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Some behaviors, ideas or technologies spread and become persistent in society, whereas others vanish. 
This paper analyzes the role of social influence in determining such distinct collective outcomes. Agents 
are assumed to acquire information from others through a certain sampling process that generates an 
influence network, and they use simple rules to decide whether to adopt or not depending on the observed 
sample. We characterize, as a function of the primitives of the model, the diffusion threshold (i.e., the 
spreading rate above which the adoption of the new behavior becomes persistent in the population) and 
the endemic state (i.e., the fraction of adopters in the stationary state of the dynamics). We find that the 
new behavior will easily spread in the population if there is a high correlation between how influential 
(visible) and how easily influenced an agent is, which is determined by the sampling process and the 
adoption rule. We also analyze how the density and variance of the out-degree distribution affect the 
diffusion threshold and the endemic state. 
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1 Introduction

The proliferation of internet-based communication and interactivity over the past decade

has led to new consumer patterns, innovative marketing approaches, and even uncon-

ventional ways of running political campaigns (e.g., Godes and Mayzlin, 2004, Salganick

et al., 2006, Willimas and Gulati, 2008). A central assumption underlying these new

strategies is that individuals in�uence each other when making decisions. Other relevant

social phenomena such as crime activities, religious fundamentalism, cultural fads, life-

style habits, or even epidemics also share this logic (e.g., Aguirre et al., 1988, Glaeser

et al., 1996, Young and Burke, 2001). As a result we have witnessed the arousal of a

tremendous interest in the study of social networks, leading some to herald the arrival of

a "science of networks" (e.g., Watts, 2007).

This paper analyzes how social in�uence determines the spread of new behaviors in an

interconnected society, a question that lies at the foundations of the theory of networks

(see, e.g., Goyal, 2007, Vega-Redondo, 2007, Jackson, 2008). A distinctive feature of

this work will be to consider a reiterative sampling process, thus leading to an evolving

in�uence network, rather than assuming a �xed network of interactions, as it happens in

most of the related literature. In doing so, we shall aim to develop a tractable theoretical

model that could help the testing of speci�c predictions.1

As people may di¤er in the information they posses regarding the behavior of others,

we introduce heterogeneity in our model by assigning to each agent an out-degree (or

information level) indicating the number of agents observed by them before making a

decision. We de�ne a dynamic process in which agents repeatedly sample from the pop-

ulation a subset of agents, observe their choices regarding the new behavior, and decide

whether or not to adopt. The in�uence network so determined speci�es who is in�uenced

by whom at di¤erent time periods. We make two crucial assumptions with respect to the

sampling process. On one hand, it is assumed that sampling is directional, i.e., agent i

sampling agent j does not necessarily imply that j samples i.2 On the other hand, some

agents are sampled more often than others (i.e., are more �visible�) and this is related

to their out-degree in a way speci�ed by the sampling process. More precisely, apart

1Many papers dealing with di¤usion on �xed networks (although randomly generated) are theoretically

intractable and thus rely on extensive simulations studies or mean-�eld approximations of the models

(e.g., Pastor-Satorrás and Vespignani, 2001,Watts, 2002, Watts and Dodds, 2007, Jackson and Rogers,

2007, and López-Pintado, 2008a).
2Internet plays a crucial role in generating such directed in�uence structures (e.g., individuals with

popular websites or blogs who are observed by many others but do not necessarily observe many others).
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from out-degree, agents are characterized by their in-degree, that is, the number of agents

sampling them. The correlation between in-degree (or visibility level) and out-degree

(information level) is determined by the sampling process as described below.

The family of sampling processes considered encompasses a wide variety of options

characterized by a parameter � 2 [0; 1], which determines the correlation existing between
the out-degree and the in-degree. For ease of exposition, two polar (and extreme) cases

are singled out. First, the case in which all agents are equally visible (� = 0). Here,

agents sample uniformly from the population according to their variable out-degrees.

Second, the situation in which an agent�s in-degree is perfectly aligned with her out-

degree (� = 1). In other words, an agent with out-degree k is k times more visible than

an agent with out-degree 1. When � = 1 the model essentially coincides with the mean-

�eld approximation of an (undirected) random network model (e.g., Pator-Satorrás and

Vespignani, 2001, Jackson and Rogers, 2007 and López-Pintado, 2008a). The current

work, thus, helps understand the extent and nature of such approximations. The case

� = 0 resembles the model introduced by Galeotti and Goyal (2009). These authors also

use a directed sampling process to analyze the optimal targeting strategy of a �rm who

wants to introduce a new product in a population anticipating the e¤ect of word of mouth.

