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OUTLINE

In the European countries, age standardized incidence rates (European standard)

for ovarian cancer vary between 7.2 and 19.3/100,000 while mortality rates are

ranging between 2.8 and 12.2/100,000.
1

In Belgium, ovarian cancer is not as

frequent as breast cancer since breast cancer presents with very high incidence

rates (similar for other European countries). However, age standardized breast

cancer mortality rates in 2008 were less than one fourth of the age standardized

incidence rates whereas for ovarian cancer, mortality rates were two thirds of the

incidence rates (see figure 1). And, unlike for breast cancer, mortality rates for

ovarian cancer were not decreasing over the past years.
2

Indeed, ovarian cancer is

one of the leading causes of death from gynaecological malignancies.
3

This is

explained by the fact that in general, ovarian cancer is detected at too advanced

stages. Early diagnosis of ovarian cancer is thus the key for improving outcomes for

the disease.

FIGURE 1: INCIDENCE AND MORTALITY RATES FOR GYNAECOLOGICAL CANCERS IN BELGIUM (2008)
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Medical imaging techniques have revolutionised medicine during the last decades.

Ultrasound (US) in particular gives access to vital data in a non-invasive way and is

effective for imaging soft tissues of the body. Compared to other medical imaging

modalities, US has the following positive attributes:

 US is a real-time, easy operation medical imaging technique

 US has a non-invasive and radiation free nature

 US is relatively low-priced,

Hence US has become widely used as a diagnostic technique in general clinical

practice.

In gynaecology, US is one of the most important and primary diagnostic tools. Its

use continues to increase and it is now an essential part of the diagnostic

procedure in examining the female pelvis. Indeed, the use of US morphology to

characterize adnexal masses and thus diagnose ovarian cancer is well established.
4

As a part of patient management, gynaecologists use US morphology to

differentiate between malignant and non-malignant ovarian masses that come to

their attention. In addition, a large number of indexes and mathematical prediction

models that assess the likelihood of malignancy for an ovarian mass have been

developed and they all incorporate US.

A novel computer-aided technology, HistoScanning
TM

, makes use of US data for

characterising ovarian tissue suspicious of being malignant.

In part I of this research work, we investigated whether ovarian HistoScanning

could improve the performance of existing prediction models for the differential

diagnosis of ovarian masses and we also explored what place could be granted to

this new technology in clinical practise.

Part I is organised as follows: Chapter 1 concerns the epidemiology of ovarian

cancer and discusses the importance of differential diagnosis of ovarian masses.

Detailed aims are described in chapter 2. Chapter 3 introduces the general

methods used for this work. In chapter 4, two publications that present the results

of this work are presented. Finally, a discussion, regarding the results presented in

part I, concludes this work in chapter 5.
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CHAPTER 1: GENERAL INTRODUCTION

In this chapter, some background notions are presented. Section 1 defines what

adnexal masses and ovarian tumours are and how these are classified and staged.

In section 2, the epidemiology, diagnosis and treatment of ovarian cancer are

discussed. Finally, section 3 reports on the importance of differentiating benign

from malignant masses and introduces the differential diagnosis techniques that

were developed over the years.

1. ADNEXAL MASSES

1.1. TYPES OF ADNEXAL MASSES

Left and right to the uterus, there is a region containing an ovary and a fallopian

tube together with associated vessels, ligaments, and connective tissue which is

referred to as the ‘adnexal region’. Adnexal mass thus indicates any mass

originating from the ovary or fallopian tube but also from e.g. the uterus, bowel, or

any metastatic disease from another site. Myers et al
5

defined the following list of

conditions that can present as an adnexal mass:

 Benign primary ovarian tumours

 Borderline and malignant ovarian tumours

 Metastatic malignant tumours – most commonly breast and

gastrointestinal tract

 Masses arising from the fallopian tube

 Masses arising from an organ ‘close’ to the adnexae (e.g. uterus, pelvic

kidneys,…)

 Endometriosis

 Pelvic inflammatory disease

 Cysts arising from normal ovarian functions, such as follicular cysts

(development of eggs) or corpus lutheum cysts (ovulation)

Adnexal masses can be discovered/visualized during bimanual pelvic examination

(if they are palpable) or also by radiographic imaging.
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1.2. OVARIAN TUMOURS

1.2.1. THE DIFFERENT OVARIAN TUMOURS

The normal ovaries are an oval-shaped pair of solid organs of approximately 3 cm in

diameter. After the menopause though, they will decrease in size.

When tumours arise in the ovary, they are called ‘primary’ ovarian tumours and

these primary tumours can originate from 3 broad types of cells:
5,6

 Epithelial cells: cells on the surface of the ovary

 Germ cells: cells that form the eggs

 Sex cord-stromal cells: cells surrounding the eggs, including cells that

produce ovarian hormones

Most epithelial tumours are of serous or mucinous histological subtype and all 3

abovementioned ‘broad’ types of ovarian tumours present with more detailed

histological sub-classifications that can be found in the World Health Organisation’s

Handbook.
6

Tumours are malignant if they possess the ability to metastasize and benign if they

don’t, regardless of the histological class they belong to. However, in the case of

epithelial tumours in which there is no invasion into the ovarian stroma, some are

classified somewhat in between as borderline. This happens when only little

histological evidence of cell proliferation exists (as e.g. increased cell division,

changes in the appearance of the cell nucleus). In this work, borderline ovarian

tumours were considered as malignant tumours but note that quite some

controversies exist over which class (benign or malignant) they really belong to.

As listed before, malignant ovarian tumours can also be the result of metastasis

from another site which is often breast.
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1.2.2. INTERNATIONAL FEDERATION OF GYNAECOLOGY & OBSTETRICS

(FIGO) STAGING OF OVARIAN CANCER

Ovarian cancer is mainly staged surgically but histology and cytology are also to be

considered at final staging. Evaluations that might affect final staging are clinical

evaluation and imaging results. Table 1 Shows the classification of ovarian

carcinoma’s into FIGO stages as defined by the FIGO committee on Gynaecological

Oncology in the paper by Benedet et al.
7
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TABLE 1: FIGO STAGING OF OVARIAN CARCINOMA'S

FIGO Stages

I Tumour limited to the ovaries

IA Tumour limited to one ovary; capsule intact, no tumour on ovarian

surface; no malignant cells in ascites or peritoneal washings

IB Tumour limited to both ovaries; capsule intact, no tumour on ovarian

surface; no malignant cells in ascites or peritoneal washings

IC Tumour limited to one or both ovaries with any of the following:

capsule ruptured, tumour on ovarian surface, malignant cells in

ascites or peritoneal washings

II Tumour involves one or both ovaries with pelvic extensions

IIA Extension and/or implants on uterus and/or tube(s); no malignant

cells in ascites or peritoneal washings

IIB Extension to other pelvic tissues; no malignant cells in ascites or

peritoneal washings

IIC Pelvic extension (IIA or IIB) with malignant cells in ascites or

peritoneal washings

III Tumour involves one or both ovaries with microscopically confirmed

peritoneal metastases outside the pelvis and/or regional lymph node

metastases

IIIA Microscopic peritoneal metastasis beyond pelvis

IIIB Macroscopic peritoneal metastasis beyond pelvis ≤ 2 cm in greatest

dimension

IIIC Peritoneal metastasis beyond pelvis > 2 cm in greatest dimension

and/or regional lymph node metastasis

IV Distant metastasis (excludes peritoneal metastasis)
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2. EPIDEMIOLOGY AND TREATMENT OF OVARIAN CANCER

2.1. INCIDENCE AND MORTALITY

Annual age standardized incidence rates (European standard) for ovarian cancer

vary between 7.2 and 19.3/100,000 in European countries.
1

These go together with

age standardized mortality rates ranging between 2.8 and 12.2/100,000 for the

European countries.
1

Worldwide, the age standardized (world standard) incidence

and mortality of ovarian cancer are of 6.3 and 3.8 per 100,000, respectively.
8

This

means that in 2008 worldwide, there were 225,000 new cases of ovarian cancer

and 140,000 deaths from ovarian cancer.
8

This high case-fatality rate of ovarian

cancer is often assigned to its ‘silent’ progression which leads to a late detection of

this disease when the cancers are already in advanced stages and survival is poor.

Indeed, 3-yr
A

survival of Figo stage III and IV cancers is of 30% and 25% respectively,

whereas the 3-yr survival of Figo stage I and II cancers is of 89% and 87%,

respectively.
9

Incidence rates of ovarian cancer are the highest in industrialized countries (with

the exception of Japan) and have slowly increased over the last years.
10

2.2. AETIOLOGY

The cause of ovarian cancer remains unknown but the risk of ovarian cancer is

increased by a family history of ovarian or breast cancer, personal history of breast,

uterus, colon or rectal cancer, nulliparity, infertility, and ever usage of hormone

replacement therapies.
11-15

Protective factors include high parity, history of tubal

ligation or hysterectomy, and use of oral contraceptives.
11,13,16

Other ‘ambiguous’

factors with suggestive evidence of association to ovarian cancer are the usage of

talc and some dietary habits.
17,18

A
Due to the high mortality rate (especially for FIGO stages III and IV), 5-yr survival data are difficult to

find.
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Genetic factors such as the breast-ovarian cancer syndrome, linked to an inherited

mutation in the BRCA1 gene or the BRCA2 genes, account for approximately 5% of

all ovarian cancers.
7

2.3. SYMPTOMS

Unfortunately ovarian cancer does not cause many ‘early’ signs until it reaches

advanced stages (FIGO III and IV). Moreover, symptoms are very unspecific and this

implies that they do not always alert clinicians to the diagnosis of ovarian cancer.

As a consequence, two thirds of ovarian tumours are stage III or IV at the time of

diagnosis.
11

The most frequent symptoms are increased abdominal size, bloating,

urinary urgency and pelvic pain.
11,19

Recent studies have shown that these

symptoms, however unspecific, are more frequently and more severely

experienced in women with ovarian cancer prior to diagnosis.
20

The detection of an adnexal mass may happen incidentally, at a routine health

maintenance examination or at imaging done for another indication. Symptomatic

women, on the other hand, are intentionally evaluated by a physical examination

and/or radiographic imaging.

2.4. DIAGNOSIS – INTRODUCTION

When ovarian cancer is suspected, the first steps in diagnosing usually include a

complete physical and abdominal examination (i.e. bimanual pelvic examination).

Blood samples will be taken too, to assess the overall physical condition of the

patient, but they also allow assessing tumour markers as serum CA125 antibody

concentrations. Transvaginal ultrasonography (TVS) (or transabdominal) is then

used to visualise the ovaries, the fallopian tubes and the uterus; It is always

recommended as part of the initial workup of a complex adnexal/ovarian mass.
19

Other imaging techniques (transabdominal ultrasonography, CT-scans, MRI-scans)

might be performed for further investigations. Given the large variety of possible

causes (section 1.1), precise diagnosis of a mass is important for selecting the most

appropriate treatment option. More on this will be presented in section 3.
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2.5. TREATMENT

Surgery is the first and most important part in ovarian cancer treatment. A

complete staging surgery by laparotomy is nearly always performed as it is a

cornerstone in the management of ovarian cancer.
7

Recently, researchers have also

suggested the use of laparoscopy for the staging of early ovarian cancer.
21

Whichever choice is made for early stage ovarian cancer, the staging surgery should

always include full exploration of entire pelvic and abdominal contents,

omentectomy (because the omentum is a common side of spread and should thus

be removed even if clinically uninvolved) and random peritoneal biopsies. If the

contralateral ovary is unaffected and when the patient is young and desirous of

fertility preservation, conservative surgery should be considered. Otherwise, total

hysterectomy with bilateral salphingo-oophorectom and lymphadenectomy is

recommended. Then, only patients with stage IA, grade 1 tumour do not require

adjuvant chemotherapy. All other early stage cancers usually receive an adjuvant

treatment that consists of a platinum analogue, alone or in combination with

Paclitaxel.
7,11,22

In case of advanced stage ovarian cancer, the surgeon should aim at removing as

much of the tumour as possible during primary (staging) surgery. This is often

referred to as debulking or cytoreductive surgery. The importance of this surgery is

reflected by the fact that maximum cytoreductive surgery (often residual tumour <

2cm) is a key prognostic factor that affects survival and recurrence of late stage

ovarian cancers.
23,24

Postoperatively, a variety of chemotherapy treatments can be

used in combination for adjuvant treatment; the most commonly used are Cisplatin

and Paclitaxel. When patients are unable to tolerate surgery due to medical

conditions, a neoadjuvant chemotherapy treatment eventually followed by

intermediate debulking is often recommended.
7,25

However, note that in the near

future, neoadjuvant chemotherapy will play a more important role in general for

patients with advanced ovarian cancer.
7,25
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3. PRE-OPERATIVE DIFFERENTIAL DIAGNOSIS

3.1. THE IMPORTANCE OF DIFFERENTIATION BETWEEN BENIGN AND MALIGNANT

ADNEXAL MASSES

For symptomatic women, surgical management is the treatment of choice in order

to relief symptoms. Surgeons’ specialized training and experience in managing

malignancy has been strongly associated with improved outcomes for patients with

ovarian malignancy.
26-30

This implies that referral to and management by

experienced gynaecological oncologists is important.

Secondly, in the group of asymptomatic women, an increasing number of adnexal

masses, of which only a minority will be malignant, come to the attention of

physicians. For these patients, it is important to propose an appropriate

management in the case of malignancy while at the same time avoiding

unnecessary procedures (surgery, anxiety, etc.) for women with benign conditions.

Indeed, an improved patient outcome will be ensured when the most appropriate

referral and management is chosen for malignancy while minimizing invasive

diagnostic procedures for benign lesions that are not likely to transform into

cancer.
23,26,31

Based on these arguments, it is clear that pre-operative differential diagnosis

techniques are important to facilitate these matters of correct referral and

treatment choice.

In the next section, an overview of the differential diagnostic techniques and their

development will be given. We will also introduce a novel computerized tissue

characterization technique named ‘ovarian HistoScanning’.

3.2. A HISTORY OF DEVELOPMENT OF TECHNIQUES FOR THE DIFFERENTIAL

DIAGNOSIS OF ADNEXAL MASSES

The use of grey-scale US morphology to characterize adnexal masses is well

established
4

and TVS has been found to perform better than trans-abdominal

scanning, particularly for small masses. Over the years, a number of scoring
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systems based on US-determined morphological characteristics (such as cystic

volume, cyst wall structure,…) have been developed.
32-35

However, there was no

standardized index.
5

Later, the addition of a variety of second line tests such as

serum CA125 levels, Doppler blood flow indices, power Doppler, and clinical data

to TVS morphological indices have been shown to improve test performance and to

outperform individual tests.
36

The Risk-of-malignancy index (RMI)
37

is such an index

which is routinely used in the United Kingdom to triage women with ovarian

masses along appropriate referral pathways.
38-41

As a logical extension of these

indices, researchers have used multivariate mathematical models to determine the

most important variables for differential diagnosis and improve test

performance.
42-56

3.2.1. THE RISK OF MALIGNANCY INDEX (RMI)

The RMI is a standardized index commonly used for clinical evaluation of patients

with an adnexal mass. In the United Kingdom, it is routinely used to triage women

with ovarian masses along appropriate referral pathways.
38-41

The RMI combines

serum CA125 values (typically, CA125 < 35 U/ml is considered as normal),

menopausal status, and an US-morphology score and improves on the individual

performance of each of these indices.
37

The US-morphology score is defined for

each patient based on the presence of the following key morphological features,

each of which score 1 point: presence of a multilocular cyst, presence of solid

areas, bilaterality of lesions, presence of ascites, and evidence of metastases.

The RMI compares well with most logistic regression models or artificial neural

networks
57

and was advocated to be the prediction model of choice in preoperative

assessment of adnexal masses.
58

The RMI has been validated in many European

countries
38,40,59,60

with some prospective studies reporting slightly lower sensitivity

and specificity. Nevertheless, it has been advocated that RMI is the simplest and

best validated approach to differential diagnosis.
61

Currently there are 3 versions of RMI, each varying slightly in the method of scoring

from the other. The original RMI was described by Jacobs et al (RMI1)
37

and 2

modifications (RMI2 and RMI3) by Tingulstad et al
40,59

exist. All three RMI are

defined as the product of menopausal status (M), serum CA125 level and an US-

score (U): RMI = U x M x serum CA125. The specific values of the terms U and M for

the three RMI in use are given in table 2 and were developed in the original

research papers based on simplified regression equations.
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TABLE 2: RISK OF MALIGNANCY INDICES: TERMS AND CORRESPONDING CODES FOR EACH DEFINITION

OF THE PRODUCT RMI=U X M X SERUM CA125

Indices Menopausal status M US-score U

RMI1 Pre-menopausal M = 1 Us-score = 0 U = 0

Post-menopausal M = 3 Us-score = 1 U = 1

Us-score ≥ 2 U = 3

RMI2 Pre-menopausal M = 1 Us-score ≤ 1 U = 1

Post-menopausal M = 4 Us-score ≥ 2 U = 4

RMI3 Pre-menopausal M = 1 Us-score ≤ 1 U = 1

Post-menopausal M = 3 Us-score ≥ 2 U = 3

Because serum CA125 measurements are positive, the RMI takes only positive

values in [0, +∞[. When the RMI is used in routine clinical practise, cut-offs of 200

or 250 are mostly applied for triaging: if RMI<250, the patient may be operated in a

cancer unit by a general gynaecologist and if RMI≥250, the patient is to be referred

to a gynaecological cancer centre to be treated by an expert gynaecological

oncologists.
39,41

3.2.2. MATHEMATICAL MODELS FOR PRE-OPERATIVE DIAGNOSIS

Various multivariate mathematical models to determine the most important

variables for differential diagnosis and improve test performance have been

developed in the literature.
42-56

In this section, we emphasize them shortly. The

difference between the numerous mathematical models for the differential

diagnosis of adnexal masses is firstly (1) the type and number of variables that have

been used and secondly (2) the mathematical prediction method used for the

model development:

1. Variables can be patient related, ultrasound related (including

morphological features, measurements and quantitative assessment of

morphology), or blood-flow related (Doppler US). Table 3 lists five

references and shows the different variables used to build the final

model(s).
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2. Mathematical methods used include logistic regression, artificial neural

networks, support vector machines, and relevance vector machines (see

also table 3).
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TABLE 3: DESCRIPTION OF SOME MULTIVARIATE MATHEMATICAL MODELS

Reference Type of

model

Variables in model

Tailor et al.
43

LR Age, maximum lesion diameter, lesion

volume, unilocularity, papillary

projections, random echogenicity, peak

systolic velocity (PSV), time-averaged

maximum velocity (TAMXV), pulsatility

index (PI), resistance index (RI)

Tailor et al.
47

NN Age, menopausal status, maximum lesion

diameter, lesion volume, locularity,

papillary projections, random

echogenicity, blood flow velocity

waveforms, PSV, TAMXV, PI, RI

Timmerman et al.
42

LR Personal history of ovarian cancer,

hormonal therapy, age, pain, maximum

lesion diameter, ascites, prescence of

entirely solid tumour, maximal diameter

of solid component, irregular cyst walls,

acoustic shadows, blood flow within a

solid papillary projection, color score†

Van Calster et al.
48

SVM

and

RVM

Age, personal history of ovarian cancer,

hormonal therapy, maximum diameter of

the solid component, maximum ovary

diameter, presence of a multilocular-solid

lesion, ascites, acoustic shadows, irregular

cyst walls, tumour of ovarian origin, blood

flow within a papillary projection, color

score† of 4

Lu et al.
56

SVM Menopausal status, CA125, papillations,

solid tumor, bilaterality, ascites, acoustic

shadows, irregular wall, color score† of at

least 3, color score† 4

Abbreviations: LR = logistic regression, NN = Artificial Neural Network, SVM = Support Vector Machine,

RVM = Relevance Vector Machine

Patient related variables are in bold, US-based morphological features, measurements and quantitative

assessments of morphology are in italic and finally vascular features (assessed by Doppler) are



Chapter 1 Part I

15

underlined

†this color score is a semiquantitative assessment for the tumour as a whole, only based on color

Doppler and was defined by a consensus report of the IOATA group.62

A number of validation studies have been carried out to assess the performance of

mathematical models on independent data and sometimes inconsistencies

remained.
5,63,64

Moreover, most mathematical models do not offer much

advantage over the RMI
57,65

nor do they outperform subjective evaluation of grey

scale and Doppler images by an experienced examiner.
64,66-68

Still, even the most

experienced operators can sometimes find it difficult to classify ovarian masses (in

particular the smaller lesions).
64

In other words, despite of the inconsistencies seen

at validation, the less-experienced examiner will benefit from such models and in

some cases also the more experienced examiner.

