.

Let 0 < c � u(n)� u(n� 1). Notice that for such costs, two agents i; j who are
not indirectly connected at a network g are both better o¤ at the network g + ij

than at the network g.

(a) Each farsighted improving path emanating from a connected line g 2 GL

reaches a connected network, since g Pareto dominates g0 for each g0 2 Gm n
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GM . Thus, a set of networks G0 that does not contain a connected network

does not satisfy condition (ii) of De�nition 2.

(b) Take a network eg 2 GM and let G = fg 2 G j Ui(g) = Ui(eg) for all i 2 Ng. In
order to prove that G is a pairwise farsightedly stable set, we will show that

(b.i) eg 2 F (g0) for every g0 2 G n G and (b.ii) F (g) \ G = ; for every g 2 G
and hence, Theorem 3 in Herings, Mauleon and Vannetelbosch (2009) applies.

(b.i) Take g0 2 G n G. (b.i.1) If for all g 2 G, we have g * g0, then start from g0

and build a sequence of networks where at each step, an agent who has more

links than at the network eg cuts a link. When all these links have been deleted,
we end up at the network g00 such that di(g00) � di(eg) for all i 2 N . Notice
that there are at most n � 1 links in g00 and that Ui(g00) < Ui(eg) for some
i 2 N , since eg is e¢ cient and g00 =2 G. Agent i cuts one link in g00 leading to
the network g000, which is composed of multiple components. In g000 and in the

successive networks, an agent who has l links in a component of size s cuts a

link, looking forward to the formation of the network eg, if she has l + x links
or less in eg and n � s+x. The network reached through this path is g;. Once
in g;, agents successively add links to form eg. Notice that u(n)�u(n� 1) � c
implies u(s)� lc � u(s+ x)� (l+ x)c, if s+ x � n, since the expected utility
function is increasing at a decreasing rate. Each agent i cutting a link in a

network g in the path where she has l links in a component of size s is willing

to do so since her payo¤ in eg is Ui(eg) � u(n)� (l+x)c > Ui(g) Agents adding
links from g; to eg, looking forward to the formation of eg, are better o¤ in the
end network. (b.i.2) If g � g0 for some g 2 G, then di(g0) � di(eg) for all i 2 N ,
and dj(g0) > dj(eg) for some j 2 N . From g0, let a pair of agents add a link

such that at least one of the two agents adding the link has strictly more links

at the current network than at eg. By repeating this step, agents reach the
complete network gN . Once there, they successively delete the links that are

not in eg. Each move of the path is pro�table for the deviating agents who are
looking forward to the formation of eg. We thus conclude that eg 2 F (g0) for
every g0 2 G nG.

(b.ii) For every g 2 G, F (g) \G = ; since Ui(g) = Ui(eg) for all g 2 G.
(c) Let G = fg1; g2g, where g1; g2 2 GM such that Ui(g1) 6= Ui(g2) for some agent
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i 2 N , and g1 and g2 are not star networks. In order to prove that G is a

pairwise farsightedly stable set, we will show that it satis�es conditions (i),

(ii) and (iii) of De�nition 2.

(c.i) Every deviation from a network in the set is deterred by application of Lemma

A.3.

(c.ii) We have shown in part (b.i) that g1 2 F (g0) for every g0 2 G n G1, where
G1 = fg 2 G j Ui(g) = Ui(g1) for all i 2 Ng. By part (b.i), we have that
g2 2 F (g0) for every g0 2 G n G2, where G2 = fg 2 G j Ui(g) = Ui(g2) for all
i 2 Ng. Since G1 \G2 = ;, we have F (g0) \G 6= ; for all g0 =2 G.

(c.iii) Suppose that some subsetG0 � G is a pairwise farsightedly stable set. Without
loss of generality, suppose that G0 = fg1g. Then, G0 does not satisfy the
condition (ii) of De�nition 2 since g1 =2 F (g0) for g0 2 G1nfg1g, a contradiction.
�

The following two lemmas are central to the proof of Proposition 4.

