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Abstract—We study the Morlet wavelet transform on char-
acterizing Magnetic Resonance Spectroscopic (MRS) signals
acquired at short echo-time. These signals contain contributions
from metabolites, water and a baseline which mainly originates
from large molecules, known as macromolecules, and lipids.
The baseline signal decays faster than the metabolite ones.
Therefore, by making use of the time-scale representation of
the wavelet, the two signals can be distinguished without any
additional pre-processing. This is confirmed by the experimen-
tal results which show that the Morlet wavelet can correctly
quantify the metabolite contributions even when a baseline is
embedded in the MRS signals.

I. INTRODUCTION

Magnetic Resonance Spectroscopy (MRS) is a unique non-

invasive tool for detecting metabolites and quantifying their

concentrations. The MRS signal comes from the interaction

between atomic nuclei and radio-waves when an external

static magnetic field is applied. The signal is made of

several frequencies typical to the active nuclei and their

chemical environments. The amplitude of these contributions

in the time domain, i.e., the area in the frequency domain,

depends on the amount of those nuclei, which can then

relate to the concentration of the chemical substance [1].

Several quantification methods have been proposed either

in the frequency domain or in the time domain (see [2],

[3]). However, an MRS signal acquired at short echo-time

usually contains contributions from metabolites, water and

a ‘baseline’ which mainly originates from large molecules,

known as macromolecules, and lipids. Therefore, one of

the major obstructions to in vivo short echo-time MRS

quantification is the baseline accommodation. As its shape

and intensity are not known a priori, the baseline poses a

problem if one wants to accurately quantify the overlapping

signals from the metabolites; therefore, a good detection

and quantification technique is required to characterize any

substances present in an MRS signal.

In this paper, we present the advantage of analyzing the

short echo-time MRS signals with the wavelet transform,

which gives a time-scale representation of the considered sig-

nal. Analyzing the signal in the two domains simultaneously
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is beneficial to the MRS quantification with macromolecular

contamination, where the two components have different

decaying times due to the different size of the molecules.

In addition, a small perturbation of a signal will result only

in a small, local modification of the wavelet transform.

Among several types of the wavelet transforms, the con-

tinuous wavelet transform technique [4], [5] can estimate

the frequency and amplitude of the spectral lines directly

from the phase and modulus of the wavelet transform and

no linear model is needed, as in the techniques based on the

discrete wavelet transform [6]. Therefore, we focus only on

the continuous wavelet transform, with the Morlet wavelet,

in particular.

II. METHODOLOGY

A. Quantification

In order to characterize a signal, the wavelet-based tech-

niques first detect the frequencies in MRS signals and then

estimate the amplitude at each detected frequency.

The wavelet transform of a signal s(t) with respect to a

mother wavelet g(t) is

S(τ, a) =
1

2π

√
a

∫

S(ω)G∗(aω)eiωτdω, (1)

where S(ω) is the Fourier transform of the signal, a > 0 is

a dilation parameter, τ ∈ ℜ is a translation parameter and

G∗(ω) is the complex conjugate of the Fourier transform of

g(t). Given a Lorentzian signal s(t), namely,

s(t) = Ae−Dtei(ωst+φ)

S(ω) = 2πAeiφδ(ω − (ωs + iD)), (2)

where D and φ are the damping factor and the phase of the

signal, the Morlet wavelet transform of s(t) is

S(τ, a) =
√

aAeiφe−DτeiωsτG∗

M (a(ωs + iD))

= s(τ)G∗

M (a(ωs + iD)), (3)

where

gM (t) =
1

2πσ
e−

1

2σ
2

t2eiω0t + ǫ

GM (ω) = e−
σ
2

2
(ω−ω0)

2

+ ǫ∗, (4)

is the Morlet wavelet whose frequency and width are denoted

by ω0 and σ. The correction term ǫ is negligible when σω0 >

5.5, and will be omitted henceforth. It can be seen that the

modulus of S(τ, a) is maximum, i.e., ∂
∂a

S(τ, a) → 0, when
∂
∂a

G → 0.