In our model, agents use simple rules to decide whether or not to adopt the new

behavior. The probability of adopting depends exclusively on the number of adopters and

non-adopters in an agent�s sample, and not on who speci�cally has adopted. Apart from

this simpli�cation, the class of rules analyzed here is quite general and expands models

described in previous work. For instance, in the susceptible-infected-susceptible (SIS)

model, enunciated by epidemiologists to analyze the spread of a disease in a population

(e.g., Bailey, 1975), a susceptible agent becomes infected at a constant rate from each

interaction with an infected agent, whereas the transition from infected to susceptible

depends on an exogenous rate of recovery. As a result, the adoption rule exclusively

depends on the absolute number of infected interactions. We extend the SIS model to

allow for more general adoption rules (e.g., rules that depend on the relative number of

adopters) capturing features in the process of adoption that might not be relevant for the

di¤usion of a disease, but that seem fundamental for di¤usion of behavior or information

(see also López-Pintado, 2008a).3

3Alternatively, several authors have addressed the issue of strategic interactions and networks incor-

porating incomplete information and characterizing the Nash-Bayes equilibrium of the resulting network

game. These models assume that agents know their own degree and the degree distribution of the popu-

lation, but have incomplete information about the precise structure of the social network in which they
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In this paper we present an evolving in�uence network model and analyze the long-run

state of the adoption dynamics. We characterize the di¤usion threshold (i.e., the value for

the spreading rate of the new behavior above which adoption by a signi�cant fraction of

the population occurs) providing its closed-form solution. We also (implicitly) characterize

the endemic fraction of adopters (i.e., the fraction of adopters in the stationary state of

the dynamics) and perform a comparative static analysis. Roughly speaking, we �nd that

the new behavior will easily spread in the population if there is a high correlation between

how in�uential (visible) and how easily in�uenced an agent is, which is determined by the

sampling process and the adoption rule. We also analyze how the density and variance of

the out-degree distribution a¤ect the di¤usion threshold and the endemic state. To this

end, we mostly focus on the extreme case where � = 0 and compare the performance of

populations characterized by out-degree distributions ordered according to First Order

Stochastic Dominance and Mean Preserving Spread.

The paper is organized as follows. Section 2 introduces the model. Section 3 presents

the results of the paper, whereas Section 4 concludes. For a smooth passage we defer all

the proofs to the Appendix.

2 The Model

2.1 The In�uence Network

There is a unit measure of agents N = [0; 1]. Each agent i 2 N is characterized by her out-

degree ki which determines the number of agents whose behavior i observes (and hence

is in�uenced by). Some agents have more access to information than others or simply

wish to make a more informed decision. Therefore, we assume that the population is

characterized by an out-degree distribution denoted by P (k).4 Let us de�ne the in-degree

are embedded As in this paper, the results crucially depend on the degree distribution (see e.g., Jackson

and Yariv, 2007 for a dynamic approach and Galeotti et al. 2010 for a static approach). Young (2009)

also analyzes di¤usion of behavior in a population but, unlike what we do here, he builds on the literature

initiated by Granovetter (1978) and studies the case where agents are heterogenous with respect to the

adoption rule but homogeneous with respect to their (out-) degree. Moreover, instead of concentrating

on the stationary state of the dynamics as we do in this paper, he focuses on the evolution over time of

the fraction of adopters.
4For simplicity in some of the proofs, let us assume that P (k) has a �nite support and that the degree

of agents is at least 3. More precisely, P (k) = 0 if either k � 2 or k � K, where K is a �nite upperbound

of degrees.
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(or visibility) of an agent as the number of agents sampling this agent. The model takes

as primitives the out-degree distribution and a certain sampling process which determines

the in-degree. The family of sampling processes considered allows for a wide variety of

options, each associated to a parameter � 2 [0; 1]. Formally, the �-sampling process

indicates that an agent with out-degree k is sampled with probability

k�P (k)P
k�P (k)

:

Note that, if � = 0, this probability becomes P (k). In this case, agents are selected

completely at random and thus the probability of observing an agent with out-degree

k is simply the fraction of agents with such an out-degree. We refer to this situation

as the homogeneous-visibility case, since in this context all agents would have the same

in-degree. 5 If, on the other hand, � = 1 then agents with out-degree equal to k also have

in-degree equal to k. We refer to this situation, in which the visibility level is perfectly

aligned with information level as the information-visibility case. 6

We can then de�ne an in�uence network as a result of combining an out-degree dis-

tribution and a sampling process. Formally, the P�-in�uence network is the network

obtained when the �-sampling process described above is imposed to a population with

out-degree distribution P (k).