Lemma A.4. GL � F (g;) if c < min fu(n)� u(int((n+ 1)=2)); (u(n)� u(1))=2g.

Proof. For such costs, two agents i and j in di¤erent components of size int((n+

1)=2) and int(n=2) at a network g0 both prefer the network g0+ ij to the network g0.

Take a network g 2 GL. Let g0 = g � ij where ij 2 g, i 2 Ce(g) and j 2 Ce(g) if n
is even such that the network g0 is composed of one component of size int((n+1)=2)

and of another of size int(n=2). The following path is a farsighted improving path

from g; to g. From g;, add successively each link kl 2 g0 until the network g0 is
formed. Agents i and j then add the link ij. Let g00 be a network of the path

going from g; to g in which agent k 2 N adds a link. If dk(g00) = 0, then since

c < (u(n)� u(1))=2, agent k prefers to add a link, looking forward to the formation
of the network g. If dk(g00) = 1, it is pro�table for agent k to add a link looking

forward to the network g since she belongs to a component of size s � int((n+1)=2)
in g00, implying that Uk(g00) = u(s)� c � u(int((n+1)=2))� c < u(n)� 2c = Uk(g).
Since g was chosen arbitrarily, we have that g 2 F (g;) for all g 2 GL. �

Lemma 3.A.5. For G = fg 2 GL j Ui(g) = Ui(eg) for all i 2 N for some eg 2 GLg,
we have thatG � F (g0) for all g0 =2 G if c < min fu(n)� u(int((n+ 1)=2)); (u(n)� u(1))=2g.
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Proof. Take a network eg 2 GL and let G = fg 2 GL j Ui(g) = Ui(eg) for all
i 2 Ng. Suppose that c < min fu(n)� u(int((n+ 1)=2)); (u(n)� u(1))=2g. Take
g0 2 G n G. (i.1) Suppose that di(g0) � di(eg) for all i 2 N . Since g0 =2 G, we have
that dj(g0) > dj(eg) for some j 2 N . From g0, let agent j successively add a link with
the agents she is not directly connected to. Then, each pair of agents who are not

directly connected adds a link between them to form the complete network. From

the complete network, the agents cut the links that do not belong to the network eg to
reach it. One can see that this sequence of actions describes a farsighted improving

path from the network g0 leading to the network eg. (i.2) Suppose that di(g0) < di(eg)
for some i 2 N . Then, start from g0 and build a sequence of networks where at each
step, an agent who has more links than at the end network eg cuts a link. When all
these links have been deleted, we end up at the network g00 such that di(g00) � di(eg)
for all i 2 N and dj(g00) < dj(eg) for some j 2 N . It follows that the network g00 is
composed of multiple components. In g00 and in the successive networks, the agents

having 2 links cut one link. They are willing to do so since they are looking forward

to eg where they belong to a bigger component and pay at worse the same cost. When
all these links have been deleted, we are in a network composed of components of

size 2 and of singletons. Agents having a link successively cut this link to reach g;

looking forward to eg. From g;, there is a farsighted improving path leading to eg
(Lemma A.4). We conclude that eg 2 F (g0). This does not depend on the choice of
the network eg 2 G, thus G � F (g0). �
Proof of Proposition 4.

Suppose that c < min fu(n)� u(int((n+ 1)=2)); (u(n)� u(1))=2g.

(a) Take a network eg 2 GL and let G(eg) = fg 2 GL j Ui(g) = Ui(eg) for all
i 2 Ng. From Lemma A.5, we have that G(eg) � F (g0) for every g0 2 GnG(eg).
In addition, F (g) \ G(eg) = ; for every g 2 G(eg), since Ui(g) = Ui(g

0) for

all g; g0 2 G(eg). Hence, Theorem 3 in Herings, Mauleon and Vannetelbosch

(2009) applies.