3.2.3 OVARIAN HISTOSCANNING

HistoScanning™ (see also www.histoscanning.com) is a novel US-based technique

that uses tissue characterisation algorithms. These algorithms are combined in

large classification schemes and the results of these analyses are used to visualise

the position and extent of tissue suspected of being malignant. HistoScanning

analysis is based on the fact that cancerous processes induce structural changes in

the tissue texture which result in physical changes in the reflected US-waves.

Different tissue characterization algorithms were developed using mathematical

methods that are optimized to quantify such changes as measured in the US-data.

The selection of the appropriate algorithms for a specific organ and their training is

an empirical process:

- Prostate HistoScanning is the most advanced technology for which an

application is currently already available on the market. The

characterization algorithms and classification schemes for prostate

HistoScanning were developed and validated in different research

studies.
69,70

Other studies regarding prostate HistoScanning are still

ongoing (see also www.histoscanning.com). The input to the prostate

HistoScanning application is raw Radio-Frequency (RF) data.

- The Breast and Thyroid HistoScanning technologies are in their proof of

concept phase. Both these applications also use raw RF data.

http://www.histoscanning.com/
http://www.histoscanning.com/
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- For Ovarian HistoScanning, three different characterization algorithms

were selected and a classification scheme was trained during clinical

development studies in 2001-02 (unpublished data). The three

characterization algorithms are typically applied to units of 20 by 20 voxels

of US-data (elementary units) equivalent to tissue volumes ranging from

0.6 to 1.6 mm
3
. A threshold is then applied to each characterization

algorithm and these 3 results are then combined to give a 0/1 (cancer

unlikely/likely) output for every unit. Finally, a 3D analysis of consecutive

voxel-units is undertaken before yielding a decision for every unit. The

final report of this analysis is then printed on the 2D US-image by means

of colored circles, each representing an elementary unit. When the circle

is green, the elementary unit is considered as non-malignant. A red circle

indicates that an elementary unit is considered as malignant.
71

This ovarian HistoScanning application focussed on the management of

patients with adnexal masses, suspected of being at risk for ovarian

cancer. These three characterization algorithms were optimized on raw

gray-scale voxel data. It is this ovarian HistoScanning application that is

used in part I of this thesis. However note that in parallel, an ovarian

HistoScanning application that uses raw RF data is currently in its proof of

concept phase.
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CHAPTER 2: AIMS OF OUR WORK

In chapter 1, it was discussed how survival of ovarian cancer patients is improved

when they are managed by expert gyneacological surgeons. This would mean that

they have to be referred to a ‘cancer centre’ in a so called teaching (or university)

hospital. Table 4 adds some evidence to this finding; three papers that studied the

survival of ovarian cancer patients are summarized in Table 4. A comparsion is

made between a study located at a teaching hospital
9

(grey column in table 4) and

2 studies that englobe a complete health region with the majority of patients

coming from non-teaching hospitals.
72,73

For early stage cancer (FIGO I and II) in

particular, a big difference in 3-year survival between the teaching hospital and

non-teaching hospitals can be seen. The low survival in the non-teaching studies

was attributed to suboptimal surgical treatment. This emphasizes once again the

importance of correct referral/management and pre-operative diagnosis.

TABLE 4: 3-YEAR SURVIVAL OF OVARIAN CANCER PATIENTS

Chapter 1 also shows how, over the years, researchers have developed different

pre-operative techniques and have tried to improve performance. Large validation

studies have been carried out to validate the performance of the developed

techniques on independent data. The Risk of Malignancy Index (RMI) is one of the

earlier techniques that maintained its performance throughout the different

Teaching hospital

(Level 3 Referral)

Complete Health region

(Majority (70%) in non-teaching hospitals)

FIGO Board et al.
9#

Tingulstad et al.
72$

Weide et al.
73£

FIGO I 90% 88% 88%

FIGO II 88% 56% 58%

FIGO III 35% 33% 58%

FIGO IV 24% 21% 30%

#Patients registered between 1997 and 2002, cancer-specific survival was reported
$Patients registered between 1987 and 1996, crude survival was reported
£Patients registered between 1995 and 2003, crude survival was reported
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validation studies. It is widely adopted in the United Kingdom and in some

Scandinavian countries for differential diagnosis and triage of ovarian masses. The

literature often defined the RMI to be the simplest and best validated approach to

differential diagnosis
61

and a recent systematic review of 83 different prediction

models concluded that the RMI was the model of choice in the preoperative

assessment of the adnexal masses.
58

However, interpreting the RMI may sometimes be difficult, mainly because a

number of women with an adnexal mass have intermediate RMI values. These

intermediate values are lying in an interval around the RMI cutoffs of 200 or 250

that are used in clinical practise. We will refer to this intermediate range as the RMI

‘grey zone’. The addition of other imaging techniques as e.g. MRI, CT and additional

expert US for patients in the RMI grey zone was investigated by Van Trappen et

al.
61

To assess the added value of further cross-sectional imaging as MRI/CT to the

RMI, Van Trappen et al. predefined the RMI grey zone to be 25≤RMI<1000.

Ovarian HistoScanning is a new US-based technology that, based on its computer-

aided algorithms, tries to distinguish between malignant and non-malignant

tissues. A first validation study has shown the potential of HistoScanning for the

assessment of adnexal masses.
71

Nevertheless, it remained a challenge to know

what place to grant to Ovarian HistoScanning in clinical practise and for the work-

up of adnexal masses. If one considers the number of techniques and models that

exist today for the differential diagnosis of adnexal masses that all compete to be

adopted by clinicians, it becomes clear that this is a difficult task. This research

project has therefore adopted a design able to show how HistoScanning may be

useful for clinical practise.

In the light of this background, our first aim was to study whether applying ovarian

HistoScanning for the patients in the RMI grey zone would improve triage of

women with ovarian masses. Our second aim was to assess the optimal cutoffs that

define the RMI grey zone in which HistoScanning would further sort out the ovarian

masses in order to improve RMI performance. This work is presented in chapter 4.

As mentioned in chapter 1, various mathematical prediction models have been

developed. Despite of inconsistencies at validation studies, these models are very

useful to assist the less experienced US-operators as their performance (in terms of

sensitivity and specificity) doesn’t beat the performance of most models. Our third

aim was to investigate whether adding ovarian HistoScanning to multivariate
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mathematical prediction models for ovarian masses could improve model

performance. As a fourth aim, we were interested in finding a final model that was

easy to apply and could therefore be useful for the less-experienced US-operators.

These results can be found in chapter 4.





Chapter 3 Part I

21

CHAPTER 3: GENERAL METHODS

1. ASSESSING THE QUALITY OF DIAGNOSTIC SYSTEMS

In this section, some basic measurements for assessing the quality of a diagnostic

test are introduced. These measurements form the methodological background for

the results presented in chapter 4 but also for part II of this manuscript. More

detailed materials and methods used for specific purposes are fully described in

chapter 4.

1.2. PERFORMANCE MEASURES AT A SPECIFIC CUT-OFF
74,75

A gold standard diagnostic test is an accepted diagnostic test for a particular

disease that serves as the reference to which all other tests are compared. Ideally,

gold standards should identify all individuals with the disease and should not falsely

identify someone that does not have the disease. In practise there is sometimes no

true gold standard test. Throughout this work, we have used the histopathology

results as the gold standard.

Most diagnostic systems don’t automatically give a dichotomous answer (positive

or negative). In such cases, a dichotomous outcome is obtained by cutting the

outcome of the test which is a quantitative measure, x, in 2 parts by a threshold or

cut-off point. When the cut-off point (c), is fixed, the dichotomous test outcome for

a patient is for example defined as follows:

- A positive test outcome:   x c T

- A negative test outcome:   x c T

In this example, high values are indicative of a higher risk of having the disease. For

some measures, like e.g. HDL-cholesterol, lower values are indicative of a higher

risk and in such cases a positive test (T+) would therefore be defined as: x ≤ c. For

simplicity, we will use x ≥ c to define a positive test result (T+) in our text. It is
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straightforward though to adapt this chapter to the case where T+ is defined by x ≤

c.

When considering a novel diagnostic system at a specific cut-off point, c, in relation

to the gold standard, any single decision of the diagnostic system for an individual

yields one of the following four options:

1. True positive (TP): A correctly diagnosed malignant case

2. True Negative (TN): A correctly diagnosed non-malignant (benign or

normal) case

3. False Positive (FP): A non-malignant case incorrectly diagnosed as a

malignant case

4. False Negative (FN): A malignant case incorrectly diagnosed as non-

malignant

TABLE 5: THE FOUR CONSEQUENCES OF APPLYING A DIAGNOSTIC TEST AT A CUT-OFF C

Gold Standard

D+ D-

Diagnostic

Test

T(c)+
TP(c)

True Positives

FP(c)

False Positives

TP(c)+FP(c)

T(c)-
FN(c)

False Negatives

TN(c)

True Negatives

FN(c)+TN(c)

TP(c)+FN(c) FP(c)+TN(c) N

A whole population (N) submitted to a diagnostic test at cut-off c can be divided

into those four categories as represented in table 5. In table 5, T(c)+ and T(c)- stand

for the number of cases diagnosed by the test as positive or negative, respectively.

Also, D+ represents the overall amount of malignant cases in the population

according to the gold standard and D- the overall amount of non-malignant cases,

respectively.

Assessment of the accuracy of a diagnostic system uses the probabilities that the

test correctly classified a diseased subject as diseased (that is, the true positive rate

or sensitivity), and that the test correctly classified a healthy subject as healthy

(that is, the true negative rate or specificity). Given the notations of table 5, the
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sensitivity and the specificity at the cut-off c are defined as follows in a population

of size N:

Sensitivity:
( )

( ) ( ( ) | )
( ) ( )

   


TP c
SE c P T c D

TP c FN c

Specificity:
( )

( ) ( ( ) | )
( ) ( )

   


TN c
SP c P T c D

TN c FP c

The sensitivity of the test T for the disease D is the likelihood of a positive test

outcome (T+) among patients with the disease (D+). The specificity is the likelihood

of a negative test outcome (T-) among the patients without the disease (D-).

The Youden Index
76

translates these 2 performance measures of a diagnostic test

(sensitivity and specificity) into one single index , that characterizes performance,

ranging between 0 and 1: Y(c) = SE(c) + SP(c) -1. In his paper, Youden advocates

that his index will give you an adequate statistic to compare the performance (at a

cut-off c) of 2 different diagnostic tests.
76

The fact that the sensitivity and the specificity are independent of the underlying

disease prevalence of the population under study makes them the preferred

measurements for assessing the quality of the test. This also implies that they can

be estimated from a case-control study. Figure 2 gives an example of how the

trade-off between sensitivity and specificity against all possible values of the cut-off

point c can be visualized. The Youden Index for all possible cut-off points is also

plotted on figure 2.
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FIGURE 2: TYPICAL CURVES FOR SENSITIVITY, SPECIFICITY AND THE YOUDEN INDEX DEPENDING ON

THE CUT-OFF

When the output value of a diagnostic test is represented as a continuous value (x

is used here) ranging from  to then the sensitivity and the specificity at a

specific cut-off c are actually defined by integrating probability curves as follows:

Sensitivity: ( ) ( | )


 
c

SE c p x D dx

Specificity: ( ) ( | )


 
c

SP c p x D dx

Note that in the equations stated above, the direction of the integration is given for

the special case where the probability density curve of the diagnostic outcomes (x)

for the malignant population has higher values for the diagnostic outcomes than (is

placed to the right of the density curve for) the non-malignant population. For the

sensitivity, this calculation is shown in figure 3.
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FIGURE 3: SENSITIVITY CALCULATED AS AREA UNDER THE PROBABILITY CURVE

Two other measurements, that are dependent on the prevalence and thus have to

be interpreted with caution, are the positive and negative predictive value given

by:

Positive predictive value:
( )

( ) ( | ( ) )
( ) ( )

   


TP c
PPV c P D T c

TP c FP c

Negative predictive value:
( )

( ) ( | ( ) )
( ) ( )

   


TN c
NPV c P D T c

TN c FN c

For a diagnostic test to be interesting as a screening modality for instance, it needs

to have very high specificity and PPV.

Most multivariate mathematical models applied for diagnosing malignancy produce

an output that is (quasi-) continuous. Only measuring the sensitivity and the

specificity at a single cut-off point doesn’t give a representative assessment of the

overall quality of the diagnostic test. A global estimation of the discriminating

ability of a diagnostic test over all possible cut-off points is introduced in the

following section.
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1.2. CUT-OFF INDEPENDENT PERFORMANCE MEASURES

1.2.1 RECEIVER OPERATING CHARACTERISTICS (ROC)

Only considering the sensitivity and the specificity at a specific cut-off point for

assessing the quality of a diagnostic model or test may be misleading.

The Receiver Operator Characteristics (ROC) plot is a useful way to display the

performance of a medical diagnostic test. Both sensitivity and specificity depend on

the cut-off c; as c varies, so do sensitivity and specificity. By considering various

possible values of the cut-off c one can construct an ROC curve as a continuous

function of sensitivity against ‘1 –specificity’. In this way, the ROC curve permits to

analyze the overall differentiating capabilities of a diagnostic test. Several methods

exist to create an ROC curve based on continuous test outcomes. In this work, we

have used the empirical (non-parametric) method which involves plotting the pairs

of sensitivity versus 1-specificity that are calculated based on the empirical

distributions (the histograms) for the diseased (malignant) and healthy (non-

malignant) patients. This method is robust as no (possibly wrong) assumptions

about the underlying distribution of the 2 patient groups need to be made. The

resulting ROC curve will typically look jagged and non-smooth. Other non-

parametric methods to create ROC curves that are smooth can be found in Zou et

al
77

and Zweig et al
78

discuss various parametric methods.

For statistical analysis, a recommended summary index of the diagnostic test

associated with the ROC curve is the Area Under the ROC-Curve, abbreviated as

AUC. The AUC has been shown to represent the probability that, when the

outcome of the diagnostic test is observed for a randomly selected individual from

the diseased population and a randomly selected individual from the non-diseased

population, the resulting values will be in the correct order (e.g., diseased value

higher than the non-diseased value).
79,80

In our work, the AUCs, falling under the

points comprising an empirical ROC curve, were calculated by the trapezoidal rule

which has been shown to equal the Wilcoxon- or Mann-Whitney U-statistic.
79,81

An

example of an ROC curve and AUC are given in figure 4. The AUC can range from

0.5 (useless test, represented by the grey diagonal line, also called chance line) to 1

(perfect test, represented by the yellow line). Note that if AUC is lower than 0.5,

the interpretation of the test results has been reversed, i.e. a positive test outcome

(T+) that was defined by x≥c, should rather have been defined by x<c and the other

way round for a negative test outcome.
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The AUC is the most frequently used summary index for comparing different

diagnostic tests. A variety of parametric, semi-parametric and non-parametric tests

have been proposed for evaluating differences in the AUC.
81-84

When comparing

AUC indices of diagnostic models that were estimated on the same patients

(paired-sample), statistical analyses must take into account the correlated nature

of the data. As this was the case for the diagnostic tests and models that were

developed in this work, the non-parametric Delong test
81

was used to compare

AUC indices.

FIGURE 4: EXAMPLE OF A ROC-CURVE WITH AREA UNDER THE CURVE
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1.2.2. FINDING THE OPTIMAL CUT-OFF POINT FOR A DIAGNOSTIC TEST WITH

CONTINUOUS OUTCOME

An ROC curve, as given by figure 4, is a graph of sensitivity versus ‘1 – specificity’ at

all possible values of the cut-off point c and ROC curves can therefore be used to

identify the cut-off point at which the best performance is achieved for the

diagnostic system. Indeed, maximizing sensitivity corresponds to some large value

on the y-axis of the ROC curve. Similarly, maximizing specificity corresponds to a

small value on the x-axis of the ROC curve. Thus, a good first choice for a test cut-

off value is that value which corresponds to a point on the ROC curve closest to the

upper left corner of the graph (the so called ‘closest to the (0,1) point’ criterion).

Mathematically, this implies finding a point c that satisfies the following equation:

min{ (1-SE(c))
2

+ (1-SP(c))
2

}.
85

An alternative criterion is given by finding the point

that maximises the Youden Index
76

, which is the point c that satisfies the following

equation: max{ SE(c) + SP(c) - 1}. Intuitively, the point that maximises the Youden

Index will give you the point on the ROC curve that is the farthest away from

chance (the chance line being represented by the grey diagonal line in figure 4).
85

The point that maximised the Youden Index was found to have a more sound

clinical meaning
85

and was thus used for finding optimal cut-off points in this work.

By using the Youden criterion as defined above, we have given equal weights to

both sensitivity and specificity (they have been considered equally important). This

might not always be true, however. For example, in some diagnostic applications, it

is important not to miss any diseased cases and therefore, it is more important to

maximize sensitivity (minimize false negatives) than to maximize specificity. On the

other hand, for example in prostate cancer screening with PSA, false positives are

common and undesirable (expensive biopsy, emotional impact). In this case,

maximizing specificity is important. A modification of the Youden criterion for such

cases requiring the attribution of a certain cost (weighing) to a misclassification

rate (FP or FN) is given by Perkins and Schisterman.
85

1.2.3. EVALUATING THE ADDED PREDICTIVE ABILITY OF A NEW VARIABLE IN

A DIAGNOSTIC MODEL

In the previous section, it was discussed how AUC is used to summarize the

performance of a diagnostic test or model. When a new diagnostic model is

developed, the improvement in AUC of this model compared to an ‘old’ existing

model is often used to demonstrate the ‘added’ value of this ‘new’ model. As new

model often implies adjusting an existing model, that already presents with

reasonably good AUC, by adding one new variable (or biomarker), it became
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apparent that this new variable needed to have a very strong association to the

studied disease before statistically significant improvements in AUC were

observed.
86,87

In other words, when evaluating the ‘added’ predictive ability of a

new variable, other measures might be more meaningful.
87

New measures of evaluating the added predictive ability of a new variable in an

existing diagnostic model were recently proposed by Pencina et al.
87

These

measures offer incremental information over the AUC.

For the multivariate mathematical models that were developed in this work, we

have calculated one of these measures: the Integrated Discrimination

Improvement (IDI) which is defined as follows:

( ) ( )new newold oldIDI IS IS IP IP   

In this above expression, IS stands for the integral of sensitivity over all possible

cut-off values c and similarly IP corresponds to the integral of ‘1-specificity’. The

subscripts ‘new’ and ‘old’ refer to the model with the new variable and the model

without the new variable, respectively.

Through this definition the IDI can be seen as a difference between improvement in

average sensitivity (of the new versus the old model) and any potential increase in

average ‘1-specificity’ or also as an integrated difference in Youden’s Indices
76

for

all possible cut-off values.
87

It was shown by Pencina et al. that the IDI can be estimated by:

, , , ,
ˆ ˆ ˆ ˆ ˆ( ) ( )new D old D new D old DIDI p p p p      

where ,
ˆ

new Dp  is the mean of the new model-based predicted probabilities of

malignancy for the diseased, ,
ˆ

old Dp  is the corresponding quantity but then based

on the old model, ,
ˆ

new Dp  is the mean of the new model-based predicted

probabilities of malignancy for the non-diseased and ,
ˆ

old Dp  is the corresponding

quantity for the old model.
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Standard deviations of , ,
ˆ ˆ( )new D old Dp p  and , ,

ˆ ˆ( )new D old Dp p  can be

calculated as the standard error of the paired differences of new and old model-

based predicted probabilities for all diseased and non-diseased subjects,

respectively. The corresponding estimators are denoted by ˆ
Dse  and ˆ

Dse  ,

respectively. Then, when independence is assumed between diseased and non-

diseased, an asymptotic test for the null hypothesis of ‘IDI = 0’ is given by:

2 2ˆ ˆ( ) ( )

ˆ

D Dse se

IDI
z

 


which is close to the standard normal for a sufficiently large sample size.

2. A SMALL INTRODUCTION TO ARTIFICIAL NEURAL NETWORK

MODELS
41

Artificial Neural Networks are networks of artificial neurons connected together

that constitute a crude approximation to parts of real brains. In this way, a Neural

Network (NN) model can be seen as a system that constitutes of many simple

elements (the neurons or units that are grouped in layers) that are connected

together to perform a particular task, for instance predicting the probability of

malignancy(output of the system) based on a number of variables (inputs of the

system).

