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Abstract: This work investigates the topic of solving Bilinear Matrix Inequalities (BMIs)
problems in the optimal control design field, using successive resolutions of properly defined
Linear Matrix Inequalities (LMIs). This technique can be described as an ‘LMI-based coordinate
descent method’. Indeed the original (BMI) problem is solved independently for each coordinate
at each step using a LMI optimization, while the other coordinate is fixed. No method based
on this idea has been formally proved to converge to the global optimum of the BMI problem,
or a local optimum in general. This will be discussed using relevant results both from the
mathematical programming and control design points of view. This discussion supports the
algorithm proposed here which, thanks to a particular change of variables, leads to sequences of
improving solutions. Also emphasized is a second improvement important to avoid in practice
early convergence to suboptimal solutions instead of local optima. The control framework used
is that of optimal output feedback design for linear time invariant (LTI) systems. An example
using a random plant is drawn to illustrate the typical effectiveness of the algorithm.
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1. INTRODUCTION

This work is initially motivated by optimal control design
objectives for which no global optimum is known, in
particular here fixed-order or full-order output-feedback
control design for multi-objectives problems with linear
time invariant (LTI) systems. The aim is the reduction
of conservatism of otherwise available solutions, ideally
toward local optimality. Global optimality is typically NP-
hard to achieve with such problems, and even proving
convergence toward local optima is difficult and open for
investigation.

The approach considered is that of performing successive
LMIs optimizations to solve locally BMIs. The motivation
behind this idea is that LMIs can be efficiently solved
using interior point methods (Nesterov and Nemirovski
(1994), Ben-Tal and Nemirovski (2001)), unlike the avail-
able methods to solve BMIs which may only work for a
few ‘complicating variables’ (Tuan and Apkarian (2000)).
Two branches can be identified.
The first branch considers solving successive local LMIs
approximations (like 1st order Taylor in (Ostertag (2009)))
of the BMIs. These approximations only make sense in
some unknown neighborhood of the considered local solu-
tion and each new solution has to be verified.
The second is to solve LMIs for which the feasible set is
a subset of the original BMIs problem, thus leading to a
probably conservative solution, then to use the obtained
solution as an initial solution in a different subset of the

original BMIs problem and continue iteratively. Two kinds
of subsets are typically used: either the left or the right
side variables of the bilinear terms are let free, and the
others are fixed at their previously updated values. Thus
the iterative procedure considers at each iteration two
LMI optimizations, one for each BMI side. The advantage
compared to the first branch is that each new solution
is guaranteed to be a solution of the original problem,
since each LMIs representation considered has a feasible
set belonging to the BMIs feasible set. This technique can
be classified as a (block-)coordinate descent algorithm.
Both branches have methods that are not guaranteed to
converge in general, globally or locally, although the new
objective at each step must be better or the same than the
previous objective. The work done here is confined to the
second branch chosen because of its advantage that the
successive solutions remain within the BMI feasible set.
Nevertheless, the study of the first branch methods would
partially lead to the same challenges and considerations
than those made here.

The motivation behind this study is that such methods
can work very well in practice even without formal proof of
convergence. The approach is then to study these methods
and propose improvements dealing with the difficulties en-
countered. This paper’s contributions are: the short survey
of such methods, the explanations of the improvement
introduced by the considered change of variables and the
second improvement that can be used to avoid premature
convergence of this kind of algorithms.



In the end the proposed improved algorithm will be
illustrated to have good performances, although it still
lacks a formal proof of convergence.

This work is structured as follows. The involvement of
BMIs in control design is reminded, along with notations
(Section 2). The algorithm used in this work is described
(Section 3). Following a short survey of the literature
(Subsection 4.1), the first improvement brought by the
change of variables is highlighted (Subsection 4.2). The
second improvement is given, that is actually not intrinsic
to the proposed algorithm but can be applied to any
LMI-based coordinate method for BMIs (Subsection 4.3).
Then a random example illustrates the performance of
the proposed improved algorithm (Section 5). Finally, the
conclusions and future work directions are drawn.