2.2 The Adoption Rule

Assume the existence of a new behavior (or product) spreading in a population over time.

In a given period t, agents can either be active or passive with respect to this behavior.

Let i be a passive agent with out-degree ki. Assume that at a spreading rate � � 0 an

5Galeotti and Goyal (2009) analyze a similar framework although with signi�cant di¤erences. First of

all, they focus on the targeting strategy of a �rm, which has incomplete information about the network

structure, and thus can only rely on the out-degree distribution to estimate the returns associated with

each possible strategy. In our model there is no explicit �rm and therefore no intentional targeting strategy

(although one could easily include similar features). Second, whereas we analyze the whole process of

information transmission, Galeotti and Goyal (2009) mostly focus on the case where information only

spreads over two periods. Finally, we assume that becoming an adopter is a reversible decision (see the

description of the adoption rule in Section 2.2), whereas in Galeotti and Goyal (2009) the decision is

irreversible.
6The case � = 1 is such that out-degrees coincide with in-degrees, however, this does not imply

that agents observe each other as it occurs in an undirected network framework. This is an additional

assumption implicit in a mean-�eld approximation approach commonly used in the epidemiology literature

which had not yet been pointed out.
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agent considers the possibility of adopting the new behavior. To make a decision she

samples ki agents following the sampling process de�ned above. Assume there are ai
active agents sampled by i at t.7 The rate of adoption of i is given by fki(ai), where

fki(�) is what we de�ne as the adoption rule.8 Formally, an adoption rule is a function
fki : [0; 1; 2:::ki]! R+ satisfying two conditions:
(1) fki is non-decreasing

(2) fki(0) = 0

Condition (1) implies that the rate of adoption increases with the number of adopters.9

Condition (2) implies that in order to adopt one needs to sample at least one agent who

has already done so.

We assume that an active agent becomes passive again at some constant rate � > 0,

which is independent of the behavior of others. Let us de�ne the e¤ective spreading rate

by � = �
�
which will be one of the crucial parameters of the model. Note that the higher

the value of � the more contagious the behavior is.

A plausible interpretation for the transition from passive to active is the following.

At an exogenous rate � any given agent i becomes interested in adopting the behavior or

product (e.g., due to the objective quality of the product, or the presence of mass media

advertisements). The agent�s �nal decision, however, depends critically on the in�uence

exerted by the agents in her sample characterized by the adoption rule fki(ai). We can

assume that the product is not inde�nitely durable and it becomes obsolete at a certain

rate �.10

Two types of adoption rules are singled out:

(1) Viral rules. These adoption rules depend exclusively on the absolute number of

adopters, i.e., fk(a) = fk0(a) for all k and k0. The so-called SIS model of di¤usion studied

in epidemiology (e.g., Pastor-Satorrás and Vespignani, 2001) simply corresponds to a viral

7For ease of notation we avoid now the subscript t that will be included later once the dynamics is

speci�ed.
8We de�ne rates instead of probabilities because we consider a continuous time dynamics. The intuition

should be that in a small increment of time dt, the probability of adopting the product is �fki(ai)dt.
9In doing so, we are implicitly assuming the existence of incentives for coordination on the same action.

The opposite phenomenon, i.e., the existence of incentives to "anticoordinate" has also been analyzed

elsewhere (e.g., Bramoullé and Kranton, 2007, López-Pintado, 2008b).
10Alternatively, we could have assumed that the transition from active to passive also depends on the

behavior of others. This assumption has been considered in related models of di¤usion where, unlike

what has been assumed here, an agent�s choice in a certain period does not depend on whether the agent

is currently active or passive, but exclusively on the behavior of neighbors (e.g., López-Pintado, 2006,

2008b, Watts, 2002 and Jackson and Yariv, 2006).
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rule where adoption depends linearly on the number of infected agents in the sample, i.e.,

fk(a) = a.

(2) Persuasive rules. These adoption rules depend on the relative number of adopters

and thus fk(a) can actually be reinterpreted as a function of a
k
. These rules represent

situations where there is some persuasion in favor and against adoption by adopters and

non-adopters, respectively. A stylized case which lies in this category is the Imitation

rule, where an agent simply chooses randomly one of her sampled agents and imitates her

behavior. In such a case fk(a) = a
k
.