Different NN architectures exist but we will focus on the multi-layer feed-forward

NN that consists out of the following architecture (see figure 5):

- One input layer with one unit (neuron) for every variable of interest

- One output layer with one unit representing the outcome of the model

(i.e. the predicted probability of malignancy)

- One or more hidden layers with one or more hidden processing units,

which will sit between the input and output layers

- No feed-back connections
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FIGURE 5: SCHEMATIC REPRESENTATION OF A MULTI-LAYER FEED-FORWARD NEURAL NETWORK

As represented in figure 5, the units of hidden and output layers take a weighted

sum of their inputs and put this value trough an activation function. Weights of the

inputs of each unit have to be estimated. This is often called the learning or training

of a NN. A number of techniques exist to train the weights of a NN and here a

parametric ‘error-minimization’ procedure has been used which is an algorithmic

procedure that adjusts the network weights in a number of iterations. At every

iteration step, the network weights are adjusted to minimise the difference (error)

between the actual outputs (of the NN) and the desired outputs (or observed

outputs). The function that characterises this ‘error’ is often called objective

function and thus the objective function needs to be minimised. Often, in statistics,

the weights of a NN are estimated through the maximum likelihood criterion which

also means that the negative log likelihood is minimised. Whichever criterion or

objective function is chosen, if on represents this function by ( )iE w (or ( )jE w )

then the following steps have to be undertaken to train a NN (learning the

network):

- On a training set, generate random weights to initiate the procedure

- Update all the weights by the following weight update:

( )i
i

i

E w
w

w



  

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- Repeat the previous step until the network error is ‘small enough’

(convergence)

Note that, the more complex (i.e. high number of hidden layers and units) the NN

model, the higher the risk of overfitting. Therefore, the generalizability of a trained

network should always be assessed on an independent data set (testing of the

network).

More information on Neural Networks can be found in Bullinaria
41

and Bishop.
88
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CHAPTER 4: RESULTS

Our challenge was to assess the place to be granted to Ovarian HistoScanning in

clinical practise and for the work-up of adnexal masses. This research project has

therefore adopted a design able to show how HistoScanning may be useful for

clinical practise

It was investigated whether applying ovarian HistoScanning for the patients in the

RMI grey zone would improve triage of women with ovarian masses. In addition,

optimal cutoffs that define the RMI grey zone in which HistoScanning would further

sort out the ovarian masses in order to improve RMI performance were assessed.

This work is presented in section 1.1. of this chapter.

As the development of the RMI is in itself the result of a multivariate mathematical

modelling exercise,
37

it seemed interesting to investigate whether we could

develop multivariate models incorporating HistoScanning. It was thus investigated

whether adding ovarian HistoScanning to multivariate mathematical prediction

models for ovarian masses could improve model performance. And we were

interested in finding a final model that was easy to apply (just like the RMI is simple

and robust) and could therefore be useful for the less-experienced US-operators.

These results can be found in section 1.2. of this chapter.
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1.1.1. ABSTRACT

Objective: To evaluate whether combining the Risk of Malignancy Index (RMI) and

Ovarian HistoScanning, a novel computerised technique to interpret ultrasound

data, can improve triage of women with adnexal masses.

Design: Retrospective analysis of prospectively collected data

Setting: Five European centres (Ovarian Histoscanning Clinical study Group) and

EGA Institute for Women’s Health, UCL, United Kingdom.

Population: 199 women with CA125, Ultrasound and HistoScanning data.

Methods: Ultrasound scores for RMI were obtained by blinded analysis of archived

images of the 199 women. The following sequential test was developed:

HistoScanning was modelled as a second-line test for RMI between a lower cut-off

and an upper cut-off. The optimal combination of these cut-offs that together

maximized the Youden index (Sensitivity + Specificity -1) was determined.
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Main outcome measure: Sensitivities, specificities, Receiver Operating

Characteristic (ROC) curves and Areas under the ROC curves.

Results: Using RMI at the standard cut-off value of 250 resulted in a sensitivity of

74% and a specificity of 86%. When RMI was combined with HistoScanning, the

highest accuracy was achieved by using HistoScanning as a sequential second-line

test for patients with RMI values between 105 and 2100. At these cut-off values,

sequential use of RMI and HistoScanning resulted in mean sensitivity and specificity

estimates of 88% and 95%, respectively.

Conclusions: Our data suggest that HistoScanning may have the potential to

improve the diagnostic accuracy of RMI, which could result in a better triage of

women with adnexal masses. Further prospective validation is warranted.

1.1.2. INTRODUCTION

Ovarian cancer is the leading cause of deaths from gynaecological malignancies.

Annual age standardised incidence rates (European standard) across Europe vary

between 7.2 and 19.3/100,000 while mortality rates are between 2.8 and

12.2/100,000.{Ferlay, 2010 219 /id This is often attributed to its ‘silent’ progression

which leads to diagnosis in advanced stages (FIGO Stage III/IV) that have 5-yr

survival rates of 15-27% only.

(http://info.cancerresearchuk.org/cancerstats/types/ovary/survival/)

There is increasing evidence that outcomes can be improved if cancer patients are

managed by trained gynecological oncologists in multidisciplinary teams.{Le, 1997

78 /id;Eisenkop, 1992 79 /id;Chan, 2007 6 /id} This depends on accurate differential

diagnosis of adnexal masses and appropriate timely referral of cancer patients to

cancer centres, while general gynaecologists at district hospitals deal with benign

lesions.

Pre-operative diagnosis of malignant ovarian neoplasms usually involves pelvic

examination followed by TVS and assessment of the serum tumour marker CA125.

Serum CA125 and TVS alone have high sensitivity but limited specificity for the

differential diagnosis of adnexal masses.
5

Given the high prevalence of benign

adnexal masses, even in postmenopausal women,
89

this results in low positive

predictive values. Morphology based indices together with a variety of second line

tests such as serum CA125 levels; Doppler blood flow indices and power Doppler

have been investigated to improve performance characteristics. A number of

multivariate models combining these factors and some incorporating additional

clinical data
50-55

have been studied. Although results are promising, inconsistencies

http://info.cancerresearchuk.org/cancerstats/types/ovary/survival/
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remain.
63,64

While such combinations outperform individual tests,
36

subjective

evaluation of gray scale and Doppler images by experienced examiners

outperforms most mathematical models.
68

The Risk of Malignancy Index (RMI) is a standardized index commonly used for

clinical evaluation of patients with an adnexal mass. In the United Kingdom it is

routinely used to triage women with ovarian masses along appropriate referral

pathways.
38-41

The RMI combines serum CA125 values, menopausal status and an

US-morphology score and improves on the individual performance of each of these

indices.
37

It compares well with most logistic regression models or artificial neural

networks
57

and was advocated to be the prediction model of choice in preoperative

assessment of adnexal masses.
58

The RMI has been validated in many European

countries
38,40,59,60

with prospective studies reporting slightly lower sensitivity and

specificity.

Ovarian HistoScanning is a new innovative US-based computerised tissue-

characterization technique.
71

In its present form, Ovarian HistoScanning analyses

US grayscale voxel data. This analysis is based on the fact that cancerous processes

induce structural changes in the tissue texture which results in physical changes in

the reflected ultrasound waves. Different tissue characterization algorithms were

developed using mathematical methods that are optimized to quantify such

changes in the backscattered waves.
70

The selection of the appropriate algorithms

for a specific organ and their training is an empirical process. For Ovarian

HistoScanning, three different characterization algorithms were selected and

trained during clinical development studies in 2001-02 (unpublished data).

In this paper, we explore the possibility of using ovarian Histoscanning to improve

the performance of RMI in the differential diagnosis of adnexal masses. We explore

a strategy of using it as a sequential test in women with RMI values not associated

with either very low or very high probability of cancer (figure 6) in order to improve

clinical triage of patients with adnexal masses.
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FIGURE 6: FLOW-CHART DESCRIBING THE STRATEGY FOR DIFFERENTIAL DIAGNOSIS OF ADNEXAL

MASSES

1.1.3. PATIENTS AND METHODS

Patients

Data for this analysis was obtained from a cohort of patients, originally recruited to

a prospective multicentric study
71

evaluating the accuracy of ovarian

HistoScanning. A detailed description of the cohort and recruitment process has

been described before.
71

Ovarian HistoScanning results were not used for patient

management. Basic information collected included: age, menopausal status,

detailed histopathology of surgical specimens, and stage of the cancers.

At the time of prospective data collection, clinicians were asked to classify the

ovary as positive (malignant) or negative (benign) based on TVS-findings. RMI was

not calculated at the time. Details of ovarian morphology at the time of initial TVS

were not retained on the database, however, images were archived and stored.

This makes it possible to retrospectively calculate RMI values for patients for whom

CA125 data was available. Patients from the cohort for whom serum CA125 levels

were available (199) were selected for this analysis.
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Ultrasonography

A brief description of the Ultrasonography details that are important for this work

are given underneath but more details are described in the earlier report.
71

At the

time of the original study eligible women underwent TVS shortly before surgery by

an expert sonographer with more than 10 years scanning experience. The Voluson

730 Expert scanner from General Electric equipped with a RIC5-9, 5-9 MHz Real

Time 4D broadband endocavity transducer (Zipf, Austria) was used at all centres.

The examination involved conventional 2D-TVS for identifying ovaries and/or

adnexal masses followed by a standardised 3D-TVS procedure to capture the 3D

image of all structures. When needed, several 3D acquisitions were made to cover

a mass. Ovaries and lesions were annotated and marked as regions of interest on

the 2D-scan by the individual operators. All acquired data were anonymised, saved

on a CD-ROM and send to the study coordinator. An independent expert matched

the 2D annotated images to the structure depicted by the 3D-TVS data to

determine the extent of the volume(s) of interest (VOI) to be analyzed by

HistoScanning.

Ovarian HistoScanning™

HistoScanning analysis was applied to the raw (gray-scale values) voxel data that

had been saved on the CD-ROM’s. HistoScanning successively analyzed the VOI that

were indicated on the 3D-scan by the operator. The characterization algorithms

calculated a score value for each VOI in a scan. This was a continuous value ranging

between 0 and 125. In this work, the final HistoScanning result for one individual

patient was the maximum of this score over all available VOIs for that patient. This

analysis was blinded with regard to the ultrasonographers’ interpretation, CA125-

value and the pathology results.

RMI-calculations

All archived 2D- and 3D-ultrasound images were reviewed at University College

London by two independent experienced ultrasonographers (Mrs. G.Fletcher and

Mrs. K.Ford). The ultrasonographers were blinded to the HistoScanning, CA125 and

pathology results and assessed each US image for the presence of a number of key

morphological features (multi-locularity of any cyst, presence of solid areas,
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evidence of metastases, presence of ascites and bilaterality of lesions) necessary

for the RMI.
37

The RMI index is defined as the product of menopausal status (M), CA125 level and

US-score (U). The US-score is based on the features described above each of which

score one point. Currently there are 3 versions of RMI, each varying slightly in the

method of scoring from the other. The original RMI described by Jacobs et al

(RMI1)
37

and 2 modifications (RMI2 and RMI3) by Tingulstad et al.
40,59

In RMI1, U=0

for an US-score=0, U=1 for US-score=1 and U=3 for US-score≥2; M=1 for

premenopausal status and M=3 for postmenopausal status. In RMI2: M=4 for

postmenopausal status; US-score≤1 leads to U=1 and for an US-score≥2, U=4. The

changes in RMI3 (compared to RMI2) include, M=3 instead of 4 for postmenopausal

status; and U=3 (instead of 4) when US-score≥2.

Analysis

Our aim was to develop a sequential strategy using RMI and ovarian HistoScanning

that would enhance the accuracy of the RMI for differential diagnosis. The

following scheme was adopted for this purpose (see also the pathway in figure 6):

Patients with an RMI below a lower cut-off (LC) were considered to have a negative

(non malignant) test outcome and patients with an RMI ≥ an upper cut-off (UC)

were considered to have a positive (malignant) test outcome. The HistoScanning

score was used to determine the test outcome for patients with an RMI value in

between the upper and lower cut offs (LC≤RMI<UC), the outcome was positive

when the HistoScanning score was ≥ a cut-off point (HSCU) and negative otherwise.

Subsequently, we identified the optimal combination of the 3 cut-offs, LC, UC and

HSCU that would together give the highest sensitivity and specificity for this

sequential test (RMI followed by HistoScanning). This combination of cut-offs were

then validated on an independent set of data not used for training.

A training set of 70% of the patients, selected randomly were used to identify these

3 cut-offs LC, UC and HSCU. This was done by varying the LC and UC for RMI and

HSCU simultaneously in predefined ranges that made sense. The LC was varied

between 5 and 265 with steps of 20, the UC between 500 and 2500 with steps of

50, and the HSCU was considered in its full range with steps of 5. Then the best

combination was defined as the one that maximised the Youden Index

(Y=sensitivity+specificity-1). This operating point was validated by calculating

sensitivity and specificity in the remaining 30% of patients (testing set).
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To test the variability that might exist in our data set, this random subsampling

process was repeated 100 times so that 100 randomly selected training and testing

sets were created.
90

At every iteration step the testing set didn’t contribute to the

optimization of the operating point and served as an independent assessment.

Additional note. This implies that the following happened 100 times: a specific

operating point was found to maximise the Youden Index in a resampled training

set and subsequently this operating point was validated on the corresponding

testing set. As a consequence, we had to decide which operating point to keep as a

final result and how to report a ‘summary accuracy’ for this operating point. So it

was decided to do this as follows: The number of resamplings (out of the 100) in

which a certain operating point appeared to maximize the Youden index was

reported. This was called the operating point frequency (OPF) and the operating

point with the highest OPF was retained. This means that this operating point was

validated in a number of testing sets equalling OPF and we then reported a mean

sensitivity and specificity (together with 95% distribution intervals) at this operating

point over this number of testing sets. It was a purposive choice to report the

‘mean’ accuracy over OPF testing sets and not over the total of 100 because the

100-OPF other testing sets correspond to other runs to find an operating point and

including them might lead to overoptimistic results.

Statistical analysis was performed using SAS version 9.1. and Matlab version

R2008a. Means or medians of continuous variables were compared using ANOVA

with F-test or the Kruskal-Wallis test. The Chi-square test was used to compare

proportions. To measure the diagnostic accuracy, sensitivities and specificities were

determined at fixed operating points. ROC curves were constructed and the area

under the ROC curve (AUC) was calculated using the trapezoidal rule. The AUCs

were compared using the nonparametric approach of DeLong et al.
81

1.1.4. RESULTS

Patient characteristics

Of the 199 patients, 2 were excluded due to lack of agreement between the

pathology report and the study CRF. In the remaining 197 patients, there was no

significant age difference between women found to have malignant, benign and

normal ovaries. However, there were more postmenopausal women in the normal
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and benign when compared to the malignant group. Serum CA125 levels were

significantly higher in women with malignant masses (table 6).

TABLE 6: PATIENT CHARACTERISTICS

Variable

Malignant

(N=98)

Benign

(N=72)

Normal

(N=27) p-value

Age (yrs)

mean±SD

57 ± 12 58±10 62±13 0.095

CA 125 level (U/mL)
Median (range)

2323
(7-32986)

12
(4-487)

17
(3-356)

<0.001

Menopausal-status
%postmenopausal

66% 76% 89% 0.047

The 197 patients had 291 adnexal masses, 125 non malignant and 166 malignant.

Details of ovarian histology are given in table 7. The majority (78%) of malignant

tumours were primary invasive ovarian cancers and borderline ovarian cancers.

37% of all ovarian cancers and 94% of borderline cancers were early stage cancers

(FIGO stages I and II). Overall, 69% of malignant tumours were of epithelial

subtype.
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TABLE 7: HISTOPATHOLOGY OF TUMOURS

Type of tumour N %

Non Malignant (n=125)

Ovarian cyst 30 24

Cystadenoma 28 22

Teratoma 4 3

Cystadenofibroma 15 12

Corpus Luteum cyst 7 6

Fibroma 6 5

Brenner Tumor 6 5

Corpus albicans 14 11

Hemorrhagic adnexal cyst 1 1

Thecoma 2 2

Endometriosis 8 6

Unknown 4 3

Malignant tumours (n=166)

Ovarian cancer (OC) 89 54

Borderline ovarian cancer (BOC) 25 15

Secondary ovarian metastasis from

cancer of another organ

16 10

Peritoneal carcinomatosis 15 9

Cancer of an organ invading the pelvis 4 2

Unknown* 17 10

* Note that about 50% of these malignant tumours of unknown histological origin had missing

data and where therefore not contributing to our analysis and the other 50% had very high RMI

values (≥ UC) and were thus always directly correctly classified by RMI (the first line test)

RMI

At University College London, two sets of US scores for each of the 197 patients

were obtained independently from the two sonographers. The two RMI1-scores

that resulted from multiplying these scores with CA125 values and menopausal

status showed very similar ROC-curves and AUC (see figure 7) on our patient

population. Therefore it was decided to use the RMI based on the US-score of the

2
nd

sonographer (random choice) for further analyses.



Chapter 4 Part I

43

FIGURE 7: ROC CURVES OF RMI1 FOR BOTH SONOGRAPHERS
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The ROC curves for the RMI1, RMI2 and RMI3 were obtained and the respective AUC

were estimated to be 0.85 (95%CI = [0.78;0.91]) for RMI1, 0.87 (95%CI =

[0.81;0.92]) for RMI2 and 0.88 (95%CI = [0.83;0.93]) for RMI3. The difference

between the 3 AUCs was not statistically significant (p=0.99). Additionally, the ROC

of the 3 RMI barely changed when the 27 normal patients were not included in the

sample, thus confirming that the strength of the RMI is its ability to differentiate

between malignant and non malignant adnexal masses. This can also be seen from

the empirical histograms of the log RMI2 score (figure 8) in which the normal and

benign groups completely overlap.
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FIGURE 8: EMPIRICAL HISTOGRAMS OF THE LOG RMI2 SCORE FOR THE DIFFERENT PATHOLOGY

GROUPS

The sensitivity and specificity of the three RMIs on the ensemble of the 197

patients, was evaluated. Among the three RMIs, RMI2 had the best sensitivity at the

cut-off of 250, 82%(95%CI=[73;89]), and the specificity was 81%(95%CI=[72;88]).

RMI1 and RMI3 at the cut-off of 250 had sensitivities of 68%(95%CI=[58;77]) and

74%(95%CI=[64;82]), respectively; and specificities of 89%(95%CI=[81;94]) and

86%(95%CI=[77;92]), respectively.

Sequential use of RMI and HistoScanning

Table 8 presents the results of the 100 resamplings carried out to find the

combination of the 3 cut-offs (LC, UC and HSCU) that maximised the Youden Index.

All combinations of RMI with HistoScanning showed improvements over RMI alone.

The strategy combining RMI3 and HistoScanning led to the highest mean accuracy

in the iteratively selected testing sets (table 8). For RMI3 with HistoScanning, the

best combination of the 3 cut-offs (LC, UC, HSCU) was (105, 2100, 20) with mean

sensitivity and specificity estimates of 88%(95%DI=[79;98]) and

95%(95%DI=[87;99]) respectively (testing).
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TABLE 8: RESULTS OF A REPEATED RANDOM SUBSAMPLING PROCEDURE ON RMI1, RMI2 AND RMI3

SUPPLEMENTED WITH HISTOSCANNING TO FIND THE OPERATING POINT THAT MAXIMIZES THE

YOUDEN INDEX.

Working example illustration

Since the sequential use of RMI3 with HistoScanning achieved the best performance

at optimised cut-offs of (105, 2100, 20), we applied this sequential strategy on 59

patients of one independent testing set (1 out of the 100 splits) (figure 9).

Application of the RMI3 would directly find 22 women with low (RMI3<105) and 7

women with high (RMI3≥2100) probability of adnexal cancer. The invasive

carcinoma found among patients with RMI3<105 was a 44 year old woman with

CA125 = 36 U/ml and RMI3 = 36, diagnosed with ovarian metastases from breast

cancer in both ovaries. For the 30 women in the RMI3 ‘grey-zone’

(105≤RMI3<2100), HistoScanning could further find out 22 women that should be

referred to a specialised centre (women with HistoScanning score ≥ 20). These 22

included 19 women with cancer and three with benign tumours. The 8 other

women in the RMI3 ‘grey zone’ had HistoScanning values < 20 and could be

Training Set
(70% of patients )

Testing set

(30% of patients)

Test

Cut-offs
§

(LC,UC,HSCU)

OPF* Sens†

[95%DI]

Spec†

[95%DI]

RMI1 followed

by HistoScanning

(25,2100,25) 33% 87%

[78;97]

84%

[73;94]

RMI2 followed

by HistoScanning

(165, 2050,20) 50% 84%

[76;91]

93%

[86;99]

RMI3 followed

by HistoScanning

(105,2100,20) 44% 88%

[79;98]

95%

[87;99]

§ Combination of the 3 cut-off points; the first 2 are the lower (LC) and upper (UC) cut-off
points for RMI and the third is the HistoScanning cut-off point (HSCU). HistoScanning is
performed when LC ≤ RMI < UC.
* Operating point frequency = Percentage of resamplings in which the 3 cut-off points
maximize the Youden index.
† Mean sensitivity/specificity with 95% distribution intervals over the number of
resamplings in which the operating point maximized the Youden Index on the training data
(=OPF). This served as a validation of the retained operating point.
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followed up by their doctor. The pathology of these women was the following: 3

had normal ovaries and 5 had benign tumours.