2. BMIS IN CONTROL DESIGN

We use classical P -K state-space representations:

P :

{
ẋ = Ax + Biwi + BuP
zj = Cjx + Dijwi + EjuP
yP = Cx + Fiwi + 0

K :
{
ẋK = AKxK + BKyP
uP = CKxK + DKyP

Stabilizing controllers exist if (A;B) is stabilizable and
(A;C) is detectable, which is assumed from now on. The
closed-loop performance channel Tij : wi → zj is obtained:(

A Bi

Cj Dij

)
=

 A+BDKC BCK Bi +BDKFi
BKC AK BKFi

Cj + EjDKC EjCK Dij + EjDKFi


The H2 norm of a continuous time performance channel
T (s)ij is ||T (s)ij ||2 < γγγij iff trace(Zij) < γγγij and(

ATXij + XijA XijBi

∗ −γγγijI

)
≺ 0,

(
Xij CT

j

∗ Zij

)
� 0,Dij = 0

The optimization variables are the following:

• The Lyapunov matrices Xij = XT
ij � 0 associated to

their channels Tij
• The state-space matrices AK , BK , CK , DK

• The objectives variables γγγij positive scalars and
Zij symmetric positive definite matrices

The notation ∗ indicates symmetrical terms. Note that
these matrices are BMIs, because of bilinear terms con-
sisting in the product of the Lyapunov matrices and the
design parameter state-space matrices.

No method is known to work well to solve BMI problems,
except maybe for small problems with few ‘complicat-
ing’ variables (Tuan and Apkarian (2000)). It is much
more suitable to use LMIs reformulations, efficiently solved
using interior point methods (Nesterov and Nemirovski
(1994); Ben-Tal and Nemirovski (2001)). For the LTI sys-
tems output-feedback control design problem considered
here, there exist two changes of variables turning the BMIs
in LMIs. The first method (Masubuchi et al. (1995)) re-
quires full-order control and the second is method (Scherer
(2000)) requires observer-based control. Both methods al-
low to overcome the difficulty of products between Lya-
punov matrices and the state-space matrices of the design

parameter. Using these, convex subspaces (feasible sets of
LMIs) of the in general non-convex space of all solutions
are considered.

3. PROPOSED ALGORITHM

3.1 The change of variables

The algorithm is given after the description of the change
of variables it uses. The state-space matrices of P must
have the following structure, necessary for the considered
change of variables:

A =
[
A1 A3

0 A2

]
, Bi =

[
Bwiχ
Bwiε

]
, B =

[
BuPχ

0

]
,

Cj =
[
Cχzj Cεzj

]
, Dij = Dwizj , Ej = DuP zj ,

C = [0 CεyP ] , Fi = DwiyP

(1)

The previous notations are close to that of (Scherer
(2000)). The states of P are divided in two parts: the
difference between the actual plant and observer states
ε and the rest of the states χ. This notation is chosen
according to the use of a structure with observer, in which
case the input yP of the design parameter K is the differ-
ence between the actual plant output y and the observer
output ŷ. Note that with the structure (1), P is stable
due to the structure with observer. If a given P is not
structured as (1), the more general way to enforce this
structural property is to use the Youla parameterization
to span the set of all stabilizing controllers (as reminded
in (Scherer (2000))). Notice that this doubles the number
of states of the original plant P .

The particularity of such structure is that the transfer
between yP and uP is zero, consequently the transfer
between w and z is affine on the K parameter. Then the
control parameter can be inserted within the channel of
P with output yP and input uP respecting this structural
property: TuP yP = C(sI −A)−1B = 0 (Scherer (2000)).

Using the change of variables of (Scherer (2000)), the
BMIs are rewritten as follows: X → X(v), XA → A(v),
XBi → Bi(v), Cj → Cj(v) where each of these now affine
terms is defined hereunder.
The term Dij = Dij + EjDKFi does not change.