2.3 The Adoption Dynamics and the Stationary States

Let �k(t) denote the frequency of active agents among those with out-degree k at time

t. Thus, �(t) =
P
k

P (k)�k(t) is the total frequency of active agents in the population at

time t. The adoption dynamics is then described as follows:

d�k(t)

dt
= ��k(t)rate1!0k (t) + (1� �k(t))rate0!1k (t),

where rate0!1k (t) is the rate at which a passive agent with out-degree k becomes active

and rate1!0k (t) stands for the reverse transition. As mentioned above rate1!0k (t) = �. As

for rate0!1k (t) we need a piece of additional notation. Let �(t) be the probability that a

sampled agent is active. Given the sampling process described above we �nd that

�(t) =
1

hk�i
X
k

k�P (k)�k(t) (1)

where, for simplicity, we denote hk�i =
P
k

k�P (k). It follows from here that

rate0!1k (t) =
kX
a=0

�fk(a)
�
k
a

�
�(t)a(1� �(t))(k�a):

Let rk(�(t)) =
Pk

a=0 fk(a)
�
k
a

�
�(t)a(1� �(t))(k�a), then the dynamics can be rewritten

as
d�k(t)

dt
= ��k(t)� + (1� �k(t))�rk(�):

In a stationary state
d�
k
(t)

dt
= 0 and therefore

�k =
�rk(�)

1 + �rk(�)
: (2)
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Combining (1) and (2) we obtain the following �xed-point equation whose solutions

correspond to the stationary values of � (denoted by ��)

� = H�(�), (3)

where

H�(�) =
1

hk�i
X
k

k�P (k)
�rk(�)

1 + �rk(�)
: (4)

The frequency of adopters in the stationary state (��) is subsequently determined by

�� =
X
k

P (k)
�rk(�

�)

1 + �rk(�
�)
: (5)

Recall that the transition from active to passive is always possible. Therefore, the

concept of a stationary state only refers to stationary values of � and � and not to the

identities of the agents choosing each action.

3 Results

In this section, we determine the threshold for the e¤ective spreading rate above which

di¤usion to a positive fraction of the population occurs. Formally, let A� be the set

of e¤ective spreading rates for which an in�nitely small fraction of initial active agents

spreads the behavior to a positive fraction of the population. In other words, � belongs to

A� if a �nite number of of initial adopters can spread the behavior to an in�nite number

of agents. Then, we de�ne the di¤usion threshold ��as the highest lower bound of such a

set, i.e., �� = inf A�.11

The following lemma, which is interesting on its own, will be used to characterize the

di¤usion threshold.

Lemma 1 The expected in-degree of an agent with out-degree k in a P�-in�uence network

is given by k�

hk�ihki.

This result formally establishes the relationship between the number of agents an

agent is in�uenced by (out-degree) and the number of agents in�uenced by this agent

(in-degree). This lemma shows, in particular, that if � = 0 (homogeneous-visibility case)

all agents are (in expected terms) equally in�uential (or visible) and, thus, the expected

number of individuals in�uenced by any given agent is hki. If � = 1 (information-visibility
11Note that if A� = ? then �� =1
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case), however, the expected number of individuals in�uenced by an individual coincides

with her out-degree. Finally, if � lies somewhere in between 0 and 1, there exists a positive

correlation between in and out-degree, but this correlation is not perfect. 12

The main result of this section comes next.

Theorem 1 Given a P�-in�uence network and an adoption rule f , the di¤usion threshold

is given by

�� =
hk�iP

k

k�+1P (k)fk(1)

Note that the di¤usion threshold depends on the adoption rule through fk(1) (instead

of fk(a)) because in the initial stages of the dynamics, the probability of sampling more

than one active agent is insigni�cant in comparison with sampling just one active agent.

In particular, for the SIS adoption rule the di¤usion threshold is

�� =
hk�i
hk�+1i

which depends on the out-degree distribution P (k) and the sampling process characterized

through �. Nevertheless, for other adoption rules such as the Imitation rule the di¤usion

threshold is

�� = 1

which is independent of the P��in�uence network. Note that the di¤usion threshold
crucially depends on the adoption rule speci�ed by the model and therefore testing which

rules match best which applications is an important empirical question.