FIGURE 9: STRATEGY USING SEQUENTIALLY THE RMI3 AND OVARIAN HISTOSCANNING FOR THE

DIFFERENTIAL DIAGNOSIS OF ADNEXAL MASSES WITH RESULTS FROM ONE TESTING SET.

Abbreviations: N = normal, B = benign, BC = borderline cancer, IC = invasive cancer

In the small light gray square-boxes underneath, pathology results of patients in one testing set (=59

patients) are given as an example of how they are divided along the proposed pathway.

1.1.5. DISCUSSION AND CONCLUSIONS

This is the first study to explore the use of a novel US-based technique, Ovarian

HistoScanning, to supplement the RMI for the differential diagnosis of adnexal

masses. The study was able to identify a RMI ‘grey-zone’ in which HistoScanning

could be used as a second line test to improve performance characteristics. The

highest accuracy (mean sensitivity and specificity of 88% and 95%, respectively)

was achieved using a sequential strategy of RMI3 with HistoScanning as a second

line test for RMI3 cut-off values of ≥105 and <2100.
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In this study, there was no significant difference in the performance characteristics

of RMI1, RMI2 and RMI3. This is consistent with earlier reports.
91,92

Only one study

has reported improved accuracy of RMI2 over RMI1.
60

External validation of the developed requires an independent testing set but this

was impossible at this point in time. A possible option would have been to do one

single split of the data in training and testing set (internal validation). However,

given the high proportion of malignant cases and the moderate sample size, a

single randomly chosen testing set would have been subject to chance (accuracy

results in favour of the new method or in disfavour of the new method). In order to

minimise this selection bias, we used a repeated subsampling approach that

permits understanding the variability that might arise from data representative of

the population under study. The cut-off determined using this method minimises

selection bias, is more robust, likely to represent a true finding and be

reproducible. However, the down side is that the results presented on one single

testing set based on one single random data split (as in figure 9) should be

considered with care.

Although we are cautiously optimistic regarding the findings using internal

validation, further prospective validation on a totally independent data set is

awaited.

While the data used in this work, were prospectively collected, they were obtained

from a clinical study designed to study the accuracy of HistoScanning alone,

without any attention to RMI. RMI was analysed retrospectively for the aim of our

study. Two experienced sonographers reviewed archived 2D- and 3D-TVS images to

derive morphological scores. This could be considered suboptimal. However, the

images were always acquired by experts with at least 10 years experience and

assessing such archived US-images has been noted to improve observer accuracy.
66

This is confirmed by the finding that the range of RMI scores for these patients are

in line with other RMI validation studies.
40,59,61

The quality of subjective assessment of adnexal masses on US-images varies widely,

depending on operator expertise.
66,93

This variability may come from 2 sources:

firstly, the definition of the region of interest and secondly, the interpretation of

the morphological characteristics of the selected region. Ovarian HistoScanning

being an automated computerised technique has the potential to significantly

reduce this observer variability for image interpretation. Even so, Ovarian

HistoScanning software is not completely without user dependency, as it requires

the identification of the VOI, which falls under the first source of variability.
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Unfortunately, within the context of the design of the clinical trial, it was

impossible to assess inter-user variability related to the definition of the VOI. For a

future application of our proposed strategy, the assessment of masses on the US-

image as well as the initiation of the HistoScanning analysis on this image should

ideally be done by the same operator during the same examination. Addressing the

user/expertise dependency in such a set-up would thus be important.

Lucidarme et al
71

showed TVS sensitivity increased from 66% to 92% when TVS and

HistoScanning were combined in parallel. However, RMI remains the current

standard for differential diagnosis in many centers. Our study is thus novel as it for

the first time shows that Histoscanning can be used as a sequential second line test

to improve performance of RMI and more accurately triage women with adnexal

masses.

Van Trappen et al
61

reported the use of a sequential strategy of two-staged second

line tests comprising expert US and if needed subsequent MRI for patients with

RMI1 cut-off values of ≥25 and <1000 which achieved a sensitivity of 94% and

specificity of 90%. The major advantage of the current strategy, applying

HistoScanning for patients with RMI3 cut-off values of ≥105 and <2100, is that

similar accuracy is achieved without the need for patients to undergo a further

expertise dependent and time consuming second line test (e.g. MRI or CT) as

HistoScanning only involves computerised analysis of data already acquired at the

time of the initial ultrasound. There are other second line tests with proven efficacy

that are relatively easy to perform like color Doppler.
94

For this study we had no

Doppler data available. For future investigations, it could be interesting to study a

sequential approach with RMI and HistoScanning also containing Doppler

information.

In conclusion, this paper is the first evidence of a potential role of Ovarian

HistoScanning in improving the performance of RMI for the differential diagnosis of

ovarian masses. The proposed strategy increases the proportion of patients

appropriately referred to cancer centres /managed by general gynaecologists and

has the potential to reduce costs by avoiding additional expensive second line

tests, such as MRI/CT. Future research should include comparisons with other

models in independent data sets and multicentre prospective clinical trials in a

general population which incorporate cost-effectiveness/benefit analysis.
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1.1.6. ADDITIONAL RESULTS AND DISCUSSION

1) At University College London, two sets of US scores for each of the 197 patients

were obtained independently from the two sonographers. The stratified kappa and

weighted kappa coefficients were calculated to measure the inter-observer

agreement for this US-score and the Mc Nemar test was used to assess symmetry

among the discordant pairs.

Table 9 reports Cohen’s kappa and weighted kappa coefficients for the different

pathology strata. In addition, the overall stratified kappa and weighted kappa were

0.38 (95%CI = [0.27;0.49]) and 0.45 (95%CI = [0.34;0.56]), respectively. The kappa

reflects a slight agreement between the readers but the weighted kappa shows

that the agreement improves to a moderate one when the close disagreements

(i.e. 0 versus 1 and 1 versus ≥2) are considered less heavily then the distant

disagreements (i.e. 0 versus ≥2). Symmetry was detected between the discordant

pairs and only 10 distant disagreements exist with a 5/5 ratio (table 9).

Additionally, the two RMI1-scores that resulted from multiplying these scores with

CA125 values and menopausal status showed very similar ROC-curves and AUC (see

figure 7) on our patient population. Consequently, the agreement between the 2

sonographers is deemed acceptable and the US-score of the 2
nd

sonographer was

chosen at random for further analyses.

TABLE 9: CROSS TABULAR FREQUENCIES AND CONCORDANCE MEASURES IN THE DIFFERENT

PATHOLOGY STRATA OF THE US-SCORE ATTRIBUTED BY 2 SONOGRAPHERS

US Score of S2

US Score of S1 Concordance

0 1 ≥2

Pathology

K
§

[95%CI] Kw
*

[95%CI]

0 40 10 5 55 Malignant 0.32 [0.15;0.49] 0.38 [0.20;0.56]

1 12 22 17 51 Benign 0.36 [0.20;0.53] 0.45 [0.28;0.62]

≥2 5 22 64 91 Normal 0.58 [0.31;0.85] 0.64 [0.37;0.91]

Total 57 54 86 197

Abbreviations: US=Ultrasound, S1=Sonographer 1, S2=Sonographer 2
§Kappa coefficient per pathology stratum
*weighted Kappa coefficient per pathology stratum
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2) In order to identify the best combination of the three cut-off points (LC, UC,

HSCU) for the sequential test RMI followed by HistoScanning, we have applied a

random subsampling process. In addition, this process was repeated 100 times. In

each of these 100 runs a training set of randomly selected patients (70% of sample)

was selected to find LC, UC and HSCU by varying them simultaneously in predefined

ranges that made sense. Every variation of one of the three cut-offs leads to a

different sensitivity and specificity. These pairs of sensitivity and specificity

obtained empirically at every variation of LC, UC or HSCU, can also be visualized by

an empirical ROC curve by simply plotting the empirical sensitivities against 1-

specificties. The resulting ROC curve will not consist of 1 jagged line (of points) as

we are used to but is rather a collection of points. This is because we are handling 3

cut-offs simultaneously so we can find points that have a lower ‘sensitivity’ or

lower ‘1-specificty’ than their predecessors. An example of such an ROC curve that

visualizes the search for the best combination of the three cut-offs is given in figure

10.
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FIGURE 10: ROC CURVES OF RMI1, RMI2, RMI3 AND ROC POINTS OF RMI3 WITH HISTOSCANNING
51

bbreviations: RMI=Risk of Malignancy index, AUC=Area under the curve

igure 10.a) ROC curves and AUC of the 3 successive RMI

igure 10.b) ROC points for RMI3 with HistoScanning in one training set (=138 patients). The AUC is

alculated with respect to the envelope of these ROC points.

igure 10.c) ROC points for RMI3 with HistoScanning in one testing set (=59 patients).
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1.2.1. ABSTRACT

Purpose: Accurate preoperative clinical assessment of adnexal masses can optimize

outcomes by ensuring appropriate and timely surgery. This paper addresses

whether a new technology, ovarian HistoScanning, has an additional diagnostic

value in mathematical models developed for the differential diagnosis of adnexal

masses.

Patients and Methods: TVS-based morphological variables were obtained through

blinded analysis of archived images in 199 women enrolled in a prospective study

to assess the performance of ovarian HistoScanning. Logistic regression (LR) and

neural network (NN) models including these variables, clinical- and patient-data

along with the HistoScanning score (HSS, range 0-125, based on mathematical

algorithms) were developed in a learning set (60% patients). The remaining 40%

patients (evaluation set) were used to assess model performance.

Results: Of all morphological and clinical variables tested, serum CA125, presence

of a solid component and HSS were most significant and used to develop the LR-

model. The NN model included all variables. The novel variable, HSS, offered

significant improvement in the LR- and NN-models’ performance. The LR- and NN-

models in an independent evaluation set were found to have AUC: 0.97



Chapter 4 Part I

53

(95%CI=[94;99]) and 0.93 (95%CI=[88;98]), sensitivities: 83% (95%CI=[71;91]) and

80% (95%CI=[67;89]) and specificities: 98% (95%CI=[89;99]) and 86%

(95%CI=[72;95]), respectively. In addition, these models showed an improved

performance when compared to 3 other existing models (p values all <0.05)

Conclusion: This initial report shows a clear benefit of including ovarian

HistoScanning into mathematical models used for discriminating benign from

malignant ovarian masses. These models may be specifically helpful to the less

experienced examiner. Future research should assess performance of these models

in prospective clinical trials in different populations.

key words: differential diagnosis, ovarian cancer, multivariate mathematical

models, HistoScanning, ultrasound

1.2.2. INTRODUCTION

Surgery by consultant gynaecological oncologists has been shown to lead to

improved outcomes in women with ovarian cancer.
26

Accurate preoperative

assessment of adnexal masses will help correctly triage women at high risk of

malignancy for treatment by gynaecological oncologists. Furthermore this permits

the larger proportion of patients with benign masses to be managed conservatively

or by other gynaecologists.

The use of TVS to characterize adnexal masses is well established and over the

years a number of scoring systems based on ultrasound determined morphological

characteristics have been developed.
32,35

However, there is still no standardized

index
5
. The addition of second line tests such as serum CA125 levels, Doppler

features and clinical data to TVS morphological indices have been shown to

outperform individual tests.
36

The Risk-of-malignancy index (RMI)
37

is such an index

which is routinely used in the United Kingdom.
38

Other researchers have used

multivariate mathematical models to determine the most important variables for

differential diagnosis.
42,51-53,95

Performance of some models has been confirmed at

validation
96

but for most of them inconsistencies remained at validation studies.
5,63

Moreover, most mathematical models do not offer much advantage over the

RMI
57,65

nor do they outperform subjective evaluation by an experienced

examiner.
64,68

We explored whether a new computerized tissue characterization technology,

ovarian HistoScanning,
71

adds an additional diagnostic value to prediction models.
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Cancerous processes induce structural changes in the tissue texture which results

in physical changes in the reflected ultrasound waves. HistoScannings’ tissue

characterization algorithms were optimized to quantify such changes in the

backscattered waves. For Ovarian HistoScanning, three algorithms were selected

and trained during clinical development studies in 2001-02 (unpublished data)

1.2.3. PATIENTS AND METHODS

Patients

This report involves patients recruited to a prospective study evaluating ovarian

HistoScanning. The original study protocol was approved by the Ethical Committees

of all participating centres and was managed according to ICH-GCP

(http://ichgcp.net/). Eligibility criteria were: women ≥ 18 years, scheduled for the

surgical removal of one or two ovaries due to (a) a suspicious adnexal mass or (b)

prophylactic oophorectomy or as part of hysterectomy for a uterine pathology.

Exclusion criteria included: past history of ovarian cancer, past history of

chemotherapy or radiotherapy and previous pelvic surgery. The latter helped

avoiding alterations to ultrasound-data due to changes in the tissue morphology.

All participants gave written informed consent. Baseline information included: age,

menopausal status, histo-pathology of surgical specimens and FIGO staging of

cancers. Only patients with CA125 measurements (199 out of 383) were included in

this analysis.

Ultrasonography

TVS was performed on all eligible women shortly before surgery by an expert with

more than 10 years of scanning experience. The Voluson 730 Expert scanner from

General Electric equipped with a RIC5-9, 5-9 MHz Real Time 4D broadband

endocavity transducer (Zipf, Austria) was used in all centres.

The examination consisted of conventional 2D-TVS for identifying ovaries and/or

adnexal masses followed by a standardized 3D-TVS procedure to capture the 3D

image of all structures present. Ovaries and lesions were annotated and marked as

regions of interest on the 2D-scan by the individual operators. All acquired data

were anonymized, saved on a CD-ROM and sent to the study coordinator. An
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independent blinded expert matched the 2D annotated images to the structure

depicted by the 3D-TVS to determine the volume(s) of interest (VOI) to be analyzed

by HistoScanning.

Ovarian HistoScanning results

HistoScanning analysis was applied to the 3D raw voxel (gray-scale) data, saved on

the CD-ROM’s.

HistoScanning’s algorithms successively analyzed the VOI, indicated on the 3D-scan

by the operator, and calculated a value (ranging between 0 and 125) for each VOI

in a scan. The HistoScanning-score of an individual patient was defined as the

maximum value over all her available VOIs. This analysis was blinded with regard to

the TVS-interpretation, CA125-value and the pathology results.

Retrospective assessment of TVS-morphological variables

The 2D- and 3D-ultrasound images of the 199 eligible patients were reviewed at

University College London by an independent experienced ultrasonographer. The

ultrasonographer was blinded to HistoScanning, CA125 and pathology results. She

assessed each TVS-image for the morphological features (multi-locularity of any

cyst, presence of solid areas, evidence of metastases, presence of ascites and

bilaterality of lesions) that form the RMI.
37

In addition, a number of TVS-

morphological features were also assessed for each ovary/adnexal lesion detected:

cyst dimensions, cyst wall structure (smooth or irregular), echogenicity of cystic

fluid, cyst structures (septae and/or papillations), septae thickness, size of

papillation and overall impression of the lesion (as defined by the International

Ovarian Tumour Analysis Criteria).
62

These features are part of the list of features

analyzed in the UKCTOCS screening program (www.ukctocs.org.uk).
97

Analysis

Statistical analysis was performed using SAS 9.1, SAS Enterprise Miner release 4.3

and SigmaPlot 10.0. Continuous variables are reported as medians with ranges and

discrete variables as proportions. For continuous variables, pathology groups were

compared using Kruskal-Wallis’ test or Mann-Whitney’s U-test (with Bonferroni-

http://www.ukctocs.org.uk/
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correction) when the sample size in the normal pathology group was too small

(n≤3) to be used in the comparison. The Chi-square test was used for discrete

variables. Spearman’s correlation coefficient was used to assess correlation

between variables.

The data set was split into learning set (LS) and evaluation set (ES) by randomly

selecting 60% of patients into the LS and the remaining 40% into the ES.

Multivariate models were developed in the LS only. Models were subsequently

tested in the ES and also compared to models reported in the literature.

Variables that were significant in univariate analysis or that had proven clinical

interest were submitted to a multivariate logistic regression with pathology

(malignant vs. non-malignant) as response variable. After checking for interactions

and multicollinearity, a backward elimination procedure based on Akaike‘s

information corrected criterion (AICC) was used to select the variables with a

diagnostic value. The final model is referred to as the LR-model. Finally, 100

bootstrap-resampled data sets were created from the LS in which AICC selection

was repeated to perform an internal validation of the input selection. As a result,

inclusion frequencies of the variables entered in the full model as well as the most

frequent final model among the 100 runs are reported.

Additionally, a neural network (NN) model
88

was developed. A feed-forward

multilayer perceptron model was used, consisting of an input layer of variables

connected to layer(s) of hidden neurons which is again connected to an output

neuron. The neurons take a weighted sum of their inputs and put this value trough

an activation function. Weights of the inputs of each neuron are estimated on the

LS through a parametric error-minimization procedure. We used the logit function

as activation function for the output neurons.The model complexity (e.g. number

of hidden layers/neurons) was set by trial and error using different NN-models in

our LS by splitting the LS into a training (70% patients, randomly chosen) and a test

set (remaining 30% patients). The model with the lowest misclassification error on

the test set was then selected.

To assess the added predictive ability of HistoScanning, the integrated

discrimination improvement (IDI) with corresponding p-value, as recently proposed

by Pencina et al,
87

was calculated for the LR- and NN-models.

The measured variables in our data allowed us to validate 3 other models for the

differentiation of ovarian masses: the RMI,
37

the Logistic regression model, LR2,

and the neural network model, NN2, developed by Timmerman et al.
53

The RMI is
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defined as the product of menopausal status (M), CA125 and US-score (U) in which

M=1 for premenopausal status and M=3 for postmenopausal status; U=0 for US-

score=0, U=1 for US-score=1 and U=3 for US-score≥2. The probability of malignancy

predicted by the LR2- and the NN2-model was taken from the mathematical

formulas in Timmerman et al:
53

   

 

LR2: - 1.0889 0.5948( ) 0.0205( 125) 0.5446( ) -

0.7620( ) - 1.1606( ) 1.5049( ) 0.7633( )

z meno CA ascites

unilocular smooth papill bilateral

and

   
     

    1 2

1 1
NN2: - 3.8616 2.9753 4.1980

1 exp(- ) 1 exp(- )
z

z z

in which

  

 

   

1

2

- 0.5485 - 1.0792( ) 1.9383( 125) 0.7124( ) -

1.2664( ) - 1.3741( ) 0.8298( ) 1.5316( )

-1.8129 1.0766( ) 0.1376( 125) 1.0112( ) -

z meno CA ascites

unilocular smooth papill bilateral

z meno CA ascites

 0.8320( ) - 1.6941( ) 2.9541( ) 1.4654( )unilocular smooth papill bilateral

ROC curves were constructed for our LR- and NN-models as well as for the earlier

published RMI, LR2- and NN2-models. The area under the ROC curve (AUC) was

calculated using the trapezoidal rule. The AUCs were compared using the

nonparametric approach of DeLong et al.
81

A cut-off performance was also

presented with corresponding sensitivity and specificity.

Our main analysis focused on the level of the ovary (full LS/ES), but modelling was

also done on the level of the patient (reduced LS/ES) by taking the most severe

pathology and maximum value over both ovaries for other variables as 1 data

entry.

1.2.4. RESULTS

Two patients were excluded because of disagreements between the pathology

report and the study’s case report form. The remaining 197 patients had 291
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adnexal masses (125 benign, 166 malignant). Description of tumour histology is

given in table 10. A detailed histologic classification of the 166 malignant ovarian

tumours is provided in table 11. Of all ovarian and borderline cancers, 37% and 94%

were early stage cancers (FIGO stages I/II), respectively.