The Lyapunov matrices are decomposed and changed into
Xij → (Rij , S1ij , S2ij , T11ij , T12ij , T22ij) = v detailed in
(Scherer (2000)), (Stoica et al. (2007)). In order to lighten
the notations the ij indices, denoting the considered per-
formance channel and its associated Lyapunov matrix, are
omitted in the following terms:

A(v) =

A1R t1 t2
0 T11A2 + T12BKCεyP T12AK
0 T12

TA2 + T22BKCεyP T22AK


B(v) =

BuPχDKDwyP +Bwχ − S1Bwε − S2BKDwy

T11Bwε + T12BKDwy

T12
TBwε + T22BKDwy

 ,

C(v)T =

 RCTxz
t3

S2
TCTxz − CKTDT

uz

 ,X(v) =

(
R 0 0
∗ T11 T12

∗ ∗ T22

)



t1 = A1S1 − S1A2 − S2BKCεyP +A3 +BuPχDKCεyP

t2 = A1S2 − S2AK +BuPχCK

t3 = S1
TCTxz + CTεz − CTεyPDK

TDT
uz

This change of variables has only been used fixing the
AK , BK matrices beforehand. Indeed, this a priori choice
is necessary since AK , BK appear in product terms.
This arbitrary choice of AK , BK fixes the LMI subset used
of the BMI feasible set. This choice has so far only been
done using using a polynomial expansion defining a basis of
the space of all controllers (Scherer (2000)). By increasing
the size of the polynomial expansion, thus that of the
AK , BK matrices and therefore of the LMIs to be solved,
the objective converges to the global optimum. However a
very large size may be required to obtain such convergence,
that is when the optimal dynamics (poles) of the optimal
controller appear only at high orders of the expansion.
This is why this arbitrary choice is determinant for the
convergence of that method or even whether it will be
able to provide ‘good enough’ (i.e. not too far from the
optimum) controllers for a size realistic in practice.
An other idea is developed here, coming from the following
key observation: only the variables S2, T12, T22, related to
the Lyapunov matrices, multiply the AK , BK matrices.

3.2 The proposed algorithm

Following the key observation, the new variables can
be regrouped in the following three (block-)coordinates:
xα = S2, T12, T22, xδ = CK , DK , R, S1, T11, xβ = AK , BK .
Then, considering xδ always appears affinely with the
change of variables, the implementation of the following
algorithm is done quite logically:

The new LMI-based coordinate descent algorithm:

1) Choose an initial solution (e.g. three choices hereunder)
2) Fix variables xβ then optimize the objective using LMI

optimization with vα = xα, xδ as free variables
3) Fix variables xα then optimize the objective using LMI

optimization with vβ = xδ, xβ as free variables
4) Iterate successively both steps 2) & 3), fixing at each

step xβ or xα previously updated, until the objective
decreases less than a chosen accuracy.

The proposed algorithm allows to further explore the
non-convex space of all solutions using successive convex
subspaces. This is illustrated in Figure 1, drawing a general
representation of the algorithm first few steps.

For convenience, three possible choices are pointed out
for the initial solution. The first is to use any random
stable controller, or rather several to seek several local
optima (note that if these optima are the same, this is
an indication these might be the global optimum but
this is an other topic). The second is to start from
any observer-based controller otherwise available, or to
turn any output-feedback control into an observer-based
structure (this can be done exactly but implicitly using
(Alazard and Apkarian (1999))). The third is to design
a full-order controller using the other change of variable
available (Masubuchi et al. (1995)). When more than one
objective functions are considered, this solution bears the
conservatism of a unique Lyapunov matrix. Note that if a
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Fig. 1. Representation of proposed algorithm

smaller size is desired, this initial solution can be reduced
using e.g. balanced reduction.

4. LMI-BASED COORDINATE DESCENT METHOD

The algorithm now presented, a short survey of the liter-
ature is made to present relevant elements regarding the
convergence of such techniques. It seems appropriate to
structure the existing approaches in the literature in two
parts. The first and more general part concerns the math-
ematical programming about coordinate descent methods.
The second part deals with the control design where such
methods are applied toward objective optimization. At
several places in control design literature it can be read
that coordinate descent methods are not guaranteed to
converge (Kanev et al. (2004); Iwasaki (1999); Yamada and
Hara (1998)). However no explanations are given, although
such methods can only improve or maintain the objective.
This is the motivation behind the next subsection, present-
ing the few central elements found within each community.

4.1 Short survey of literature

Mathematical programming elements The idea of
fixing a set of variables while optimizing the remaining free
set and so iterate for each set is called (block-)coordinate
descent method, meaning that the cost is minimized along
one (block-)coordinate direction at each iteration. The
methods currently considered fits this general definition,
thus the designation of LMI-based coordinate descent
methods. Therefore the related central result of (Bertsekas
(1999)) is reminded: every limit point of such method is
a stationary point under a few requirements. A first re-
quirement is that the cost function has to be continuously
differentiable. In the current context, this is always met
because the objective functions (minimized under LMI
constraints with interior point methods) have to be linear
combinations of the decision variables. A second hypothe-
sis is that the set of solutions X ⊆ Rn must be structured
as a Cartesian product of closed, nonempty and convex
subsets Xi ⊆ Rni . Because of the in general non-convex
feasible sets of BMIs, this result cannot be used here.