(b) Take the set fg1; g2g where g1; g2 2 GL and Ui(g1) 6= Ui(g2) for some i 2 N . To
show that fg1; g2g is a pairwise farsightedly stable set, we show that it satis�es
the three conditions of de�nition 2. (ii.1) Deterrence of external deviations is

satis�ed since the network g0 reached by adding or deleting a link from g1 (or g2)

is not a minimally connected line. Thus, from Lemma A.5, g1 2 F (g0) which
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deters the incentives to deviate from g1. (ii.2) External stability is ensured by

Lemma A.5 since g1 2 F (g0) for the networks g0 such that Ui(g0) 6= Ui(g1) for
some agent i, and g2 2 F (g0) for the networks g0 such that Ui(g0) = Ui(g1) for
all i 2 N . (i.3) Minimality is ensured since external stability would be violated
if the set was smaller. �

The following lemma is used in the proof of Proposition 5.

Lemma A.6. If n is odd, then for all g0 2 GnGk, whereGk = fg 2 G j di(g) = 1 for
all i 2 N n fkg, dk(g) = 0g, we have that Gk � F (g0) if maxf(u(3)�u(1))=2; u(n)�
u(2)g < c < u(2)� u(1).

Proof. Let n be odd and let maxf(u(3)� u(1))=2; u(n)� u(2)g < c < u(2)� u(1).
Take k 2 N and let Gk = fg 2 G j di(g) = 1 for all i 2 N n fkg, dk(g) = 0g. Take
g 2 Gk and g0 2 G n Gk. Notice that an agent prefers a network in which she has
one link to any network in which she has two or more links when u(n) � u(2) <
c < u(2)� u(1).

(i) If di(g0) � 1 8i 2 N , then start with g0 and build a sequence of networks where
at each step, either a singleton adds a link that belongs to the network g, or

an agent who has two links deletes a link that does not belong to the network

g until the network g is reached. Step 1a: A singleton in g0 other than agent k

adds a link that belongs to the network g. Since at least one agent, say i, has

no link at g0 then Ui(g0) = u(1) < Ui(g) = u(2) � c, thus agent i is willing to
add the link looking forward to g. The other agent, say j, has either no link

at g0 or she has one link in a component of size 2. In both cases, she agrees

to add the link ij looking forward to g. Step 1b: In the remaining network,

if an agent has two links, she deletes a link that does not belong to g. This

agent is willing to delete a link looking forward to g where she has one link.

Step l: Proceed inductively in l, if an agent other than agent k is a singleton,

she adds a link that belongs to g; then, on the remaining network, if an agent

has two links, she deletes a link that does not belong to g. Step L: When all

these links are added or removed, we end up at the network g. We conclude

that g 2 F (g0). Since the choice of g 2 Gk does not matter, we conclude that
Gk � F (g0).
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(ii) If di(g0) > 1 for some agent i 2 N , then start with g0 and build a sequence
of networks where at each step, some agent other than agent k who has more

than one link deletes a link. When all these links have been deleted, if agent

k has more than one link, she successively deletes all her links but one so

that the network g000 is reached with di(g000) � 1 8i 2 N . From g000, there is a

farsighted improving path going to g (see part (i) of the proof of this lemma).

Step 1a: An agent, say i, who has more than one link deletes a link ii0 such

that i0 6= k and agent i0 has exactly one link at the current network. Repeat
this step until a network is reached in which the agents having more than one

link are connected to agents having also more than one link or to agent k.

Step 1b: In the remaining network, let an agent, say j, who has more than

one link, delete a link di¤erent than the link jk. An agent deleting a link in

one of those steps is willing to do so as she has at least 2 links at the network

where she deletes a link and she is looking forward to g in which she has one

link. Step l: Proceed inductively in l, each time an agent, say i, with two

links or more is connected to an agent other than agent k that has exactly

one link, agent i deletes that link. Then, on the remaining network, an agent

who has two links or more, say agent j, deletes a link other than the link jk.