TABLE 10: HISTOPATHOLOGY OF THE 291 MASSES IDENTIFIED IN 197 WOMEN

Type of tumour n %

Non malignant Tumours (n=125)

Ovarian cyst 30 24.0

Cystadenoma 28 22.4

Teratoma 4 3.2

Cystadenofibroma 15 12.0

Corpus Lutheum cyst 7 5.6

Fibroma 6 4.8

Brenner Tumor 6 4.8

Corpus albicans 14 11.2

Hemorrhagic adnexal cyst 1 0.8

Thecoma 2 1.6

Endometriosis 8 6.4

Unknown 4 3.2

Malignant tumours (n=166)

Ovarian cancer (OC) 89 53.6

Borderline ovarian cancer (BOC) 25 15.1

Secondary ovarian metastasis from

cancer of another organ

16 9.6

Peritoneal carcinomatosis 15 9.0

Cancer of an organ invading the pelvis 4 2.4

Unknown* 17 10.2

* Note that the majority of these malignant tumours of unknown histological origin had missing data for

at least one of the variables used in the multivariate mathematical modelling and where therefore not

contributing to our analysis.
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TABLE 11: WHO ICD-O HISTOLOGIC CLASSIFICATION OF THE 166 MALIGNANT OVARIAN TUMOURS

Malignant tumours (n=166) n %

Ovarian cancer (n=89)

Surface epithelial tumours 80 89.9

Sex-cord stromal tumours 2 2.2

Unknown 7 7.9

Borderline ovarian cancer (n=25)

Surface epithelial tumours 24 96.0

Germ-cell tumours 1 4.0

Secondary ovarian metastasis from cancer of another organ (n=16)

Surface epithelial tumours 2 12.5

Secondary (metastatic) tumour 12 75.0

Unknown 2 12.5

Peritoneal carcinomatosis (n=15)

Surface epithelial tumours 8 53.3

Secondary (metastatic) tumour 1 6.7

Unknown 6 40.0

Cancer of an organ invading the pelvis (n=4)

Secondary (metastatic) tumour 1 25.0

Unknown 3 75.0

Malignancy was found to be associated with significantly higher CA125 levels and

US-score≥2 (table 12).
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TABLE 12: CLINICAL AND MORPHOLOGICAL CHARACTERISTICS OF THE 197 PATIENTS

Variable
Normal†
(N=27)

Benign†
(N=72)

Malignant†
(N=98) p-value

Age (yrs)
mean±SD

62±13 58±10 57 ± 12 0.095

CA 125 level (U/mL)
Median (range)

17
(3-356)

12
(4-487)

2323
(7-32986)

<0.001

Menopausal-status
%postmenopausal

89% 76% 66% 0.047

US-Score
n (%)

0
1
≥2

14 (51.9%)
6 (22.2%)
7 (25.9%)

31 (43.1%)
21 (29.2%)
20 (27.8%)

10 (10.2%)
24 (47.1%)
64 (70.8%)

<0.001

† A patient has been classified in a pathology group that corresponds to the most severe

pathology group of her 2 ovaries

Malignant masses were significantly associated with US features of a solid

component, irregular cyst walls, cystic fluid of random echogenicity, presence of

papillations and septae, higher septae thickness and a higher HistoScanning-score

(table 13).
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TABLE 13: UNIVARIATE ANALYSIS OF CATEGORICAL AND CONTINUOUS VARIABLES FOR 365 OVARIES

WITH PATHOLOGY INFORMATION IDENTIFIED IN 197 WOMEN

Variable

Normal (n=74) Benign (n=125) Malignant (n=166)

n % n % n %

Locularity*** Unilocular cyst 6 8.6 35 28.5 16 10.0

Multilocular cyst 0 0.0 27 21.9 10 6.3

Unilocular Solid 0 0.0 4 3.3 17 10.6

Multilocular Solid 3 4.3 8 6.5 36 22.5

Solid 1 1.4 2 1.6 37 23.1

None of the above 60 85.7 47 38.2 44 27.5

Missing 4 -- 2 -- 6 --

Structure of

cyst wall***

Smooth 6 8.6 61 49.6 50 30.3

Irregular 4 5.7 15 12.2 61 38.1

None of the above 60 85.7 47 38.2 49 30.6

Missing 4 -- 2 -- 6 --

Echogenicity

of cystic

fluid***

Anechoic 3 4.3 55 44.7 39 24.4

Uniform 1 1.4 6 4.9 7 4.4

Random 5 7.2 14 11.4 57 35.6

None of the above 61 87.1 48 39.0 57 35.6

Missing 4 -- 2 -- 6 --

Structures in

cyst***

Septae (S) 2 2.9 30 24.4 21 13.1

Papillations (P) 0 0.0 7 5.7 15 9.4

Both S and P 2 2.9 5 4.1 32 20.0

None of the above 66 94.2 81 65.8 92 57.5

Missing 4 -- 2 -- 6 --

Normal Benign Malignant

Variable N Median

(Range)

n Median

(Range)

n Median

(Range)

Cystic volume (cc) 7 227

(25 – 2165)

67 105

(0.6 – 2597)

102 215

(8 – 3616)

Max size of

papillation (mm) £

2 Values: 22, 57 12 14

(4 – 64)

45 19

(5 – 86)

Papillation volume

(cc) £

1 Value: 18 7 5

(1 – 72)

30 5

(0.2 – 226)

Max septae

thickness † (mm)

3 Values: 1, 6, 9 33 3

(2 – 10)

43 5

(2 – 39)

HistoScanning

Score ††† (0-125)

5

3

2

(0 – 53)

85 9

(0 – 125)

131 101

(0 – 125)

*** p-value <0.001 by the Chi2-test

†Adjusted p-value <0.05 for Mann-Whitney test (Benign versus malignant ovaries only)

††† p-value <0.001 by the Kruskall-Wallis test

£Adjusted p-value >0.05 (non-significant) for Mann-Whitney test (Benign versus malignant ovaries only)
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Based on these results, the logistic regression was carried out in the LS on the

following variables: Menopausal status (Meno: pre=0/post=1), US-Score (USS:

0/1/2), CA125 level (CA125), Ovarian HistoScanning-score (HSS), absence/presence

of a solid component (Sol: 0/1), absence/presence of an irregular cyst wall (Wall:

0/1), absence/presence of random echogenic fluid (Flu: 0/1), absence/presence of

papillations larger than 3mm (Pap: 0/1) and absence/presence of Septae larger

than 4mm (Sept: 0/1). Table 14 shows that HSS was not highly correlated with any

of the 8 others as Spearman’s correlation coefficient is never >0.5 or <-0.5.
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TABLE 14: SPEARMAN'S CORRELATION COEFFICIENT BETWEEN HISTOSCANNING AND ALL OTHER VARIABLES

CA125 USS Meno Sol Wall Flu Pap Sept

HSS 0.52

<.0001

(269)

0.42

<.0001

(269)

-0.21

0.0005

(269)

0.50

<.0001

(264)

0.39

<.0001

(264)

0.32

<.0001

(264)

0.23

0.0002

(256)

0.21

0.0007

(251)

Abbreviations: HSS = Ovarian HistoScanning score, CA125 = CA125 serum level, USS = US-Score, Meno = Menopausal status, Sol =

absence/presence of a solid component, Wall = absence/presence of an irregular cyst wall, Flu = absence/presence of random

echogenic fluid, Pap = absence/presence of papillations larger than 3mm and Sept = absence/presence of Septae larger than 4mm

Spearman’s correlation coefficients with underneath p-value for H0: Rho=0 and (n)
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Logistic regression

After the AICC-selection procedure, CA125, HSS and Sol were retained and the

probability of malignancy predicted by the logistic regression model was given by:




1
Pr( | 125, , )

1 exp(- )
being malignant CA HSS Sol

z

where

   -4.45 0.0099( 125) 0.034( ) 2.16( )z CA HSS Sol

The Analysis of the 100 bootstrap resampled LS showed the following inclusion

frequencies for the 9 variables included in the multivariate model: HSS 100%,

CA125 100%, Sol 74%, Flu 48%, Meno 41%, Pap 30%, USS 23%, Sept 21% and Wall

14%. The most frequent model (out of the 100 bootstrap-samples) was our final

model (24 %).

Neural network

The NN-model with the lowest misclassification error on the LS had 1 hidden layer

containing 3 hidden units with the Elliott function
1

z

z

as activation function for

hidden units. The estimated equation of this model is given by:




1
Pr( | 125, , , , , , , , )

1 exp(- )
being malignant CA HSS USS Flu Wall Sol Pap Sept Meno

z

with   1 2 32.22 15.13( ) - 24.15( ) - 14.12( ),z h h h in which
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   


   

 


1 1

1

2 2

2

1
-13.95 0.0084( 125) 0.025( ) - 0.92( ) - 6.64( ) -

1

1.59( ) 7.38( ) 2.76( ) 1.17( ) 11.41( ),

1
1.32 - 0.0022( 125) - 0.017( ) -

1

h with z CA HSS USS Flu
z

Wall Sol Pap Sept Meno

h with z CA HSS
z

  

   




3 3

3

0.95( ) - 0.78( ) -

0.33( ) 1.18( ) 0.83( ) - 0.60( ) 1.38( ),

1
- 9.93 - 0.00081( 125) 0.058( ) 1.72( ) - 0.79( ) -

1

0.59( ) - 1.35( ) 1.91(

USS Flu

Wall Sol Pap Sept Meno

h with z CA HSS USS Flu
z

Wall Sol Pa  ) 2.92( ) 0.55( ).p Sept Meno

Evaluation of model performance

In the ES, the IDI of the LR-model with HistoScanning compared to the LR-model

without HistoScanning (so only containing CA125 and Sol) was 0.18 (p<0.0001).

Similarly, for the NN-model with HistoScanning versus the NN-model without

HistoScanning, IDI was 0.15 (p=0.014). Thus adding HistoScanning significantly

improves model performance.

Figure 11 shows the ROC and AUC of the LR- and NN-models in the ES. The DeLong-

test shows improved AUC performance for LR compared to RMI, LR2 and NN2 (p-

values all <.0001). For NN compared to RMI, LR2 and NN2, the p-values were

0.00017, 0.0048 and 0.016, respectively.
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FIGURE 11: ROC CURVES AND AUC ON FULL EVALUATION SET: UNIT OF ANALYSIS IS OVARY
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At a probability of malignancy ≥54%, the LR-model reached an optimum sensitivity

of 88.1% (95%CI=[77.8;94.7]) and a specificity of 95.7% (95%CI = [89.2;98.8]) on the

LS. For the NN-model, the optimum performance was achieved at a probability of

malignancy ≥23% with a sensitivity and specificity of 96.7% (95%CI=[88.7;99.6]) and

95.6% (95%CI=[89.1;98.8]), respectively. When these cut-offs were cross-validated

on the ES, the good results for the LR-model were confirmed but the sensitivity and

specificity of the NN-model were slightly lower than in the LS (table 15). Cut-off

performance on our data of the RMI, LR2- and NN2-models can also be found in

table 15.
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TABLE 15: SENSITIVITY AND SPECIFICITY FOR ALL VALIDATED MODELS (USING THE ORIGINALLY REPORTED CUTOFFS) AND FOR THE NEW MODELS CROSS-VALIDATED ON

THE EVALUATION SET

Method

Original report Our study data (Evaluation set only)

test set unit of analysis = ovary unit of analysis = patient*

total

pop. npat sens(%) spec(%) cutoff

npat

nov

sens(%)

[95%CI]

spec(%)

[95%CI] cutoff

npat

nov

sens(%)

[95%CI]

spec(%)

[95%CI]

RMI
37

143 - 85 97 200 79,

148

69

[58;78]

79

[68;88]

200 79,

79

69

[53;81]

84

[67;95]

LR2
53

173 57 94 83 60% 79,

135

79

[68;87]

70

[57; 81]

60% 79,

79

91

[79;98]

69

[49;85]

NN2
53

173 57 94 95 60% 79,

135

>99

[95;100[

10

[4;20]

60% 79,

79

>99

[92;100[

7

[1;23]

LR - - - - 54%
£

79,

103

83

[71;91]

98

[89;99]

75%
£

79,

79

68

[52;81]

88

[71;97]

NN - - - - 23%
£

79,

94

80

[67;89]

86

[72;95]

63%
£

79,

79

65

[50;78]

90

[74;98]

Abbreviations: sens = sensitivity, spec = specificity, npat = number of patients, nov = number of ovaries

* For every patient, pathology was selected to be (1) the pathology of the single ovary that was present, (2) the most severe pathology of the 2 ovaries in our data

base

£ These are the cutoffs that optimized the Youden index on the learning set
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Figure 12 shows that for all pathology groups, the values predicted by the LR-model

for the left ovary are not correlated with the values for the right ovary. This implies

that a malignant left ovary didn’t necessarily force the LR-equation to be elevated

for the non-malignant right ovary of the same patient (true in LS and ES).
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FIGURE 12: PROBABILITY OF MALIGNANCY (PREDICTED BY THE LOGISTIC REGRESSION) OF RIGHT

VERSUS LEFT OVARY

Abbreviations: LR = Logistic Regression

Figure 12.a and 12.b.: This graph shows the probability of malignancy of right versus left ovary.
Patients were attributed to 6 groups as follows: of the 83 women with a single adnexal mass, 29
women underwent conservative surgery (not in this graph) while the contra-lateral normal ovary was
removed in 63 women. For 9 out of these 63 women, both ovaries were found to be normal at histology
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(‘NN’). Of the remaining 54 patients with unilateral disease, 31 had one benign and one normal ovary
(‘BN’), while 23 had one malignant and one normal ovary (‘CN’). Of patients with bilateral abnormal
ovaries: 35 were bilateral benign (‘BB’), 60 were bilateral malignant (‘CC’), while 10 had one benign and
one malignant ovary (‘CB’)

Models on reduced data set

The LR- and NN-models were also developed and validated in a reduced LS and ES

containing only 1 data entry per patient (using patients as units of analysis rather

than ovaries). The AICC-selection on the reduced LS also retained CA125, HSS, and

Sol and the LR-model equation estimated to:

   -4.65 0.0095( 125) 0.032( ) 2.10( )z CA HSS Sol

The IDI of this model compared to the same model without HSS was 0.34 (p<0.001)

so HSS adds predictive ability. When validated on the reduced ES this model

reached an AUC of 0.90 (95%CI=[0.82;0.97]) which was no longer significantly

higher than the AUC of the RMI (AUC=0.84, 95%CI=[0.75;0.93] ), the LR2-model

(AUC=0.92, 95%CI=[0.85;0.98]) and the NN2-model (AUC=0.92, 95%CI=[0.86;0.98]).

The best NN-model on the reduced LS, was a model with the hyperbolic tangent

activation function


2
1-

1 exp(2 )z
for hidden layers, 1 hidden layer and 2 hidden

units with the estimated equation as follows:

 1 2- 5.28 - 7.57( ) - 10.61( ),z h h in which

  


 

 


1 1

1

2 2

2

2
1- 6.28 - 0.0025( 125) - 0.067( ) - 0.88( )

1 exp(2 )

2.87( ) - 2.15( ) - 4.32( ) 2.01( ) 5.12( ) - 2.65( ),

2
1- - 0.49 - 0.0037( 125)

1 exp(2 )

h with z CA HSS USS
z

Flu Wall Sol Pap Sept Meno

h with z CA
z

 

 

0.0029( ) 0.31( ) -

0.14( ) 0.18( ) - 0.24( ) 0.086( ) - 0.35( ) - 0.31( ).

HSS USS

Flu Wall Sol Pap Sept Meno

The hierarchical comparison of the NN-model with and without HSS showed an IDI

of 0.11 that was no longer significant (p=0.17). Also, the NN-model had an AUC of

0.88 (95%CI=[0.79;0.96]) which was no longer significantly different from the AUC

of the RMI, the LR2- and NN2-models (table 15 and figure 13).
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FIGURE 13: ROC CURVES AND AUC ON REDUCED EVALUATION SET: UNIT OF ANALYSIS IS PATIENT
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1.2.5. DISCUSSION AND CONCLUSIONS

This paper provides the first evidence of the potential advantage of including

HistoScanning in multivariate mathematical models developed for the differential

diagnosis of adnexal masses. We have developed and validated 2 multivariate

models (LR and NN) using a number of morphological and patient related variables

along with a novel variable: HistoScanning-score. In the validation stage, both the

LR- and NN-model showed high AUC values (0.97, 0.93 respectively) and performed

significantly better than RMI
37

and 2 other previously reported models: LR2 and

NN2.
53

In addition, the IDI assessment on the ES showed that adding HistoScanning

to our LR and NN-models significantly improves model performance.
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Strengths of this work include prospectively collected data, blinded analysis and

subsequent validation of the models using a separate ES.

The data used in this work, though prospectively collected, were obtained from a

study designed to test the accuracy of HistoScanning and therefore the protocol did

not include assessment of all TVS-morphological features. Consequently, derivation

of the TVS-morphological parameters was done based on archived 2D- and 3D-TVS

images. This could be considered suboptimal.
98

However, the data were acquired

by experts with at least 10 years experience and assessing archived TVS-images

acquired by experts has been found to improve on the initial observer accuracy.
66

As CRF requirements of the original study did not include storage of Doppler

examinations, this was not included in our model development. Although adding

colour Doppler to morphological features improves model performance,
52,64

models incorporating Doppler variables can be difficult to reproduce.
57

Furthermore, a recent meta-analysis found that addition of 3D-Power Doppler did

not improve performance of LR-models.
5

Differential diagnosis is done at the patient level and developing models at patient

level would thus be a natural choice. However, given that two thirds of variables

used here characterize the ovary (table 13), our rationale and preference was to

use the ovary as unit of analysis. This still allows diagnosis at patient level by

considering results of both ovaries. However, one single patient may contribute 2

different masses. This might lead to dependence in the data which could

potentially bias the results. We have evaluated and tried to exclude such a

‘dependence bias’ by showing that no correlation exists between the modelled

results of left and right ovaries of one patient (figure 12). We also refitted the

models on a reduced data set in which the unit of analysis was the patient. On this

reduced data set, the performance (AUC (figure 13) and sensitivity/specificity (table

15)) of the LR- and NN-models at validation-stage was less than that achieved using

the full data set (per ovary analysis). Our models perform well at the level of each

ovary, despite of the presence of systemic variables such as CA125, even for

patients with unilateral disease. The improved performance of LR2- and NN2-

models on per patient compared to per ovary analysis is probably related to their

developmental methodology which was at the patient level.

An AICC-based selection for the LR-model found CA125, HistoScannig-score and

presence of a solid component to be statistically significant. The strength of our LR-

model based on these 3 variables was further confirmed by bootstrap analysis,

showing that they had the highest inclusion frequencies. This LR-model, using just 3
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variables, has the advantage of being much simpler and easier to reproduce

compared to the NN-, LR2- and NN2-models. The fall in performance of the NN-

model in the ES may be explained by our moderate sample size, which may be too

low for the high number of parameters that need to be estimated. Also there might

be issues with overfitting and generalizability.

The other models that were reproduced on our data: RMI and the Timmerman

models LR2 and NN2
53

have been validated by other researchers. An external

validation study
57

has reported sensitivities/specificities and AUC values for LR2 and

NN2 to be similar to what we found. The performance of RMI on our data are very

much in line with other reports.
58

Appropriate triage of women with adnexal masses seen in gynaecology clinics is

necessary so that those at high risk for malignancy can be referred to

gynaecological oncologists for further management. ‘Subjective’ ultrasound pattern

recognition by experienced examiners is a very good method for discriminating

malignant from benign masses
64,99

with sensitivities and specificities up to 96% and

90%, respectively.
66

Complicated multivariable models using >10 variables also

achieve high sensitivities and specificities.
99

However, the sensitivity and specificity

achieved by a less experienced examiner is lower: 86% and 80% respectively.
66

Thus, there is need for tests that improve discriminatory ability of less experienced

examiners. Although use of a 3D-probe and delineation of ‘volume of interest’ is

required with HistoScanning, this is increasingly within the remit of most

sonographers who routinely undertake 2D-scanning. We feel that our LR-model

using just 3 variables can lead to significantly improved performance in the hands

of a less experienced examiner.

In conclusion, this report is the first to show the potential benefit of including

HistoScanning into mathematical models for discriminating between benign and

malignant ovarian masses. The LR-model developed in this report achieved high

performance and might be of benefit to less experienced operators. Although the

internal validation of our models showed encouraging results, future research

should assess these models in prospective clinical trials on different populations.

1.2.6. ADDITIONAL RESULTS AND DISCUSSION

1) In the original study, details about the volume or size of the ovarian tumours

found during pathology were not retained on the database. The largest diameter of

the ovary itself, measured at pathology, was saved in the database. Note however

that the study started in 2004 and pathology practise has evolved a lot ever since.

Therefore, for illustrative purposes only, the median sizes of the ovaries for the
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three different pathology groups (normal, benign and malignant) are given in table

16.