A very relevant paper is that of Helton and Merino (1997)
considering the optimization of the largest eigenvalue of a
smooth selfadjoint matrix valued function Γ(X,Y ), which
is bi-convex (convex in X and Y separately). The problem
of minimizing this objective can be written as:

min t s.t. BMIs(X,Y ) < tI (2)

where t is a scalar and BMIs depend on two matrix
variables X and Y . This objective is not exactly the more
general objective of minimizing a linear combination of
decision variables but it is similar. Actually this last objec-
tive can be turned into a feasibility problem, if the desired
objective values are known beforehand. Anyhow, the paper
of Helton and Merino (1997) provides strong evidence
(but not a formal proof) that the technique of minimizing
the largest eigenvalue by updating alternatively X and
Y will almost never reach a local solution. This gives an
important result to identify the reason why the general
method studied does not converge to a local optimum.
From this result is drawn the first hint that will lead to
the second improvement presented in subsection 4.3.

In the end, the difficulty stems from the BMI constraints
and their non-convex feasible set, leading to NP-hard
problems. This feature blocks the development of formal
proof of convergence for most methods, including LMI-
based coordinate descent.

Control design elements In (Goh et al. (1995)), a
counter-example is given for which the method (called
‘alternating LMI for BMI’) does not converge to a local
solution. This echoes the result from Wendell and Hurter
(1976) in mathematical programming, where we read that
such method leads to ‘partial optimal’ solutions that may
not be local optima. Therefore in general the convergence
of the considered methods can not be proved.

In the paper of (Iwasaki (1999)), it is reminded that this
kind of algorithms generates a monotonically nonincreas-
ing sequence but are not guaranteed to converge to the
global optimum. It is also said that the efficiency and
reliability of the algorithm depends critically on the choice
of coordinates (and not only on the initial solution, always
important for local optimization).

In (El Ghaoui and Balakrishnan (1994)), the first algo-
rithm falling within the current scope is proposed. It can
be read in this paper that locally optimal solutions are
obtained, but the proof of convergence still has to be
done. The method proposed there is straightforward: since
BMIs in control design come from products between two
sets of decision variables: the Lyapunov matrix(ces) V
and the controller state-spaces matrices K, then LMIs
having either one of both sets as decision variables can be
solved instead. Thus, starting from an initial solution, the
objective can be iteratively optimized alternating at each
step between the two sets of variables V and K: the so-
called V -K iteration. This algorithm is further discussed
hereunder.

Also noted are the works of Banjerdpongchai and How
(1997) considering a very similar algorithm to the one
proposed in Section 3, but with another change of vari-
ables, used for Popov H∞ or H2 robustness of parametric
uncertain systems. They came around observations that

back up ours and some of these are reminded in the next
subsection.

4.2 First improvement

This subsection develops the reflexions and observations
explaining why the proposed algorithm is expected to
perform well. In particular, this development will be made
by putting the emphasis on the reasons why the V -K
iteration should not work in practice and what is then the
improvement brought by the new algorithm. A sufficient
condition to check the local optimality of a solution is also
reminded here.

The straightforward idea of the V -K iteration (El Ghaoui
and Balakrishnan (1994)) carries an intrinsic weakness
that often leads to poor or no convergence at all. Control
design is about changing the properties of a system by
inserting and designing a controller. In optimal control
design, this is done through the optimization of a math-
ematical criterion regarding the behavior or properties of
the controlled system. When the controllerK is completely
fixed, the entire system representation is fixed and none
of its properties can be changed. Therefore, at the V -
update step of the V -K iteration no closed-loop improve-
ment can be made and the actual control design objective
value remains identical to the previous value found at the
end of the K-update step. Alternatively, any change in
the objective obtained there is not representative of any
change in the system. This method could only work if
at the V -update step the Lyapunov matrix is modified
so that it becomes ‘oriented’ in such a way that, at the
following K-update step, this new Lyapunov matrix is
fitting for a better controller. Nothing ensures such a
special property. Considering this, the convergence of the
V -K iteration toward local optimality can most probably
not be guaranteed.