Beyond the di¤usion threshold, we also analyze the endemic state of the dynamics. To

�x ideas, we say that the adoption dynamics has reached an endemic state with a fraction

of adopters �� if this fraction of adopters remains constant in the upcoming periods. In

particular, �� is obtained as the solution of the system of equations (3) and (5) derived

before. The next result provides a necessary condition over the adoption rule for which

the endemic fraction of adopters is unique.13

12One could easily extend the results to other values of �. For instance, if we allow for � > 1 the

in-degree distribution would be more skewed than the out-degree distribution, making high out-degree

agents have an even higher in-degree. If, instead, � < 0 the correlation between out-degree and in-degree

would be negative (e.g. geniuses who listen to no one but that everybody listens to). For simplicity, we

have decided to concentrate on the values ranging between the two focal points of � = 0 and � = 1.
13This result is a generalization of Proposition 1 in López-Pintado (2008a).
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Theorem 2 Consider a P�� in�uence network and an adoption rule fk(a) (weakly) con-
cave with respect to a, for all k. If � > �� there exists a unique positive endemic fraction

of adopters. Otherwise the unique endemic state is such that �� = 0. Moreover, at � = ��

there exists a �rst order phase transition.

The skeleton of the proof is the following. Algebraic computations allow showing

that if for all k the adoption rule fk is (weakly) concave with respect to a then H�(�)

is an increasing and a concave function of �, where H�(0) = 0. Therefore, the �xed

point equation � = H�(�) has either no positive solution (when H 0
�(0) � 1) or just one

positive solution (when H 0
�(0) > 1). The value of the spreading rate � separating these

two cases is obtained from the equation H 0
�(0) = 1. As expected, the threshold value for

� obtained here coincides with the di¤usion threshold �� provided in Theorem 1. Due

to the continuity of H�(�) as a function if �, it is also straightforward to show that the

transition from a zero to a positive fraction of adopters occurs smoothly and thus ��(�)

converges to 0 when � ! �� (see Figure 1). This continuous transition is what we refer

to as a �rst order phase transition.

θ

)(θλH

λ

)(* λρ

0 1 *λ

*λ

*
+λ

*
−λ

Figure 1: The graph in the left hand side represents H�(�) for a (weakly) concave adoption

rule when (i) � equals the di¤usion threshold �� (ii) � is above the di¤usion threshold (� = ��+)

and (iii) � is below the di¤usion threshold (� = ���). The graph in the right hand side represents

the corresponding fraction of adopters in the endemic state �� as a function of �, highlighting

the �rst order phase transition occurring at � = ��.

There are many adoption rules satisfying the concavity assumption at the statement

of Theorem 2 (e.g., the SIS and Imitation rules). Other relevant rules (e.g., fk(a) = a2

or fk(a) = (a
k
)2) do not. A persuasive rule that also violates the assumption is the

deterministic threshold rule satisfying that agents adopt with probability 1 if and only if

the fraction of adopters in the sample (a
k
) is above a certain threshold (see e.g., Morris,

2000, Watts, 2002, López-Pintado, 2006, López-Pintado andWatts, 2008 and Young, 2009

for papers where the deterministic threshold rule, or a slightly modi�ed version of it, has

10



been analyzed). In general, non-concave rules can exhibit multiple endemic states with

di¤erent corresponding fraction of adopters. Moreover, continuity of ��(�) at � = �� is

not guaranteed.

3.1 The Role of the Sampling Process (�)

One of the main objectives of this paper is to understand how di¤usion depends on the

correlation between information and visibility. For this purpose, the next result takes as

given a certain out-degree distribution P (k) and adoption rule fk, for every k, and analyzes

how the di¤usion threshold depends on the sampling process, characterized through the

parameter �.

Proposition 1 Given a P�-in�uence network and an adoption rule fk, for every k, the

following statements hold:

(i) If kfk(1) is increasing with respect to k the di¤usion threshold decreases with �.

(ii) If kfk(1) is decreasing with respect to k the di¤usion threshold increases with �.

(iii) If kfk(1) is constant with respect to k, the di¤usion threshold does not depend on

�.

The distinction between a visible (or in�uential) agent and an easily in�uenced agent is

crucial for understanding the proposition. Note that, it is obviously the case that di¤usion

will be enhanced whenever in�uential agents are also easily in�uenced. The �rst simply

refers to agents that are sampled by many others (i.e., have high in-degrees), whereas

the second refers to agents that are early adopters of the dynamics. Whether an agent

is or not an early adopter depends on two features. On one hand, the out-degree k (i.e.,

how many agents somebody observes) determines the chances of �nding an adopter. On

the other hand, the adoption rule fk speci�es the probability of becoming an adopter

given the composition of the sample. As Proposition 1 suggests kfk(1) (a joint measure

of both features) is roughly the rate at which an agent with degree k adopts in the initial

(and crucial for determining future success) stages of the adoption dynamics. Proposition

1 does not characterize all possible adoption rules but points out the existence of two

distinctive types of rules: the ones where early adopters are agents with high out-degrees,

and the ones where early adopters are agents with low out-degree (cases (i) and (ii)

respectively in the proposition). If high out-degree agents adopt early on, then di¤usion

is helped if these agents are also in�uential which occurs precisely for higher values of �.