TABLE 16: LARGEST DIAMETER OF THE OVARY (AT PATHOLOGY) FOR THE THREE DIFFERENT

PATHOLOGY CLASSES

Normal (n=74) Benign (n=125) Malignant (n=166)

Variable n Median

(IQR*)

n Median

(IQR*)

n Median

(IQR*)

Largest

diameter of

ovary (mm)

26 27

(20 – 30)

73 42

(35 –100)

92 60

(40 –100)

*IQR = Interquartile Range

2) The LR- and NN-models were developed on the learning set (LS) and then

subsequently validated on the evaluation set (ES) that was set aside. Both LS and ES

are random subsets of the same original data set, though, which is why such a

validation is often referred to as ‘internal validation’. The earlier developed models,

RMI
37

and also LR2 and NN2 from the publication by Timmerman et al
53

were also

validated on our ES but since they have been developed on a completely different

study population, this latter validation is referred to as an ‘external’ validation. The

comparison of our models to the existing models on our ES might therefore be

optimistic; this is why external validation of our models on independent data is

awaited, as pointed out in the discussion in section 1.2.5.
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CHAPTER 5: DISCUSSION, CONCLUSION AND PERSPECTIVES

1. GENERAL DISCUSSION AND PERSPECTIVES

1.1. PROSPECTIVELY COLLECTED DATA, RETROSPECTIVELY ASSESSED VARIABLES

Our data concerned patients coming from a prospective study designed to study

the accuracy of HistoScanning alone, without any attention to RMI or other

variables that characterize the US-morphology. The RMI and US-morphology

variables were therefore assessed retrospectively for the aims of our work. Since

HistoScanning is not used in clinical practise today and given that the RMI and US-

variables were assessed blindly on high quality US-data, we believe that the

retrospective nature of the latter two did not influence or bias the models build in

this work.

1.2. APPLICATION OF OUR RESULTS ON DIFFERENT POPULATIONS

All patients of our study population (a clinical series) were patients scheduled for

surgery. This means that they were mostly symptomatic patients or at least

patients with clinical indications for which surgery was deemed necessary. This

enabled us to have a gold-standard (histopathology results) to compare the

outcome results of our tests to. Since the interest of our work was to develop novel

tests and mathematical models for the differential diagnosis of adnexal masses, we

believe that this specific patient population is very suitable. However, this implies

that extending our results to asymptomatic patients is not straightforward. Indeed,

prevalence of malignancy varies across different populations, making a comparison

between different populations difficult, because separation cut-offs might be

affected.
74

On an asymptomatic population, the sequential test (RMI3 and

HistoScanning) might require other cut-offs than the ones defined in chapter 4. The

same is true for the developed mathematical models, LR and NN. In Addition, one

might be willing to achieve a higher sensitivity for similar specificity (or the other

way round) on a different population which means that one is looking for a
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different trade-off between FP and FN results and therefore different cut-offs need

to be chosen.

Validation of our models on independent data is awaited and if needed adjustment

of the cut-offs of the sequential test and of the cut-offs of the mathematical

prediction models to other populations is important.

1.3. SAMPLE SIZE

In this work, all novel tests and mathematical models have been developed on a

sample size of 197 patients (total of 199 minus 2 patients with disagreements

between pathology and the study CRFs). Despite of this moderate size, we feel

cautiously optimistic about the performance of our novel test (RMI followed by

HistoScanning) and mathematical models (LR and NN), because the internal

validations that were performed showed reassuring results.

1.4. PATHOLOGY RESULTS

The patients used in our work came from a multicentric prospective study
71

and we

have used histopathology results as the ‘gold standard’. So it is important to note

that at all centres, pathology was performed according to local standards and may

therefore differ slightly from one centre to the other. This might have introduced a

bias in our differential diagnostic tests and models. Although, since we used only

the outcome ‘malignant’ versus ‘non-malignant’ in model development, which is a

simplification of a detailed pathology report, we don’t believe that this potential

difference between pathology standards has biased our models a lot.

The development as well as the validation of a tissue characterization tool like

HistoScanning depends very much on pathology. The HistoScanning algorithms

locally analyse tissue volumes of 0.6 to 1.6 mm
3

(20 by 20 voxels of US-data) in a

VOI, resulting in the final score for a VOI (ranging from 0 to 125) that was used in

this work. The spatial distribution of the red circles (the 20 by 20 voxels regions of

US-data that were likely to present a cancerous region) on the 2D or 3D grid of the

VOI was not studied thoroughly in this work as detailed pathology results giving an

indication of the spatial emplacement of the tumours are difficult to produce for
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the case of ovarian cancer. The final score for each VOI, ranging between 0 and

125, reflects however a computerised analysis of consecutive volume units and

therefore it was decided to use these continuous scores for each VOI in this work.

1.5. ALTERNATIVE MODELS FOR PAIRED ORGAN DATA

In chapter 4, multivariate mathematical models have been developed for the

differential diagnosis of ovarian masses. It has been discussed in chapter 4 that on

our data, the ovary is to be preferred as unit of analysis to the patient; a fortiori

because of the fact that model outcomes of left ovaries didn’t correlate to

outcomes of right ovaries. In the statistical literature, special logistic regression

models for paired organ data exist.
100

Some of those models predict probabilities of

malignancies for one organ considering patient related covariates and the status of

the fellow organ
101

at the same time. Others choose not only to consider the status

of the fellow organ but also the organ specific covariates of the fellow organ for

making predictions.
100

In either way, information of both organs is used while

modelling the predicted probabilities for a patient.

Regarding the mathematical models for the differential diagnosis of ovarian

masses, most researchers have been modelling on the patient level. In doing so,

the worst outcomes of both ovaries were considered for the patient and covariates

such as ‘bilaterality of lesions’ to consider the paired organ status were included.

Since we saw no correlation between predicted probabilities of right and left

ovaries indicating no loss of information by ignoring the paired status in our data,

we have decided to model on the ovarian level which would increase our sample

size and make our models more accurate in predicting malignancy for an ovary.

This appeared to be a good choice, despite of the presence of systemic variables

such as CA125. Nevertheless, it would be interesting to consider the paired organ

models
100

for the case of ovarian cancer in order to study whether they would

improve model accuracy and diagnosis.
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1.6. VOI SELECTION FOR HISTOSCANNING

The quality of subjective assessment (visual pattern recognition by the operator) of

adnexal masses on US-images varies widely, depending on examiner expertise.
66,93

Very experienced examiners achieve sensitivities and specificities up to 96% and

90%, respectively
66

while the sensitivity and specificity achieved by a less

experienced examiner is lower: 86% and 80% respectively.
66

The 2 sources

introducing this variability may be:

1. The definition of the region of interest

2. The interpretation of the morphological characteristics of the selected

region.

Ovarian HistoScanning being an automated computerised technique has the

potential to significantly reduce this observer variability for image interpretation.

Even so, Ovarian HistoScanning software is not completely without user

dependency, as it requires the identification of the VOI, which falls under the first

source of variability. Unfortunately, within the context of the design of the study, it

was impossible to assess inter-user variability related to the definition of the VOI.

We believe that ideally, the assessment of masses on the US-image as well as the

initiation of the HistoScanning analysis on this image should be done by the same

operator during the same examination. Indeed, it is a major advantage that

HistoScanning requires nothing more than the US-data and can therefore run in

parallel while the operator finishes the examination. For the patient, this would

mean no additional discomfort while especially the less experienced operator will

have an extra parameter to base his/her diagnosis upon. Nevertheless, addressing

the user/expertise dependency with respect to the VOI selection in such a set-up

would be important.

Although use of a 3D-probe is required with HistoScanning, this is increasingly

within the remit of most sonographers who routinely undertake 2D-scanning.
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1.7. SCREENING

More accurate staging operations, more effective chemotherapy and more radical

surgery have improved duration of survival for patients with ovarian cancer over

the years.
102

Unfortunately, however, there has only been little change in the

overall ovarian cancer mortality rates.

(http://info.cancerresearchuk.org/cancerstats/types/ovary/mortality/)

As a result, researchers have been making efforts to develop effective strategies for

early detection in high risk as well as in asymptomatic populations. For a test to be

interesting as a screening modality, it needs to have very high specificity and PPV. A

one time use of TVS or CA125 as screening modalities was found to lack the

necessary specificity and PPV for screening.
103,104

Combining CA125 and US did

show encouraging results, especially for postmenopausal women.
105

Screening

strategies comprising out of multimodal approaches have been more refined,

achieved higher specificities and PPVs
106,107

and trial results were encouraging.
108,109

All these studies have shown that CA125 is to be used as a first level screen,

followed by US. Lately, the Risk of Ovarian Cancer algorithm based on age and a

CA125 profile rather than CA125 at a fixed cut-off, followed by TVS with CA125 as

level 2 screen has shown its feasibility to screen for ovarian cancer.
110

The future perspective of studying the potential role of ovarian HistoScanning in

the screening of high risk and asymptomatic populations is interesting. Based on

the high specificities that were achieved for the sequential test (RMI3 followed by

HistoScanning), it seems plausible to consider adding HistoScanning as a level 3

screen after TVS. Health economics and physical and psychological morbidities

should then also be studied.

1.8. A COMMENT ON COST-EFFECTIVENESS

In this section, the objective was not to discuss the results of a cost-effectiveness

analysis regarding the diagnostic models developed in this thesis but rather to set

the scene for a small discussion on this topic. To illustrate this discussion, we will

start with presenting some cost figures.

http://info.cancerresearchuk.org/cancerstats/types/ovary/mortality/
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1.8.1. SOME COST FIGURES

Cost figures for medical imaging procedures were collected from the

administration of the St. Luc hospital (Brussels, Belgium): Computer Tomography

(CT), Magnetic resonance imaging (MRI), and TVS cost 119.53€, 117.59€ and 21.48€

(in 2007 €’s), respectively. When considering any of these medical imaging

procedures, it is important to note that actually the fees of the medical staff

performing the imaging have to be counted too.

Costs for surgery were obtained from the CMDS
B

and FMDS
B

databases for the year

2005. In total 18 different operating room procedures that could possibly be

performed on patients with benign or malignant neoplasms, were taken into

account. These include a wide range of possible procedures (from diagnostic

laparoscopy to debulking surgery) performed depending on the origin and severity

of the disease. For the year 2005, a total of 81 hospital stays for malignant patients

and of 417 hospital stays for benign patients (the reason for admitting these

patients being the surgery) were identified. For malignant patients, the median

cost of a surgery was 2867€ (range: 891€ - 16964€) and for benign patients this was

1621€ (range: 845€ - 7134€) (both expressed in 2005 €’s). These figures include

costs for laboratory tests, pharmaceutical products, the surgical intervention in

question, synthetic materials, doctor and staff fees, hospital and room charges, and

extra charges admitted during the hospital stay.

All of the above mentioned costs are full charges, i.e. a sum of the part paid by the

social security system and the part paid by the patient.

1.8.2. THE UNITED KINGDOM

The RMI, which has been extensively discussed in this work, is used as a triage tool

for women presenting with adnexal masses in the United Kingdom. All over the

United Kingdom, this triage is performed according to well defined guidelines.
39,41

In the United Kingdom, the US-scan is acquired by sonographers (not by medical

doctors) and the US-score, needed for the RMI calculation, is also assessed by

sonographers. If one would advocate the use of RMI3 supplemented with

HistoScanning for the differential diagnosis (or triage) of ovarian masses instead of

RMI alone for triage, this would imply of course the additional cost of the ovarian

B
The Clinical Minimum Data Set (CMDS) contains relevant clinical and other information, such as

primary and secondary diagnosis, age, sex, length of stay and more. The Financial Minimum Data Set
(FMDS) is based on the billing data for hospitalized patients. More information can be found in the book
published by Dirk Corens111, which is available at:
http://www.euro.who.int/__data/assets/pdf_file/0007/96442/E90059.pdf.
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HistoScanning analysis. Moreover, given the higher effectiveness (sensitivity) of the

combined approach (at least achieved on our data), this would mean that more

malignant patients are correctly identified and referred to specialized centres

where they would undergo more expensive surgical procedures by very

experienced surgeons. Most importantly, however, is that a FN (lower sensitivity)

case is presumably ‘lost’ if treatment is deferred until too late. In other words, the

question is how much more cost can HistoScanning accrue per additionally gained

‘life year’? Then, on the other hand, higher specificity will imply less wrong (FP)

referrals to specialized centres and will in this way avoid more expensive surgical

procedures.

These arguments merely launch a debate about cost-effectiveness and, as

mentioned before, a cost-effectiveness analysis considering them and other

arguments is awaited.

1.8.3. BELGIUM

In Belgium, the use of RMI is not adopted in clinical practice for the differential

diagnosis of women present with adnexal masses, nor for triaging patients along

appropriate referral pathways. Ultrasonic imaging, on the other hand, is often used

to detect the presence of an adnexal mass in the first step of the work-up of the

patient. Then, for women with an equivocal image, various evaluation modalities

can be used alone or together for distinguishing benign from malignant masses:

MRI, CT, US-morphology assessment, Colour Doppler, etc. The sensitivity and

specificity of MRI for detecting malignancy when a patient presents with an

equivocal US-image is of 89% and 86%, respectively.
5,112

This is very much

comparable to the accuracy results we have achieved here both with combining

RMI with HistoScanning as with the LR model that was developed. The major

advantage of our approaches (including HistoScanning) compared to MRI is the fact

that HistoScanning only involves computerised analysis of data already acquired at

the time of the initial US, implying the following positive attributes:

- HistoScanning avoids additional medical staff fees as the MRI has to be

performed by a specialist (radiologist) which will induce additional fees

- The patient doesn’t have to wait for the MRI to be performed (which will

presumably be performed during another appointed at a later data) so

days or weeks of patient anxiety can thus be avoided and important time

may be saved
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Similarly as for the previous section, these points are here for the purpose of a

discussion and a complete cost-effectiveness analysis is awaited.

1.9. RECOMMENDATIONS

Based on the items that were previously discussed, we would recommend the

following items for the future: A validation on independent data (external

validation) of RMI followed by HistoScanning and of the LR and NN models is

important before adopting them in clinical practise. This data set should

preferentially be coming from a prospective, multicentric study to assess diagnostic

accuracy. The information that is to be collected for every patient should be

thoroughly discussed by a multidisciplinary team and this information should

definitely contain: a large list of US-morphology based variables, Us-Doppler

measurements, a large list of patient related information and very detailed

pathology reports (e.g. lesion dimensions etc.). This study should also consider the

important issues of inter-user variability with respect to the VOI selection for

HistoScanning as well as the inter-user variability with respect to the interpretation

of US-based morphology scores and variables. Regarding the inter-user variability, a

panel of 3 experienced sonographers or examiners could be a solution to avoid

disagreements between 2 of them. Ideally the HistoScanning analysis and the US-

interpretation should be done by the same examiner.

2. CONCLUSIONS

The main goal of our work was to define the scope that exists in clinical practise for

a new computerised technology in the diagnosis and work-up of ovarian cancer. In

other words, defining how and where this technology could improve accuracy,

detection and patient care. This main objective has been broken down into smaller

objectives (see chapter 2):

A. Would applying ovarian HistoScanning for the patients in an RMI grey-zone

improve triage of women with ovarian masses?
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B. Could adding ovarian HistoScanning to multivariate mathematical

prediction models for ovarian masses improve model performance?

Ovarian HistoScanning is an US-based computerised tissue characterization

technique. The HistoScanning analysis is based on the fact that cancerous

processes induce structural changes in the tissue texture which result in physical

changes in the reflected US waves. Moreover, the characterization algorithms are

fine-tuned to find such changes on a small scale. In other words, in its current form,

the technique is very useful to analyse tissue regions of an adnexal mass that are

difficult to interpret visually, i.e. before symptoms on the cellular level (irregular

borders, irregular solid areas) become visible on the image or to analyse these

cellular level symptoms in case of hesitation (benign versus malignant), etc.

Ovarian HistoScanning serves thus as liable assistant (computerised so less

subjectivity) to the operator (that has to select the VOI for HistoScanning) in

diagnosing adnexal masses. For his/her diagnosis, the clinician will also rely on

CA125, US-morphology, colour Doppler parameters, patient history and other

patient characteristics. Multivariate mathematical models translating a high

number of such variables into one ‘probability of malignancy’ have been proposed

in order to try to predict the ovarian histology. For less experienced examiners

whom achieve much lower accuracy in predicting malignancy than experienced

examiners,
66

such models are very useful. In this work, the added value of

HistoScanning as a new variable in such models was investigated and it was shown

that HistoScanning can significantly improve model performance (aim A).

The factors used in the RMI score calculation also result from a multivariate logistic

regression model.
37,40,59

In case of the RMI, the mathematical model development

lead to a simple and robust tool that was advocated to be the prediction model of

choice.
58

As far as we know, the RMI is the only model that is widely adopted in

some countries for defining the patient referral path. Therefore, we also focussed

on the added value of HistoScanning for the patients with intermediate RMI values

(those for which RMI has difficulties deciding). A sequential test, applying

HistoScanning only for patients in an RMI ‘grey-zone’, was developed and accuracy

results of this test were very encouraging. The use of HistoScanning as a second

level test for patients in the RMI grey-zone can thus be envisaged in clinical practise

(aim B).

In conclusion, differentiating between malignant and benign ovarian masses has

been studied intensively by researchers over the past decades. A large number of

different variables and parameters characterizing ovarian masses have been
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investigated and combined. We believe that the ovarian HistoScanning algorithms

bring different information about the ovarian masses that can assist and improve

the existing models for differential diagnosis.
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OVARIAN SONOHISTOLOGY:
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OUTLINE

Ovarian cancer is one of the leading causes of death from gynaecological

malignancies.
3

Early diagnosis of ovarian cancer is the key for improving outcomes

for the disease.

Medical imaging techniques have revolutionised medicine during the last decades.

Ultrasound (US) in particular gives access to vital data in a non-invasive way and is

effective for imaging soft tissues of the body. Compared to other medical imaging

modalities, US has the following positive attributes:

 US is a real-time, easy operation medical imaging technique

 US has a non-invasive and radiation free nature

 US is relatively low-priced,

Hence US has become widely used as a diagnostic technique in general clinical

practice.

In gynaecology, US is one of the most important and primary diagnostic tools. Its

use continues to increase and it is now an essential part of the diagnostic

procedure in examining the female pelvis. Indeed, the use of US morphology to

characterize adnexal masses and thus diagnose ovarian cancer is well established.
4

When an US image is assessed on a macroscopic scale, large entities can be

distinguished in soft tissues. On a smaller scale, it is seen that each such entity has

a very detailed granular structure, random in nature and variously described by the

terms texture or speckle. This is explained by the fact that an US image is the result

of a rather complicated set of physical phenomena, namely, the insonification and

resulting absorption, reflection, and coherent scattering from a tissue medium of

ultrasonic pressure waves, and the electronic detection of the backscattered or

echo pulses for display as an image.

The macroscopic entities as well as their speckle patterns are important when

designing methods for automatically analysing and deriving information from US-

data.
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We will describe the use of statistical models that characterize US-data from

speckle areas. In this work, we apply these statistical models for classifying ovarian

tissues and more specifically for detecting ovarian cancer.

Part II is organized as follows: Chapter 1 gives a more detailed introduction to US

imaging and the various statistical models that will be analysed in this manuscript.

In chapter 2, detailed research aims are described. Chapter 3 concerns the

description of the data, the patients and the methods used in this work. In chapter

4 the results of our work are presented and finally chapter 5 concludes and

discusses the results and some future perspectives are introduced.
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CHAPTER 1: BACKGROUND

The necessary definitions and notations for this research work are described in this

chapter: Section 1 concerns the US device and the basic (physical) principals of

ultrasonic imaging. In section 2 different notations used for dealing with US signals

are introduced. Finally section 3 discusses the use of statistics for US data and

introduces different statistical models derived for US data.

1. ULTRASONIC IMAGING

1.1. THE ULTRASOUND DEVICE

Basically, a medical US device consists of three main parts:

1) The transducer or probe that emits ultrasound waves into the medium and

also receives backscattered waves.

2) The scanner, to which the probe is connected, that handles and processes

all the data from the probe.

3) The screen where the processed data is displayed as an image, to be

analyzed by the physician.
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FIGURE 14: EXAMPLES OF ULTRASOUND DEVICES

1.2. THE RADIOFREQUENCY SIGNAL

In this section the basic functionality of the transducer is introduced as well as the

definition of radiofrequency signals.

1.2.1. PIEZOELECTRIC CRYSTALS IN THE TRANSDUCER

A piezoelectric crystal is a crystal that generates a mechanical force resulting from

an applied electrical field or, the other way round, that generates an electrical

charge in response to an applied mechanical force. These piezoelectric crystals

form the basis of the emitting and receiving of US-waves in the transducer of an US

device. A transducer presents with an array of crystals that can be linear or curved

but always contains of a certain number of individual crystals.