The algorithm proposed in Section 3 bears a big differ-
ence compared to the obvious V -K iteration, thanks to
the change of variables: at each step either all of the
controller’s matrices or at least the CK , DK matrices are
let free as decision variables. Thus, the closed-loop can
change and the actual objective’s value can be improved
at each step. Compared to the V -K iteration and the
general negative results from the literature, this algorithm
has three sets of variables instead of two, one of which
is always free. These arguments from the two perspectives
(control design and mathematical programming) designate
the improvement of the proposed algorithm over the V -
K iteration. This can be reformulated for both points of
view as follows. From control design, an improvement can
be brought at each step through the CK , DK controller
matrices. From mathematical programming, the bilinear
terms now encountered are written in general as xαxβ +
xδ, thus where xδ appears as an additional affine degree
of freedom making a possible ‘blocking’ of the algorithm
much less likely.

This important difference was also highlighted by D. Ban-
jerdpongchai (1998) mentioning these ‘shared variables’ in
the LMIs, actually offering an additional degree of freedom
which is a significant improvement compared to the origi-
nal V -K iteration. However still no proof of convergence is
given (only an a-posteriori exhaustive search verification).



In the previous article of Banjerdpongchai and How (1997)
is reminded that the convergence is implied under the
conjecture of the objective being reduced at each step. It is
also noted that on more complex objectives like H2 norm
of performance channels, the V -K iteration converges very
slowly or even not at all.

The aim is to prove this general convergence criterion: this
algorithm converges if and only if the search directions con-
sidered at each iteration bear an improved solution, until
the solution is locally optimal. This is more likely with the
algorithm proposed here (thanks to the ‘shared variables’
always free at each step, among which the CK , DK ma-
trices of the controller’s state space representation) but is
still not proved because of the BMIs non-convex feasible
sets.

On the other hand what can be guaranteed is the side
result that under the following weak assumption: (H1) The
sub-optimal initial controller K has state-space matrices
CK , DK not optimal (with respect to the considered objec-
tive) for AK , BK then at least the steps 2) of the algorithm
improves the objective. Indeed this step is guaranteed to
find the globally optimal CK , DK for fixed AK , BK con-
troller’s state-space matrices (Scherer (2000)). In practice
(H1) is always verified.

The classical sufficient condition to check the local op-
timality of a given solution is reminded here. It is to
verify whether there may still exist directions in which
the objective could be improved. This is made by checking
whether a ‘local virtual objective’ is better (by at least
some given accuracy) than the actual solution objective.
This ‘virtual objective’ is obtained using the first order
approximation of the BMIs around the given solution,
which are LMIs. These LMIs constraints are weaker than
the BMIs constraints and minimizing the objective under
these LMIs will provide the virtual objective which is a
lower bound for the actual objective, locally. Thus if the
actual solution’s objective is close (to a given accuracy) to
its virtual objective, it is a local optimum. Otherwise it still
could be (depending on the limits of the BMI feasible set),
but this cannot be verified with this condition. The LMIs
approximation of the BMIs around the current solution
x̄α, x̄β is written with xα = x̄α + ∆xα, xβ = x̄β + ∆xβ :
BMIs(xαxβ , xδ)|x̄α,x̄β ∼= LMIs(x̄αx̄β+x̄α∆xβ+∆xαx̄β , xδ)
so the local bilinear term ∆xα∆xβ has been relaxed.

4.3 Second improvement

Current solvers could be easily extended to alternate
through two sets of variables properly, thus effectively
implementing the local BMI resolution with LMI-based
coordinate descent. This would provide a convenient first
attempt to solve BMI problems. Then here is highlighted
a very important feature that should not be forgotten:
the choice of the alternating criterion determining the
moment when the current set of variables must be frozen
and the other freed. To the best of the authors’ knowledge
it appears that so far LMIs-based coordinate descent
algorithms to solve BMIs only alternate the variables
at the normal end of each LMI optimization: at each
coordinate update, the considered objective is minimized
to a given accuracy.