Step L: When all these links have been deleted, a network g00 is reached such

that di(g00) � 1, 8i 2 N n fkg. Step L+ 1: If agent k has 2 links or more, she
successively deletes all her links but one. Agent k has s links in a component

of size s+1 for some s � 2 at a network, say g1, where she deletes a link. She
is willing to delete a link in g1 looking forward to g since, for s � 2, we have
that Uk(g1) = u(s+1)�sc � u(3)�2c < Uk(g) = u(1) when u(3)�u(1) < 2c.
Step L + 2: We are in a network g000 such that di(g000) � 1 for all i 2 N and

g000 =2 Gk by construction. In part (i) of this proposition we have shown that
Gk 2 F (g000). We conclude that Gk 2 F (g0). �

Proof of Proposition 5.

Let u(n)� u(2) < c < u(2)� u(1).

(a) Suppose that n is even. Let G = fg 2 G j di(g) = 1 for all i 2 Ng. In
order to prove that G is the unique pairwise farsightedly stable set, we will

show that (a.i) for every g0 2 G n G, we have that F (g0) \ G 6= ; and (a.ii)
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for every g 2 G, F (g) = ; and hence, Theorem 5 in Herings, Mauleon and

Vannetelbosch (2009) applies.

(a.i) Take g0 2 GnG. Start with g0 and build a sequence of networks where at each
step, either an agent with more than one link deletes a link, or two unconnected

agents add a link between them. This path leads to the formation of a network

g00 2 G and each deviating agent is better o¤ in g00 than in the networks in

which she adds/cuts a link. Thus F (g0) \G 6= ;.

(a.ii) By contradiction, suppose that F (g) 6= ;, say g0 2 F (g), for some network
g 2 G. Then, at least an agent, say i, is willing to create or delete a link
from g looking forward to g0, that is, Ui(g) < Ui(g

0). Having Ui(g) < Ui(g
0)

implies that agent i has exactly one link in g0 and belongs to a component of

size strictly bigger than 2. Then, at least an agent, say j, has 2 links or more

in g0. However, every path going from g to g0 is such that the payo¤ of agent

j is smaller in g0 than in the network in which she adds a second link. This

contradicts the fact that g0 2 F (g). Thus F (g) = ;.

(b) Suppose that n is odd and that (u(3) � u(1))=2 < c. We have that (b.i) for
every g0 2 G n Gk, F (g0) \ Gk 6= ; (see Lemma A.6), and (b.ii) for every
g 2 Gk, F (g) \ Gk = ;, since Ui(g) = Ui(g

0) for all i 2 N , for all g; g0 2 G.
Hence, Theorem 3 in Herings, Mauleon and Vannetelbosch (2009) applies, Gk
is a pairwise farsightedly stable set.

(c) Suppose that n is odd, n � 5 and (u(3)�u(1))=2 < c. Take gk 2 Gk and gl 2 Gl
such that k 6= l. In order to prove that G = fgk; glg is a pairwise farsightedly
stable set, we show that G satis�es the three conditions of De�nition 2.

(c.i) Every deviation from a network in the set is deterred by application of Lemma

A.3.

(c.ii) We have shown in Lemma A.6 that gk 2 F (g0) for every g0 2 G n Gk and
gl 2 F (g0) for every g0 2 GnGl. Since Gl\Gk = ;, we thus have F (g0)\G 6= ;
for all g0 =2 G.

(c.iii) Suppose by contradiction that some subset G0 � G is a pairwise farsightedly

stable set. Without loss of generality, suppose that G0 = fgkg. We then
have that condition (ii) of De�nition 2 is not satis�ed since gk =2 F (g0) for
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g0 2 Gk n fgkg, and Gk n fgkg 6= f;g when n � 5, contradicting the fact

that G0 is a pairwise farsightedly stable set. Thus, G satis�es the minimality

condition. �

Appendix 3.B. Description of the algorithm

Having associated to each network a number between 1 and K, the output of

the algorithm is (i) a square matrix F of dimension K � K, where K is the total

number of networks among n agents, such that F (i; j) = 1 if there is a farsighted

improving path from network number i 2 f1; Kg leading to network j 2 f1; Kg and
(ii) a matrix PFFS of dimension L �K, where L is the total number of pairwise
farsightedly stable sets of networks such that a set composed of networks associated

with non-zero elements of a line is a pairwise farsightedly stable set of networks.