1.2.2. THE RADIOFREQUENCY SIGNAL DESCRIPTION
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In US, the radiofrequency (RF) signal is the ‘raw’, unprocessed signal that is

produced by the US transducer. In theory it is the electrical signal produced by the

piezoelectric crystals in response to the US pulses. In practise however, the RF

signal is the signal that is received after (what manufacturers refer to as) the beam

former, which combines the signals of the individual crystals in a meaningful way. A

thorough explanation about beamforming and about the acquisition and

processing of RF data by the US device is beyond the scope of this work, however,

more details can be found in other manuscripts.
113

1.3. PHYSICAL BASICS OF ULTRASOUND IMAGING

1.3.1. ULTRASOUND WAVES

US waves are longitudinal pressure waves that propagate through plastic media like

e.g. tissues. The medium/tissue particles are compressed (compression areas) and

released (rarefaction areas) in an alternating way and this particle movement is

characterized by a sinusoidal wave as shown in figure 15. The propagation speed

( c ) depends on the medium. The wave frequency is given by the number of cycles

in one unit of time and the wavelength ( ) is the minimal distance between 2

maxima with the same pressure (see also figure 15).
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FIGURE 15: SOUND WAVE

© Atlantic Interactive

1.3.2. ULTRASOUND REFLECTION AND IMAGING

The tissue resists to the US-wave propagation and this resistance can be

characterized by the acoustic impedance ( Z c , where c is the speed of sound

and  the medium density). When a difference in acoustic impedance is

encountered (interface), part of the energy of the US-wave will be reflected and

part will be transmitted. These reflections or backscattering form the basis of US

imaging.

Traditionally, the reflections are split into 3 categories:

1) Specular reflections: originate from interfaces between large (compared to

the wavelength) homogeneous structures

2) Diffuse scattering (shortly scattering): The dimensions of the interface are

smaller than the wavelength. The interface is called a scatterer and it will

reflect the incoming waves in all directions.

3) Diffractive scattering: Occurs when the interface size is in between the 2

extremes above
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In general, soft tissue is modelled as a collection of small scatterers. The signal

coming from this tissue is therefore seen as the sum of many small reflections.

2. TERMINOLOGY AND REPRESENTATION OF SIGNALS

A signal is a physical representation of information that is often a function of time

and can be represented by a known model, e.g. the sinusoidal model.

This section lists different notational representations of sinusoidal signals in

general. Then notations are given for signals received from scatterer areas. Finally,

the notion of envelope of an US signal is introduced. The envelope of the signal is

the random variable for which the statistical models were developed.

2.1. PHASOR NOTATION

A sinusoidal signal is represented by the following formula:

( ) cos(2 )  s t A t , where ,A and  are the amplitude, the frequency

and the phase of the signal, respectively.

Often, it is preferred to consider the sinusoidal signal alternatively as the projection

of the following complex signal:

cos(2 ) sin(2 )     A t iA t

Euler’s notation is then used and we write: ( ) s t (2 ) i tAe without loss of

generality.

Similarly, the phasor notation
114

of the sinusoidal signal is used, which is noted by:
iAe 

, enabling us to add and multiply (for addition and rotation) in an easy way

signals of this kind by using complex number arithmetic.
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2.2. SCATTERER SIGNAL AS PHASOR SUM

2.2.1. RESOLUTION CELL

The area being imaged by an US scanning system can be divided into small volumes

or cells. If two structures are so small that they will fit into the same cell, they will

not be resolved by the US scanning system. These cells are resolution cells, with

sometimes complex shapes but always described by three dimensions: an axial

length, l, a lateral width, x, and a slice thickness, t (figure 16). The scatterers for

example, are details that are small enough to fit entirely in a resolution cell.

FIGURE 16: RESOLUTION CELL

Image taken from the handbook (pp. 2) by Bates et al.115

The shaded area represents one single resolution cell for the scanning system. Note that the 3

dimensions of the resolution cell are values in each direction at the position of the specific cell.

Elsewhere, these values may be different.

2.2.2. PHASOR SUM

In scattering conditions, all individual scatterers retransmit the US energy into all

directions. The resulting reflection is determined by the sum over all individual

scatterers:
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( )

1

R 



    n

N
i i

n
n

S e e I iQ

Where N is the number of scatterers in the resolution cell, n is the amplitude of

the n
th

scatterer and n the phase of the n
th

scatterer.

2.3. ENVELOPE DETECTION

Envelope detection or also envelope extraction is performed to find the more

global behaviour of the US pulse.
113

The envelope of an RF signal is obtained from

the complex representation of the real signal by taking the original signal as real

part and its Hilbert transform
116

as imaginary part. The real and imaginary

components of these complex numbers are often referred to as I (in phase) and Q

(quadrature) components. The magnitude of the resulting complex signal is then

used as detected signal for imaging (envelope).

In the line of the notation stated above, the envelope equals:

2 2 R I Q

Similarly to the envelope, the instantaneous phase of the signal is given by:

arctan
 

  
 

Q
Ph

I
.

Additional low pass filtering with decimation or interpolation may be carried out on

processed signal to bring it in line with display properties. By log compressing the

envelope signaI a linear display range is obtained. The resulting data are also called

gray level data which take integer values between 0 and 255.
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3. STATISTICAL MODELS FOR THE ULTRASONIC BACKSCATTER

3.1. RESEARCH MOTIVATION

The scatterers present in tissue will reflect the signals in a multidirectional way and

this leads to interference (constructive or destructive) between the different

backscattered waves. In the image, the impact of this shows up as alternating

regions of high and low intensity (i.e. high and low envelope values). This effect is

called speckle. Figure 17 shows the typical granular structure of the speckle.

FIGURE 17: 2D-FRAME OF AN US-IMAGE OF AN OVARY

Moreover, the spatial emplacement of the scatters inside one resolution cell is in

general and for normal circumstances completely random. The resulting signal can

thus be seen as a random variable. For this reason it is interesting to study the

statistical distributions of US signals and investigate whether different distributions

will characterize different tissue types. With respect to figure 17, this implies that

statistical distributions were derived for patches of envelope data coming for an

US-image as the one given by the red square and its zoom that shows clearly the

speckle pattern.
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Over the years, researchers have investigated probability distribution models that

characterize the envelope of the backscattered echo. The earlier work by Wagner

et al.
117

firstly presented a general description of the statistics of speckle patterns in

ultrasound backscatter. Other researchers that were focussed on tissue

characterization took interest in these results because the parameters of these

probability distribution models could be a source of information regarding the

underlying characteristics of the tissue.
114,118-121

Applications of the usage of these

parameters for tissue characterization can e.g. be found in breast cancer

diagnosis
119,122,123

and prostate cancer diagnosis.
74

In this work, we would like to describe the use of those parameter estimations for

characterizing ovarian tissue. Additionally, the ‘closeness’ of the empirical data to

these theoretical distributions was also investigated by means of a goodness-of-fit

statistic.

3.2. POSSIBLE SCATTERING CONDITIONS FOR THE RESOLUTION CELL

In general, three different scattering conditions (see also figure 18) for soft tissues

are distinguished:
124

a) A large number of scatterers randomly aligned within the range cell and
no correlation between the scatterers (Rayleigh situation)

b) The scattering region contains subresolvable periodic alignment of
scatterers in addition to a collection of randomly located scatterers (Post-
Rayleigh situation)

c) Very few scatterers within in the range cell (Pre-Rayleigh Situation)
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FIGURE 18: SCATTERING CONDITIONS (IMAGE TAKEN FROM SHANKAR ET AL.124)

As introduced, several statistical distribution models for the envelope of the

speckle have been developed in the literature for the case of US data from soft

tissues. They were derived in a theoretical way and sometimes specially adapted to

the different scattering conditions stated above. In the following sections these

distribution models will be introduced in detail.

3.3. STATISTICAL MODELS FOR THE ENVELOPE

In the following sections, five different statistical models are fully described and the

Signal to Noise Ratio (SNR) of the envelope is also linked to the scattering

conditions in figure 18.

3.3.1. THE RAYLEIGH MODEL

When the real, I , and imaginary, Q , components of the signal follow both a

Gaussian distribution with zero mean and equal variances ( ~ (0, )N ), the

envelope ( R ) will be Rayleigh distributed.
114,125

The Rayleigh model holds when

the following conditions are satisfied:
125

- A large number of scatterers in the resolution cell (generally more than 10)

in order to make use of the Central Limit Theorem

- Randomly located scatterers ( 'i s are uniformly distributed between

 and  )
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- Small scatterer spacings compared to the wavelength

The Rayleigh model has been defined for the ‘ideal’ scatterer condition, presented

in figure 18 (a), also referred to as the Rayleigh situation. The probability

distribution function (pdf) for the Rayleigh model equals:

2

22

2
( )

r

re
f r





 
  
 

 for 0; 0r  

Where r stands for the envelope data and  for the scale parameter of the

Rayleigh distribution.

3.3.2 THE RICIAN MODEL

If, in addition to the conditions leading to the Rayleigh situation, the tissue contains

a non-random alignment of periodically spaced scatterers (see figure 18 (b)), a

coherent component (strong signal) is added to the signal. Under this additional

condition the signal becomes:

   
1 2

( ) ( )

1 1

  
 

      n m

N N
i i

n m
n m

S e e I I i Q Q ,

Where 2N represents the number of scatterers that give rise to the coherent

component. It can be shown
124

that if the spacing between the scatterers is
2k

 ,

for 0,1, 2, k , then m will equal 


, where 2
4

k
  .

In the particular case of 0,1k , or 2 , the envelope of the speckle noise will be

Rician distributed with the following pdf:
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r vr
f r e I

 

  
  
   

  
 

for 0; 0, 0r v    ,

where 0 (.)I is the modified Bessel function of the first kind of order 0. In the

Rician or Rice pdf, v represents the amplitude or strength of the coherent

component. It can be seen that the smaller v , the more the Rician pdf approaches

the Rayleigh distribution.

The ‘Rician-ness’ will depend on the spacing of the periodically located scatterers.

If, as above, this spacing equals
2

 or
4

 the Rician pdf is applicable. On the

other hand, for spacings of
2


k (with 3k ) , the real and imaginary parts of the

signals will have different variances but equal means leading to the generalized

Rician situation.
124

A common aspect to both the Rician and the generalized Rician

situation is the fact that the phase of the backscattered echo will no longer be

independent of the envelope and will not be uniform between  and  .

3.3.3. THE SIGNAL TO NOISE RATIO

The experimental signal to noise ratio (SNR) of the envelope was linked
125,126

to the

tissue conditions presented in figure 18. The SNR of the envelope is given by:

 
 

E
( )

Var


R
SNR R

R
.

The models of Rayleigh and Rice require a large number of scatterers for the

central limit theorem to hold. It has been shown
125,126

that the experimental SNR of

the envelope signal decreases when the scatterer density falls below 10 scatterers

per resolution cell. Hence, the tissue conditions of figure 18 can also be classified

with respect to the SNR:

a) Pre-Rayleigh situation when 0 < SNR < 1.91
b) Rayleigh situation when SNR 1.91
c) Post-Rayleigh situation when SNR > 1.91



Chapter 1 Part II

101

3.3.4. THE K MODEL

The K-model has been introduced by Jakeman and Pusey
127

and it adapts well to

the situation of a small ‘effective’ number of scatterers case (figure 18 (c)). It arises

when the number of scatterers follows a negative binomial distribution and it is

also applicable for the envelope signal when this number is low (pre-Rayleigh

situation)
114

. The pdf of the K-distribution is given by:

1

1( ) 2 ( )
2 ( )

a a

a

r b
f r K br

a





 
  

 
for 0; , 0r a b  ,

where (.)K is the modified Bessel function of second kind and order  and a

and b are the shape and scale parameters respectively. Moreover, the shape

parameter a should be seen as the ‘effective’ number of scatterers (a percentage

of the real number) contributing to the signal in the range cell
114

through the

following relation: (1 ) a N , where  1,0   stands for the global

variation in scatterers’ cross-sections and N is the total number of scatterers.

When the different scatterers’ cross-sections are of the same magnitude ( 0  )

or when the number of scatterers becomes large ( N ), the K distribution

approaches the Rayleigh distribution. On the other hand when there is a great

difference in scatterers’ cross-sections ( 1   ) the K distribution becomes more

and more pre-Rayleigh. The K distribution therefore encompasses the Rayleigh as

well as the pre-Rayleigh situation and could therefore be seen as an improvement

of the Rayleigh distribution. However, the estimation of its parameters can be very

complex and becomes less stable when the underlying scatterers’ condition

approaches the Rayleigh regime.
114

3.3.5. THE WEIBULL MODEL

There are only few arguments in the literature for using this distribution in

modelling the envelope signal of US data.
128

But the relation between the SNR and

a parameter of the Weibull distribution shows that it can model a wide range of

tissue conditions. The pdf of the Weibull distribution is:



Chapter 1 Part II

102

1
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a
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  
 
  

  
 

for 0; , 0r a b  ,

where a is the shape and b the scale parameter.

When assessing the Weibull distribution for the envelope, it can be shown that the

SNR increases with the parameter a through
128

2

1
1

2 1
1 1

a
SNR

a a

 
  
 

   
      
   

Figure 19 depicts this relation for 0 3 a : When 0 2 a , the SNR will be

smaller than 1.91 (Pre-Rayleigh). Also, 2a  corresponds to a SNR of 1.91 (the red

dot on figure 19) representing the Rayleigh situation, and 2a  yields an SNR >

1.91 (post-Rayleigh). This relation evidences of an indirect link to the 3 scattering

conditions. That is why we were also interested in testing the Weibull distribution

on our data.

FIGURE 19: THE THEORETICAL RELATION BETWEEN WEIBULL a AND THE SNR
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3.3.6. THE NAKAGAMI MODEL

The idea of using the Nakagami distribution for modelling the US backscatter was

introduced by Shankar et al.
122,124

Modelling the envelope with a Nakagami

distribution requires to estimate two parameters m and  (the shape and scale

parameter respectively) in the following pdf:

2

(2 1)2
( )

( )

mrm
m

m

m
f r r e

m

 
    

 
for 0; , 0r m  

The parameter m conveys information about the envelope statistics, as does the

parameter a of the Weibull distribution. Values of m in  0,1 correspond to the

pre-Rayleigh regime, 1m corresponds to the Rayleigh distribution, and 1m
leads to the post-Rayleigh regime. The latter statement has also been refined by

Shankar et al
124

: When there is a periodically located structure with
2

 or
4



spacings, m will be greater than 1 and the Rician distribution will be applicable.

However, if the spacing is
2


k (with 3k ), the generalized Rician will fit, and

m will be in  0.5;1 , corresponding also to a post-Rayleigh situation. To allow a

proper separation between the latter situation and the pre-Rayleigh situation

because m is in  0.5;1 for both, the phase data are used, keeping in mind that in

the post-Rayleigh situation, the phases are not uniformly distributed.
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CHAPTER 2: AIMS AND OBJECTIVES

The Rayleigh distribution characterizes ultrasound scattering in a ‘normal’ situation

(see also figure 18 (a)). We have seen that this implies a large number of

independently distributed scatterers in a resolution cell with random locations.

Normal ovarian tissue could therefore be Rayleigh distributed. Nevertheless, if the

‘real’ number of scatterers is too low (as in figure 18 (c)), the theorem leading to

Rayleigh statistics breaks down.
129

Under these circumstances, the K-distribution

might be an alternative, meaning that normal ovarian tissue (with a low number of

scatterers) can also be K-distributed without constraints on values for the

parameters a and b .

In case of tumour growth in the tissue the situation of figure 18 (b) seems plausible.

Thus the Rician distribution could potentially be characteristic of tumour growth.

But can its parameters help us distinguishing benign from malignant tumours?

On the other hand, when abnormalities arise in specific regions of the tissue, it is

more likely that these regions will have widely varying scatterers’ cross-sections

(this means that 1   ). This would induce a decrease in the number of

‘effective’ scatterers ( (1 )N ) and so the K-model holds, albeit for abnormal

tissue in this case.

Based on these findings, we could state the following research hypotheses:

h1) Normal ovarian tissue follows the Rayleigh distribution

h2) Normal and abnormal ovarian tissue can both be K-distributed

h3) Abnormal ovarian tissue is more likely to be Rician distributed

Also the following research questions could be stated:

q1) Are the parameters of the K distribution different for normal and

abnormal ovarian tissues?

q2) Can the parameters of the Rician distribution differentiate between benign

and malignant regions?

The Weibull and Nakagami models were shown to be applicable to the 3 situations

(Rayleigh, post- and pre-Rayleigh) of scattering conditions. Therefore, both normal
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and abnormal tissue types can be Weibull as well as Nakagami distributed. Using

the previously described relations between the other 3 distributions and the

Weibull and Nakagami parameters, respectively, the abovementioned hypotheses

and questions could be translated into the statements that can be found in table 17

and table 18.

TABLE 17: RESEARCH HYPOTHESES REPHRASED FOR THE WEIBULL AND NAKAGAMI MODELS

Hyp. Weibull Nakagami

h1 Normal ovarian tissue a ~2 m ~1

h2 Normal and abnormal ovarian tissue a <2 m <1

h3 Abnormal ovarian tissue a >2
m >1 or in ]0.5;1[

AND non-uniformly
distributed phases

TABLE 18: RESEARCH QUESTIONS REPHRASED FOR THE WEIBULL AND NAKAGAMI MODELS

Ques. Weibull Nakagami

q1 Are the a ’s that are < 2 different

for normal and abnormal ovarian
tissue?

Are the m ’s that are <1 different

for normal and abnormal ovarian
tissue?

q2 Can a ’s that are >2 differentiate

between benign and malignant?

Can m ’s that are >1, or in ]0.5;1[

together with phase information,

differentiate between benign and

malignant?
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CHAPTER 3: PATIENTS AND METHODS

1. PATIENTS, ULTRASONOGRAPHY AND RF-DATA

1.1. CLINICAL SETTING AND PATIENTS

We have used data from an ongoing translational-like study that has the purpose of

developing Ovarian HistoScanning on RF-data. The study takes place in Oslo,

Norway, at the Norwegian Radium Hospital. Eligibility criteria are: women ≥ 18

years with Ultrasound scans performed according to validated guidelines and

scheduled for the surgical removal of one or two ovaries due to (a) a suspicion of

cancer (b) prophylactic oophorectomy either alone or as part of hysterectomy for a

uterine pathology. Exclusion criteria are: unsuitable or unwilling to enter the study

or to proceed to surgical investigation. The study is managed according to the

guidelines provided in the declaration of Helsinki and the EU Directive on Good

Clinical Practice. The study protocol was approved by the local ethical committee.

An informed consent was obtained from all patients that have participated so far.

The main objective of this ongoing study is for the Advanced Medical Diagnostics

(AMD) research and development team to develop algorithms and classifiers for

the purpose of detecting malignant ovarian tissue areas on the RF-data. This study

has started in July 2008 and will end as soon as 90 eligible patients with good

quality data are included.

1.2. ULTRASONOGRAPHY

All eligible women underwent Transvaginal sonography (TVS) shortly before

surgery by an expert having more than 10 years of experience. A Logiq9 expert

scanner from General Electric (GE) equipped with a 4DE7C, 3.3-10 MHz Real Time

3D/4D intracavity convex-volume probe was used. For the purpose of this study,

the GE Logiq9 scanner used at the study centre was enabled to allow the user to
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save the RF voxel data, as well as the usual gray-scale voxel data. These RF-data

were used for this work.

The examination involved conventional 2D-TVS for identifying ovaries and/or

adnexal masses followed by a standardised 3D-TVS procedure to capture the 3D

image of all structures and to save the RF-data. Often, several 3D acquisitions had

to be made to cover a mass because the RF-data were too heavy for the machine to

store in one acquisition. Every 3D RF-acquisition was done according to validated

guidelines and by fixing the US machine’s preset to a predefined one. All these US-

data was taken to the AMD-offices at Waterloo together with the completed CRFs.

1.3. RF-DATA WORK-UP

In this work, Matlab version R2008a was used (The Math Works Inc., Natick, MA)

and PRSD studio version 2.2.4 (PR Sys Design, Delft, The Netherlands).

For 17 patients for whom we had RF-data, completed pathology reports and

completed CRFs in the (still growing) database, a total of 63 scans were taken

(sometimes up to 9 scans were taken for one ovary for the reasons mentioned

above). It was decided to use one scan per ovary for this work (a total of N=18

scans). The pathology of these 18 ovaries (one patient had left and right ovary in

the database) was as follows: 5 normal, 5 benign, 3 borderline and 5 malignant

ovaries.