Two reasons made us notice this criterion: the results in
(Helton and Merino (1997)) and the general convergence
criterion reminded in the previous subsection.

So far this method computes the best coordinate for the
other fixed coordinate toward the considered objective
at each step (the global optimum of this sub-problem
obtained with LMI optimization). Therefore with this
‘hidden’ or implicit alternating criterion, at each step these
are actually local sub-problems (find the best coordinate
for the other fixed) that are solved and not exactly the
original BMI problem anymore. In practice what may
happen is the situation of a partial optimal solution
that is not locally optimal, as announced in general in
(Wendell and Hurter (1976)) and in particular in (Helton
and Merino (1997)). This can be interpreted as a bad
‘localization’ of the algorithm: the considered solutions
enter a sequence pertaining to this sub-problems scheme
but not anymore to the global problem.

Instead, the alternating decision should be based on the
general convergence criterion: the method converges to
a local optimum if a better solution is obtained at each
iteration. Thus what is needed is to compute one better
solution at each step, and not necessarily the best. So, what
is only required is to find a feasible solution to the problem
that has a better objective than the previous one. This can
be written as solving at each step the following feasibility
problem:

feasp {LMIi+1 + (Γi+1 < Γi − ε)} (3)
where feasp means to find one solution respecting the
given constraints, LMIi+1 are the LMI constraints at
the next step, Γi+1 the objective at the next step and
ε a chosen accuracy. Thus, the bad ‘localization’ of the
algorithm is much more unlikely: under this scheme the
improvement of the original problem’s objective is done
more simultaneously in both variables than with the usual
‘the best for the other’ alternating criterion.

In our experience this works fine using ε = 0 because for
the solver Γi+1 < Γi is only just another constraint and
it will not necessarily behave so that Γi+1 gets stuck just
under Γi at each step. On a practical note, it is suggested to
use the very robust feasp algorithm of the LMILab toolbox
in Matlab. Note also that with this method, only feasibility
(‘feasp’) computations of constraints are made which is
significantly faster than to minimize an objective under
these constraints.

Finally, we remark that the article of Helton and Merino
(1997) provides strong evidence that: on one hand for the
MIN-MIN problem (minimization in both ‘sides’ of the
BMI) the coordinate optimization almost never reaches a
local solution but on the other hand for the MIN-MAX
(minimization in one side and maximization in the other)
it almost always does. The adaptation of these results to
show that the proposed ‘feasp-feasp’ method converges is
currently studied. Likewise this new alternating rule is
expected to keep the intermediate solutions away from the
BMI limits: the possible interpretation as a ‘BMI interior
point method’ is also under further investigation.



5. RANDOM EXAMPLE

The objective is to minimize the H2 norm of the single
performance channel of a random plant. The discrete-time
random plant considered is given by (already including a
Youla parameterization enforcing structure (1)):

A =


−1.41 −0.008615 0.9433 5.642 0.5387 −3.05
2.519 0.08446 −1.605 8.342 1.068 −4.446
−2.29 −0.01333 1.53 6.336 0.9779 −3.337
0 0 0 2.088 −0.5969 0.04967
0 0 0 5.827 −1.641 0.1544
0 0 0 1.262 −0.4047 0.2607

 ,

B1 =


0.9218 0.4057
0.7382 0.9355
0.1763 0.9169
0.9218 0.4057
0.7382 0.9355
0.1763 0.9169

 , B =


0.9218 0.4057
0.7382 0.9355
0.1763 0.9169
0 0
0 0
0 0

 ,

C1 =
(

0.4103 0.05789 0.8132 0 0 0
0.8936 0.3529 0.009861 0 0 0

)
, D11 = 0

C =
(

0 0 0 0.4103 0.05789 0.8132
0 0 0 0.8936 0.3529 0.009861

)
, E1 = 0, F1 = 0.

Fig. 2 provides the algorithms’ results.

Fig. 2. Example of convergences

The horizontal line gives the global optimum, obtained
with the full-order (order 6) change of variables from
(Masubuchi et al. (1995)). Note that this global optimum
for all controllers is available because only a single objec-
tive is considered here, thus the unique Lyapunov matrix
available with this change of variables is sufficient. Then
this full-order controller is reduced from 6 to 1 state using
balanced truncation (note that only proper controllers
have been considered, thus with DK = 0).