To determine whether there is some farsighted improving path from some initial

network a 2 f1; Kg to some �nal one b 2 f1; Kg, the algorithm proceeds by steps.

Step 1: The algorithm creates at the �rst step a vector Gab(1) containing all the

possible networks that are adjacent to the initial network a such that either one link

is added and both agents are better o¤ in the �nal network b compared to the initial

one, or one link is deleted and at least one agent involved in that link is better o¤

at the end network.

Step 2: At the second step, the algorithm creates a vector Gab(2) which consists

of the elements of Gab(1) and all the networks that are adjacent to a network c in

Gab(1) but not yet included in Gab(1) and such that either one link is added and

both agents are better o¤ in the �nal network b compared to the current network c,

or one link is deleted and at least one agent involved in that link is better o¤ at the

end network.

Step p: At the pth step, the algorithm creates a vector Gab(p) which consists of

the elements of Gab(p � 1) and all the networks that are adjacent to a network c
in Gab(p � 1) but not yet included in Gab(p � 1) and such that either one link is
added and both agents are better o¤ in the �nal network b compared to the current

network c, or one link is deleted and at least one agent involved in that link is better

o¤ at the end network.

The algorithm stops at step P where P is the smallest integer such that either

b 2 Gab(P ), or Gab(P ) = Gab(P � 1). The �niteness of the number of networks
implies that the algorithm ends in a �nite number of steps. There is a farsighted
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improving path from the initial network to the �nal network if the �nal network

b belongs to Gab(P ). By running this algorithm for each possible pair of initial

network and �nal network, we obtain a square matrix F of dimension K�K, where
K = �

n(n�1)=2
i=0 C

n(n�1)=2
i is the total number of networks among n agents, such that

F (a; b) = 1 if there is a farsighted improving path from the network a leading to the

network b, and F (a; b) = 0 otherwise.

In the second part of the algorithm, we build a matrix PFSS of dimension

L�K, where L is the total number of pairwise farsightedly stable sets of networks
such that a set composed of networks associated with non-zero elements of a line

is a pairwise farsightedly stable set of networks. To �nd this matrix, we start from

a matrix H which contains all the possible equilibrium candidates -each line of the

matrix being associated with one candidate- and we successively delete the lines that

do not satisfy external stability, deterrence of external deviations, and minimality.

Step 1: First build a matrix H of size �Ki=1C
K
i � K, such that each line of H

corresponds to a di¤erent equilibrium candidate. When n = 3, we have 8 di¤erent

networks that can form 256 di¤erent equilibrium set candidates. A number between

1 and 8 is attributed to each network. For candidates of less than 8 networks, we use

0 to �ll in the matrix. For example, the �rst line of H is composed of the number 1

in the �rst cell and of zeros in the remaining ones, and corresponds to the candidate

where the empty network (who is associated with the number 1) as a singleton is a

candidate. For the sake of notation, let lM(k) be the set of the non-zero elements of

line k of the matrix M . We thus have lH(1) = f1g.
Step 2: Build the matrix H 0 obtained from H by deleting the lines that do not

satisfy the external stability requirement. To do so, look for each line k of the matrix

H whether F (a; b) = 1 for all a 2 f1; Kg n lH(k), for some b 2 lH(k).
Step 3: Build the matrix H 00 obtained from H 0 by deleting the lines that do not

satisfy deterrence of external deviations. To do so, look for each line k of the matrix

H 0 whether for all network a =2 lH0(k) obtained from a network b 2 lH0(k) by adding

a link ij, we have F (a; c) = 1 for some c 2 lH0(k) such that either Yi(c) < Yi(b),

or Yj(c) < Yj(b), or Yi(c) = Yi(b) and Yj(c) = Yj(b). Then repeat the operation for

deviations involving the deletion of a link.

Step 4: Build the matrix PFSS from H 00 by removing the lines that do not

satisfy the minimality requirement.
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