Subsequently, RF-data of these 18 scans have been loaded into the HistoScanning

software application. This application depicts 3 different views of the full 3D-

volume and thus allows marking a volume of interest (VOI) on the 3D-data ‘box’.

For each scan (ovary) in our data base, VOIs that typically characterize malignant,

benign and normal ovaries were marked together with an independent expert

gynaecologist. Then, the points (voxels) that belong to these VOI were exported to

a file that Matlab could read for further analysis. In (every subsequent frame of)

these VOI, we selected areas of 11 by 11 pixels, also referred to as units. Sixteen

features were estimated for each of these units: the Rayleigh-  , the Rician- v

and  , the K- a and b , the Weibull- a and b , the Nakagami m and  , 5
2 -

statistics assessing the fit to these 5 distributions (envelope data) and 1
2

assessing the fit to the uniform distribution (phase data) and finally the SNR.
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In the next section, more computational details on all these 16 estimations (also

called features) are given.

2. CALCULATION OF THE DIFFERENT FEATURES

2.1. ESTIMATION OF THE PARAMETERS OF THE DIFFERENT STATISTICAL

DISTRIBUTIONS

The parameters of the Rayleigh and Weibull distributions have been estimated by

the normal Maximum Likelihood (MLE) methods (‘raylfit’ and ‘weibfit’ respectively

in Matlab) available in the Matlab stats toolbox (The Math Works Inc., Natick, MA).

For the other distributions, the MLE procedure could be implemented as an

optimization problem using the Nelder-Mead simplex method available in the

Matlab optimization toolbox. This method requires an initial guess of the solution

and then it starts looking for a maximum of the log-likelihood function. On our

data, this optimization method often ran into problems and significantly slowed

down the calculation speed; it was therefore not done and only the initial guesses

were used. In order to obtain an initial guess for the different parameters of the

Rician, K and Nakagami distributions, the moments estimators based on the second

and fourth order moments of the data have been used. The initial guesses are

given by:
128
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and  2
ini E r  for the Nakagami distribution.

Intuitively it can easily be seen that the Rician and K distribution encounter for two

different scattering conditions. So when the data are pre-Rayleigh distributed (K-

distributed), the estimation of inis is a complex number. On the other hand, if the

data are post-Rayleigh (Rician), inia is negative so it never occurs that both of them

are calculated on the same empirical data.

2.2. GOODNESS OF FIT STATISTICS

In the previous section, estimation methods for the parameters of Rayleigh, Rician,

K, Weibull, and Nakagami distributions were described. It has been shown how

these different statistical distribution models apply to different tissue conditions

(see figure 18). The goodness-of-fit of these probability models on our (empirical)

US-data was assessed using the standard
2 -statistic

130
for goodness-of-fit.

Additionally, as explained above, the uniformity of the phase characterizes whether

the data adheres to the post-Rayleigh situation. So, the
2 -statistic was also used

to assess the goodness-of-fit of the uniform distribution  ~ ( , ) U on the

phase data.

We have implemented a Matlab algorithm that calculates the
2 -statistics using

20 bins for the 5 above-mentioned distributions (envelope data) and for the

uniform distribution (phase data).
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CHAPTER 4: RESULTS

1. PARAMETER ESTIMATIONS AND GOODNESS OF FIT STATISTICS

1.1. RAYLEIGH

TABLE 19: MEAN AND VARIANCE OF THE ESTIMATIONS OF RAYLEIGH  AND OF THE
2
ra

OF FIT TO

THE RAYLEIGH DISTRIBUTION

 nu* Mean Variance

Normal 48261 5.07 0.96

Benign 167469 4.27 2.22

Borderline Cancer 251578 4.63 1.10

Cancer 207901 5.21 0.92

2
ra nu* Mean Variance

Normal 48261 3.40 1.17

Benign 167469 3.26 1.13

Borderline Cancer 251578 3.10 0.96

Cancer 207901 3.10 0.81

*nu = number of units
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FIGURE 20: DISTRIBUTION OF THE ESTIMATIONS OF RAYLEIGH AND OF THE
2
ra
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Right panel: The black line represents the critical value of a
2 -distribution with 18 degrees of

freedom (20 bins – 1 parameter -1). This value corresponds to about the 75th percentile for all 4

pathology groups.

Findings:

- The Rayleigh  estimations were on average the highest for units coming

from cancerous tissue (see also table 19 and figure 20)

- The units from benign tissue had on average the lowest values for 

- For about 75% of all units a Rayleigh distribution could not be rejected,

regardless of the pathology group they belong to.

1.2. RICIAN

For a total of 33% of all units the Rician parameters were calculated (the other 67%

had K parameters). The per-pathology percentages can be found in table 20.
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TABLE 20: MEAN AND VARIANCE OF THE ESTIMATIONS OF RICIAN v AND OF THE
2
ri

OF FIT TO THE

RICIAN DISTRIBUTION

v nu* (n%) Mean Variance

Normal 48261 (25%) 4.70 0.87

Benign 167469 (30%) 3.45 2.19

Borderline Cancer 251578 (37%) 4.14 1.03

Cancer 207901 (33%) 4.91 0.86

2
ri nu* (n%) Mean Variance

Normal 48261 (25%) 2.67 0.22

Benign 167469 (30%) 2.64 0.33

Borderline Cancer 251578 (37%) 2.59 0.27

Cancer 207901 (33%) 2.63 0.24

*nu = number of units

FIGURE 21: DISTRIBUTION OF THE ESTIMATIONS OF RICIAN v AND OF THE
2
ri
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Left panel: The black line represents the value of v that corresponds to 2 on a regular scale. When v
is larger than 2 the Rician distribution starts to deviate from the Rayleigh a lot

Right panel: The black line represents the critical value of a
2

 -distribution with 17 degrees of freedom

(20 bins – 2 parameter -1). This value corresponds to about the 95th percentile for all 4 pathology

groups.



Chapter 4 Part II

114

Findings:

- The Rician v parameter of the envelopes had on average higher values for

units coming from cancerous tissue (see also table 20 and figure 21)

- The units representing benign tissue, on the other hand, presented with

on average low values for v

- For the majority of all units with parameter estimations for the Rician

distribution (33%), the fit of their data to the Rician distribution couldn’t

be rejected (
2ri ), regardless of the pathology they belong to (figure 21).

- These 33% of units showed similar values for
2ra as they did for

2ri . This

implies that for the majority of these units, a Rayleigh distribution could

not be rejected either. Whether these units are thus really of a ‘post-

Rayleigh’ regime is not evident.

1.3. K

TABLE 21: MEAN AND VARIANCE OF THE ESTIMATIONS OF K a AND OF THE
2
K

OF FIT TO THE K

DISTRIBUTION

a nu* (n%) Mean Variance

Normal 48261 (75%) 1.52 1.16

Benign 167469 (70%) 1.59 1.34

Borderline Cancer 251578 (63%) 1.71 1.40

Cancer 207901 (67%) 1.72 1.29

2
K nu* (n%) Mean Variance

Normal 48261 (75%) 3.02 0.98

Benign 167469 (70%) 2.94 1.47

Borderline Cancer 251578 (63%) 2.86 1.41

Cancer 207901 (67%) 2.87 1.27

*nu = number of units
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FIGURE 22: DISTRIBUTION OF THE ESTIMATIONS OF K a AND OF THE
2
K
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Left panel: The black/blue line represents the value of a that corresponds to 10/20 on a regular scale.

The 88th percentile corresponds to that blue line ( a =20).

Right panel: The black line represents the critical value of a
2 -distribution with 17 degrees of

freedom (20 bins – 2 parameter -1). This value corresponds to about the 80th percentile for all 4

pathology groups.

Findings:

- The K- a parameter had on average higher values for units coming from

borderline and cancerous tissue (see also table 21 and figure 22)

compared to the benign and normal units

- The effective number of scatterers, as represented by a , was indeed low

(≤20) for the majority of these 67% of units with K parameters.

- For the majority of units of all 4 pathologies, a fit to the K-distribution

could not be rejected.

- Nearly half of these 67% of all units, had values of
2ra that were higher

than the critical value meaning that for them, a Rayleigh distribution could

be rejected. The pre-Rayleigh regime is thus applicable for these units and

K is a good model for them.
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1.4. WEIBULL

TABLE 22: MEAN AND VARIANCE OF THE ESTIMATIONS OF WEIBULL a AND OF THE
2
Wei

OF FIT TO

THE WEIBULL DISTRIBUTION

a nu* Mean Variance

Normal 48261 5.31 0.90

Benign 167469 4.51 2.12

Borderline Cancer 251578 4.91 1.02

Cancer 207901 5.49 0.92

2
Wei nu* Mean Variance

Normal 48261 2.73 0.24

Benign 167469 2.68 0.27

Borderline Cancer 251578 2.61 0.24

Cancer 207901 2.63 0.22

*nu = number of units

FIGURE 23: DISTRIBUTION OF THE ESTIMATIONS OF WEIBULL a AND OF THE
2
Wei
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Right panel: The black line represents the critical value of a
2 -distribution with 17 degrees of

freedom (20 bins – 2 parameter -1). This value corresponds to about the 95th percentile for all 4

pathology groups.
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Findings :

- The Weibull a estimations behave very similar to the estimations of the

Rayleigh  in terms of mean values (table 22) as well as for the shape of

their distributions (figure 23)

1.5. NAKAGAMI

TABLE 23: MEAN AND VARIANCE OF THE ESTIMATIONS OF NAKAGAMI m AND OF THE
2
Nak

OF FIT

TO THE NAKAGAMI DISTRIBUTION

m nu* Mean Variance

Normal 48261 0.53 0.054

Benign 167469 0.55 0.055

Borderline Cancer 251578 0.59 0.057

Cancer 207901 0.59 0.052

2
Nak nu* Mean Variance

Normal 48261 3.11 0.49

Benign 167469 3.04 0.54

Borderline Cancer 251578 2.97 0.50

Cancer 207901 2.98 0.45

*nu = number of units
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FIGURE 24: DISTRIBUTION OF THE ESTIMATIONS OF NAKAGAMI m AND OF THE
2
Nak
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Left panel: In between the 2 black lines lie all the m values in ]0.5; 1[ on a regular scale.

Right panel: The black line represents the critical value of a
2 -distribution with 17 degrees of

freedom (20 bins – 2 parameter -1). This value corresponds to about the 75th percentile for all 4

pathology groups.
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Findings :

- The Nakagami m parameter had on average higher values for borderline

and cancerous tissue (figure 24 and table 23) and lower values for benign

and normal.

- All units for which the Nakagami m parameter is < 1 have estimations for

K and not for Rician and the reverse is true for units with m ≥ 1

- For the units with m in ]0.5;1[ (a total of about 168000), the goodness of

fit of the phase data to the uniform distribution was assessed and for

nearly half of them the uniform distribution was rejected for the phase

data. However, this
2 of goodness of fit for the phase data did not show

any differentiating capacities.
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CHAPTER 5: CONCLUSIONS AND DISCUSSION

1. CONCLUSIONS

Statistical distribution models were derived for the case of US data from scatterer-

areas. Researchers have tried to give those models a sensible meaning according to

the possible scattering conditions (see also figure 18) for soft tissues and have

distinguished 3 regimes: Rayleigh, post and pre-Rayleigh. That the 5 distributions,

introduced in this work, apply to one of the regimes for US data has been shown by

computer simulations and by using phantom data.
118,124,131

In this work we have

investigated whether they apply to US data (RF) coming from ovarian scans. In

addition, the usefulness of these distributions to differentiate between different

ovarian tissue types was also assessed. We have formulated a number of research

hypothesis and questions in chapter 2 and have performed a number of analyses in

chapter 4 to gain insight into the situation of US data of ovarian tissues and to

investigate the posed hypotheses:

h1) The majority (about 75%) of normal ovarian units indeed follow the

Rayleigh distribution. However, the same is true for the 3 other

pathologies. Moreover, the
2 - statistic that characterizes the goodness-

of-fit to the Rayleigh distribution is not distributed differently for the

normal and abnormal pathologies (figure 20). The Rayleigh  parameter,

however, is on average the lowest for units representing benign tissue.

h2) The K-distribution was applicable on 67% of all units. It was indeed a

representative model for normal as well as abnormal ovarian tissue.

h3) On our data, we did not see a tendency of finding the Rician distribution

more often for abnormal ovarian tissue.
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The following questions were also answered:

q1) Units representing abnormal ovarian tissue have on average higher values

for the parameter a of the K-distribution. This is not true though for

benign units and in general the distributions of a for the 4 pathology

groups highly overlap.

q2) On these data, the Rician v clearly shows the capacity to differentiate

between benign and malignant regions.

Alternatively, these hypotheses and questions were rephrased for the more

general Weibull and Nakagami models. The results in chapter 4 show the following:

h1) Weibull a values are not concentrated around 2, regardless of the

pathology. For the Nakagami m , values are concentrated around 1 and

normal units are slightly more likely to take values around 1 compared to

abnormal ones.

h2) Only very few units seem to take Weibull a ’s < 2. All units with Nakagami

m ’s < 1 were indeed also K-distributed thus confirming the link between

those 2 models. Also, one could find all 4 pathologies taking m values < 1.

h3) On our data, we did not see a tendency of finding more abnormal ovarian

regions with values for Weibull a > 2 but we did see a higher tendency of

Nakagami m > 1 in the abnormal regions. For the units that had m in

]0.5;1[ the distribution of the phase data didn’t help in differentiating

normal from abnormal.

q1) Only very few units seem to take Weibull a ’s < 2. Units representing

abnormal ovarian tissue have on average higher values for Nakagami m ’s

< 1.

q2) On these data, the Weibull a ’s > 2 clearly show the capacity to

differentiate between benign and malignant regions but Nakagami m ’s

that are >1 don’t. Analysing the distribution of the phase data for units

with m in ]0.5;1[ doesn’t add differentiating value.

From this work, it results that normal ovarian regions are not Rayleigh-distributed

and abnormal ovarian regions are not more likely to follow Rician-statistics.



Chapter 5 Part II

123

Nevertheless, there seems to be potential to use the parameter of the Rician

distribution to distinguish between certain benign and malignant regions. The

Weibull distribution fits ovarian data but it doesn’t ‘obey’ to the rules about its

parameters as stated by Raju et al.
128

In conclusion, this study supports the hypothesis that pre-Rayleigh statistics are

present in the case of ovarian tissues (at least for the imaging system used for this

work). Indeed, the K-model was representative of normal as well as abnormal data,

wherever it was applicable (here this was on 67% of the data). Moreover, the

parameters of the K-distribution might show capacity to find certain malignant

ovarian regions. Also, the more general Nakagami that is applicable in the Rayleigh,

post- and pre-Rayleigh regimes, is a suitable model for ovarian data. In a certain

region the m -parameter has some potential to do tissue classification.

2. DISCUSSION

Raju and Srinivasan
128

have studied the Statistics of the envelope of Ultrasonic

backscatter from human skin tissue. The K and Weibull distributions fitted their

skin data best and they have shown that the parameters of the statistical

distributions could differentiate between skin tissue types. To our knowledge,

studies involving other tissues have rarely assessed and compared the use of

multiple distributions to their data. But still the parameters of these distributions

have been widely used to do tissue classification.
74,119,122,123

This work evaluated

which statistical regime was present in the case of backscatter from ovarian tissues

and which distributions modelled those data best. Additionally, it was shown how

parameters of these distributions could characterize certain ovarian tissue types.

The main difference between the results presented here and other tissue

characterization studies,
74,119,122,123

is the unit of analysis that was used to estimate

the parameters. In most other studies, a full region that represented the lesion in

question was used. In other words, for each scan, there was 1 estimated value for

each parameter. In our case, units of only 11 by 11 pixels were used, and so for

each scan there could be tens, hundreds or even thousands of units and just as

much parameter estimations. This was a deliberate choice, because our objective

was to classify tissues on a small scale.
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In part I of this manuscript, it was already discussed how difficult it is to mark a

volume of interest (VOI) in ovarian scans. Some of the units that belong to an

abnormal pathology class might in reality only lie on the border of the lesion or

even fully outside the lesion. This might explain the huge overlap in the histograms

of the different parameters and of the goodness-of-fit statistics.

In terms of the number of different patients, the sample size of this study was

rather moderate. But given the fact that scans were analysed at the level of small

units, we hope to be able to cover a wider range of possible morphological

situations present in ovarian tissue.

This work presents an evaluation of how statistical models can allow a

differentiation between ovarian tissue types. The next step would be to develop a

so-called tissue classifier. This classifier would be the result of a huge classification

exercise that would consist of finding the best statistical classification model based

on the best (sub)set of these parameters and/or other features that are of different

origin. Similar multi-parameter approaches have been used to do tissue

classification in breast
123,132

and prostate cancer,
74

often combining very large sets

of features of different origin. The overlap in the different histograms of the

statistical features analysed here (figure 20 to figure 24) is too important to

consider them alone.

We will give an illustrative example of how such a classifier would work: a simple

classifier has been developed based on the following 7 features: Rician v and  ,

the a and b of the K-distribution, Nakagami m and  and one extra feature of

another origin. The classifier was a simple mixture of 2 Gaussian models, trained to

distinguish between ‘non-cancer’ (normal and benign scans) and ‘cancer’

(borderline cancer and cancer scans) on 70% of our data. The remaining 30% of

data was used to assess the performance of this classifier. The ROC-curve on this

30% of data for the Gaussian mixture classifier is shown in figure 25. The operating

point that maximised the Youden Index presented a sensitivity of 68% and a

specificity of 62% or similarly, 32% error on the cancer class and 38% error on the

non-cancer class. Given that this classifier classifies units of a cancer or a non-

cancer region (and not an entire cancer versus non-cancer scan) and that a huge

overlap is therefore to be expected for the reasons explained above, this first

attempt is already very encouraging. For instance, an additional analysis that

extends this units-based classifier to a decision for each scan could improve

sensitivities and specificities a lot.
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FIGURE 25: ROC-CURVE FOR THE MIXTURE CLASSIFIER FOR CANCER/NON CANCER
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This figure was made in PRSD studio version 2.2.4 (PR Sys Design, Delft, The Netherlands). The ROC

curve is an empirical curve as described in Part I, chapter 3 and every cut-off point for which a sensitivity

and specificity is calculated is represented by a blue circle. As the continuous results of the classifier is

very dense, the resulting ROC curve is based on a high number of cut-off points which may give it a

smooth appearance.

Future research should focus on building a cancer versus non-cancer classifier for

RF-data of ovarian tissues. The Rician, K and Nakagami parameters are to be used

together with additional features of a different origin. Secondarily, a classifier that

attempts to distinguish between the 4 tissue types (normal, benign, borderline and

cancer) could also be envisaged. Finally, all developed classifiers should be tested

on independent patients for correct validation.

For the research presented in part II of this thesis, it was decided to focus on a

rather broad notion of pathology (normal, benign, borderline and cancer) and also

to use an entire region on the US-image (represented by a VOI) to be characteristic

of this notion. This was done because it was the most interesting choice with

respect to the aim of our work. One may wonder, however, whether these

statistical models and/or their parameters can differentiate between different

tissue types from a histological point of view? For example, classifying ‘units’

representing serous or mucinous histological tissue types. Would the 5 statistical

models that were introduced here, be more representative of one or the other?
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Would their parameters assist us in differentiating between such tissue types?

These questions represent interesting future perspectives.

Similarly, when a radiologist (or any other examiner) analyses an ovarian mass on

an US-image, he or she might be looking for specific features like the edges of the

mass, as having smooth or ruptured edges may mean the difference between being

a borderline cancer or a malignant cancer.
62

Picking up blood vessels can also be an

indicative feature of malignancy. The disorganisation of the tissue that is locally

caused by rupturing borders or vessel formation might be specifically modelled by

the Rician or K distribution? And this might only happen on the edges and not

inside the mass? As we are using units of analysis that are very small (11 by 11

pixels only), we might be picking such typical ‘edge’ phenomena up by these

statistical models or their parameters. To asses whether this happens in particular

around edges, the local analysis (units) would have to be extended to the

consecutive units by means of a 2D (or even 3D) surface analysis.

These latter future perspectives are nevertheless only feasible for ovarian cancer if

one can define a more ‘quantitative’ and detailed gold standard notion on the level

of the VOI. This means that instead of just defining a VOI representative of

malignant or benign tissue in general, a VOI would contain a more detailed spatial

information (e.g. where are the borders and how do they look like?), a more

detailed histological information (implying a very detailed pathology report),

correct measurements of the lesion and a sound way to map such details from

histopathology to the image. In such an ideal scenario, training a huge classification

scheme with as starting point a local analysis (level of the units) including these

statistical models and their parameters seems interesting.
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