This gives the initial solution from which the other algo-
rithms are started (and with the associated objective value
given at the iteration 0). Note that for this reduced-order
design the global optimum is not known.

The first result is obtained with the V -K algorithm. As
expected, no improvement is obtained and the objective
remains at the same value (this was obtained without the
constraint Γi+1 < Γi, otherwise that algorithm breaks
immediately in infeasibility).

The second result is obtained with the proposed algorithm
with the implicit ‘min’ alternating rule (the objective is
minimized at each step). A much better convergence is
observed than that of the V -K algorithm, thanks to the
xδ variables free at each step. However that solution does
not verify the sufficient local optimality condition (its local
lower bound is far below, under the bottom curves) and we
can not say whether or not this is really a local optimum.

The third and best result is obtained with the proposed
algorithm with the improved ‘feasp’ alternating rule (one
better solution is obtained at each step). As can be seen on
the figure, the local lower bound clearly converges toward
the same value. Therefore the algorithm has reached
a local optimum. Besides, the global optimum for all
controllers is quite close so it is very much possible that
this local optimum is actually global for this reduced
design, though this is not be proved.

6. CONCLUSIONS

The approach of this paper is a study of the convergence
properties of algorithms that can be described as LMIs-
based coordinate descent method to solve BMIs locally
(from an initial solution). The framework considered is
control design, from which originate the first and most
of BMIs problems, and more specifically output-feedback
optimal control for LTI systems. After a description of
a new algorithm fitting to tackle such problems, a short
survey of the literature is made to present relevant ele-
ments regarding the convergence of these algorithms in
general or the one proposed in particular. These allow
to shed light on the reasons why the proposed algorithm
bears a first improvement compared to the other algorithm
available, the V -K iteration. Following this, a second im-
portant improvement that can be applied to the considered
algorithms is given. Finally, an illustration of the discussed
algorithms and improvements efficiency is made using a
random example.

As it appears, the convergence of such method can not be
proved in general. Indeed, although the objective can only
become better or remain the same at each step, a proof of
convergence would require that the feasible LMI directions
(subspaces of the original BMI feasible set) considered at
each iteration always bear an improved solution, until local
optimality is reached. This is a priori not guaranteed for
the proposed algorithm, the V -K iteration or such scheme
in general. Modifications to ensure this are not straight-
forward because of the inherent’s problem difficulty: the
BMI constraints and their in general non-convex feasible
sets, typically leading to NP-hard problems.

On the other hand the algorithm proposed bears a first
improvement: the property that a set of variables remain
free at each step, among which the CK , DK matrices of
the controller’s state-space representation. Although it is
not formally guaranteed, it is explained and observed that
these variables lead to sequences of improving solutions.



The other main contribution is the second improvement
that should always result in a better behavior for the
algorithm proposed and in general, not only for the conver-
gence but also for the computation time at each step. This
is made with a discussion on when to alternate from one set
of variables to the other, a feature apparently overlooked
so far with such algorithms.

In the end the improved algorithm, although yet lacking a
formal convergence proof, performs very well in practice.
This has been illustrated with only one random example
here but the same performance and positive results were
obtained with all the other tests we tried so far. It is
suggested that actual LMI solvers could be easily extended
with the improved method to feature this easy systematic
first attempt at solving BMI problems. Of course it might
very well not bring any improvement, but it still remains
a useful tool to be used in addition or combination with
other methods.

Future works will study the combination of the presented
algorithm with other optimization techniques to improve
efficiency and or try to enforce convergence properties. In
that sense, we will study further the improved alternating
criterion and handling of successive solutions that may
give an improved efficiency and/or convergence. Likewise
we will look into possible new or improved search direc-
tions that would prevent the algorithm of getting stuck
before reaching local optimality, possibly not only using
coordinate descent but also linear approximations of the
BMIs. Of course this will be done along with a study of
the first branch of methods described in the introduction.
The effectiveness will also be illustrated using extensive
numerical experiments, considering both random systems
and typical benchmark systems used in the literature along
with mixed objectives. A Matlab function implement-
ing the proposed algorithm can be written, and perhaps
an extension of the LMILab toolbox for the systematic
BMI approach suggested. Finally the technique might be
enlarged in other frameworks like branch-and-bound or
swarm optimization to deal with global optimization.
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