Since a ∈ ℜ and, with the assumption that ωs ≫ D, the

maximum can be found at the scale ar = ω0/ωs, which then

gives

G∗(ar(ωs + iD)) = exp

(

σarD√
2

)2

, (5)

and consequently

Sar
(τ) =

√
ar exp

(

σarD√
2

)2

s(τ), (6)

is also identical to the signal s(t) scaled by a coefficient

depending on a still-unknown D. Next, consider the phase

of the Morlet wavelet transform along the translation axis at

the scale ar,

∠Sar
(τ) = ωsτ + φ

ωs =
∂

∂τ
∠Sar

(τ). (7)

That is, the instantaneous frequency at the scale ar of the

Morlet transform is ωs. By (7), the phase φ can also be

recovered, if needed. This method is also applicable to

an n-frequency signal if its frequencies are sufficiently far

away from each other that G∗(aω) can treat each spectral

line independently [7]. Whenever two frequencies are very

close to each other (this also depends on the sampling

frequency), increasing ω0 can better localize and distinguish

the overlapping frequencies. However, ω0 should not be too

high that the transform becomes noisy and unreliable. Next,

consider the modulus of the wavelet transform at ar,

|Sar
(τ)| =

√
ar exp

(

σarD√
2

)2

|s(τ)|

ln |Sar
(τ)| =

1

2
ln a +

(

σarD√
2

)2

+ lnA − Dτ.

That is,

D = − ∂

∂τ
ln |Sar

(τ)|. (8)

Knowing D can now lead to the estimation of the ampli-

tude resonance A of the signal, i.e.,

A = |s(t)|eDt. (9)

A simulated signal of creatine (Cr) at 4.7 Tesla, shown

in Fig. 1, is used to illustrate the signal analysis by the

Morlet wavelet. The instantaneous frequency of the Morlet

wavelet transform converges to two frequencies as shown

in Fig. 2 (a). It also shows that (7) works not only at

ar = ω0/ωs but also for a wide range of a. The amplitudes

of the two frequencies of the simulated Cr derived by (9)

remain stationary for most of the acquisition time whereas

the transient period occurs at both ends, as illustrated in

Fig. 2 (b). This is possibly due to the boundary effect. The

damping factor is 10.016 Hz for both frequencies.

The Morlet wavelet is the most frequently used in practice

because of its simple numerical implementation and the

vanishing of the third-order differentiation of its phase can

also simplify the computation [5]. Note that (6) differs from
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Fig. 1. (a) Frequency response of creatine at 4.7 Tesla and (b) its Morlet
wavelet transform (ω0 = 10 rad/s, σ = 1)

the literature which approximates the wavelet transform by

its Taylor series and omits the term D.

B. Dealing with baseline

The baseline corresponds to large molecule contributions

with broad pattern frequency response in the MRS spec-

trum. As a consequence, we modeled the baseline by cubic

splines to study the performance of the wavelet transform.

The modeled baseline has no effect on the instantaneous

frequency derived from the wavelet transform, as shown in

Fig. 3. In fact, Fig. 4 tells us that the baseline affects only the

edge of the transform. Therefore, if the real baseline satisfies

the assumption that it decays faster than the actual signals,

it should still be possible to use the wavelet transform to

derive the frequency and amplitude of a MRS signal without

removing the baseline beforehand. Such an assumption has

been widely used in spectroscopic signal processing [8],

where several authors proposed truncation of time domain

initial data points, which are believed to contain a major

part of the baseline. However, some information of the

metabolites could be lost and a strategy for properly selecting

the number of data points is needed (see [9] for examples

and further references).

III. EXPERIMENTS

In order to study the characteristics of the baseline by the

Morlet wavelet, an in vivo macromolecule MRS signal was

acquired on a horizontal 4.7T Biospec system (BRUKER

BioSpin MRI, Germany).



4 5 6 7 8 9 10

x 10
−3

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

dilation parameter

fr
e
q
u
e
n
c
y
 (

ra
d
/s

)

 

 

instantaneous frequency
ω=ω

0
/a

(a)

0 0.2 0.4 0.6 0.8 1
0.5

1

1.5

2

2.5
x 10

4

translation (s)

a
m

p
lit

u
d

e
 (

a
.u

.)

 

 

at ω = 1056 rad/s

at ω = 2168 rad/s

(b)

Fig. 2. (a) Frequencies and (b) amplitudes of the simulated signal creatine
in Fig. 1. The amplitudes are in arbitrary unit (a.u.).

To acquire a macromolecule-only signal, the acquisition

sequence plays on the differences in spin-lattice relaxation

times (T1) between low molecular weight metabolites and

macromolecules, which are relatively immobile and have

shorter T1 than those of metabolites. That is, by optimizing

the inversion time (IT), which represents the delay between

the inversion pulse and the first pulse of the PRESS sequence,

the metabolites are nullified while the others are maintained

[10], [11].

As seen in Fig. 5, the metabolite-nullified signal from a

volume-of-interest (VOI) centered in the hippocampus of a

healthy mouse1 was a combination of residual water, baseline

and noise. Compared to the simulated signal of creatine,

the signal decays much faster, making it suitable to use

the Morlet wavelet to analyze the MRS signal as described

earlier. However, the residual water is large and could cover

other details. Here, the Morlet wavelet transform can also be

used to magnify and unveil these details as follows. By its

time-scale representation, an integral of the scaled wavelet

coefficients in both time and scale2 is proportional to the

1An Inversion-Recovery module was included prior to the PRESS se-
quence (echo-time = 20ms, repetition time = 3.5s, bandwidth of 4kHz,
4096 data-points) in order to measure the metabolite-nullified signal. The
water signal was suppressed by variable power RF pulses with optimized
relaxation delays (VAPOR). All first- and second-order shimming terms
were adjusted using the Fast, Automatic Shimming technique by Mapping
Along Projections (FASTMAP) for each VOI (3×3×3 mm3). IT = 700ms.

2Since the scale a increases multiplicatively, the natural variable (e.g. for
linear sampling) is ln a.
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Fig. 3. (a) The Fourier transform of a 1056-rad/s signal with baseline
and its instantaneous frequency in (b). The baseline is modeled by a cubic
spline. (ω0 = 10 rad/s, σ = 1)

translation (seconds)

d
ila

ti
o

n

0 0.1 0.2 0.3 0.4 0.5

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

translation (seconds)

d
ila

ti
o

n

0 0.1 0.2 0.3 0.4 0.5

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Fig. 4. The magnitude of the wavelet transform of a pure 1056-rad/s signal
(left) and the signal with baseline (right).

energy of the signal. That is,
∫

1√
a

∫

|S(a, τ)|2dτd(ln a)

= A2

∫

e−σ2ω2

s
(a−

ω0

ωs
)
2

d(ln a)

= A2

∫

1

a
e−σ2ω2

s
(a−

ω0

ωs
)
2

da = A2C,

where C is a constant and does not depend on frequencies

of the signal. Therefore, if we average the Morlet wavelet

coefficients in time, i.e., along the translation axis, and

properly adjust ω0 to separate the frequency of the solvent

from others, the averaged amplitude of the baseline (and

noise) in the frequency domain should be obtained. The

result is illustrated in Fig. 6. Finally, we tried to recover

the (simulated) creatine at different amplitudes after adding
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Fig. 5. The signal of baseline+residual water in time domain (a) and in
frequency domain (b).

it to the signal in Fig. 5. The result, shown in Fig. 7, reveals

that the amplitude of the metabolite can be correctly derived

whereas at earlier time (t < 0.2s) the derived amplitude still

has an effect of the baseline. Although one might expect

some left-over creatine from the nullifying process, the

simulated signal of creatine possibly has a different decaying

time from that of the residual creatine in the baseline, giving

a correct quantification when (9) is used. However, the

metabolite was later covered by noise, giving an inaccurate

amplitude. Therefore, the time to monitor the amplitude of

the metabolite should be properly selected.

IV. CONCLUSION

This paper presents an analytical analysis of the Morlet

wavelet transform to quantify Lorentzian MRS signals. The

experimental results show that the wavelet works well even in

the presence of baseline, which commonly embeds in in vivo

MRS signals, without using any pre-processing. However, the

proposed method was applied on Lorentzian signals only and

still needs further development to cope with non-Lorentzian

lineshapes and more complex signals.
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