On the contrary, if high out-degree agents adopt later on, then di¤usion is helped if these

11



agents are less in�uential (i.e., for low values of �). Finally, case (iii) in the proposition

corresponds to rules in which adopting early on or not is independent of the out-degree

and consequently independent on �.

There are examples of adoption rules in each of the cases established by Proposition 1.

For instance, all viral adoption rule satisfy (i). Some persuasive adoption rules, however,

as for example the rule fk(a) = (ak )
2, satisfy (ii), whereas, other persuasive rules, such as

the Imitation rule (i.e., fk(a) = a
k
), satisfy (iii).14

To further investigate the e¤ect of the sampling process on di¤usion, the next result

assumes a certain out-degree distribution P (k) and a concave adoption rule fk, for all k,

and analyzes how the endemic fraction of adopters depends on �. Note that, the (unique)

endemic fraction of adopters is ��: = 0 for values of the spreading rate below the di¤usion

threshold, and it is the unique positive solution �� of the system of equations determined

by (3) and (5) whenever the spreading rate is above the di¤usion threshold.

Proposition 2 Given a P�� in�uence network and an adoption rule fk(a) (weakly) con-
cave with respect to a, for every k, the following statements hold:

(i) If, for all � 2 [0; 1], rk(�) is increasing with respect to k, the endemic fraction of
adopters �� increases with respect to �.

(ii) If, for all � 2 [0; 1], rk(�) is decreasing with respect to k for all � 2 [0; 1], the
endemic fraction of adopters �� decreases with respect to �.

(iii) If, for all � 2 [0; 1], rk(�) is constant with respect to k for all � 2 [0; 1], the

endemic fraction of adopters �� does not depend on �.

Recall that rk(�) is the rate at which an individual with out-degree k adopts as a

function of �. For values of � in�nitely small rk(�) can be approximated by kfk(1), which

is the relevant measure used in the computation of the di¤usion threshold and the results

obtained in Proposition 1. Regarding the endemic fraction of adopters, conditions on

rk(�) must hold for all values of � which leads to the above result.

As a consequence of Proposition 2 one �nds that all (concave) viral adoption rules

satisfy (i) in the proposition and thus, the fraction of adopters in the endemic state

14An illustration of how the adoption rule fk(a) = (ak )
2 could be derived is the following. Assume

agents obtain utility 0 if they decide not to adopt the new behavior and a utility of u(a) = (ak )
2 � c if

they decide to adopt, where a
k is the fraction of adopters in the sample and c is the cost of adopting.

Assume also that c is uniformly distributed c � U [0; 1]. The probability of adopting would then be

Pr(c � (ak )
2) = (ak )

2.
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increases with the (positive) correlation between out-degree and visibility.15 The Imitation

rule, however, satis�es (iii) and thus, the fraction of adopters in the endemic state is

independent of �. Indeed, for such a case, it is straightforward to show that �� = 0 if

� � 1 and �� = 1� 1
�
otherwise.

3.2 The Role of the out-degree Distribution (P (k))

Another aspect of the model that has been the focus of most of the related literature is the

e¤ect on the di¤usion outcomes of variations in the out-degree distribution. Does having

more information about the behavior of others help or harm di¤usion? Does heterogeneity

favor di¤usion? These questions are partially answered in the following section. To do

so, we take as given the �-sampling process and compare populations with di¤erent out-

degree distributions. We denote by ��(P�) the di¤usion threshold obtained for a certain

P��in�uence network.

Proposition 3 Given two in�uence networks fP� and P� and an adoption rule fk, for
every k, the following statements hold:

(i) If eP (k) First Order Stochastic Dominates P (k) and k�+1fk(1) is decreasing with
respect to k then ��(P�) � ��(fP�)
(ii) If eP (k) is a Mean Preserving Spread of P (k) and k�+1fk(1) is convex with respect

to k then ��(fP�) � ��(P�)
The �rst part of Proposition 3 suggests, contrary to the basic intuition, that for certain

adoption rules the lower the density of the in�uence network the easier it is to spread

the behavior in the population. Note that the result applies to some convex adoption

rules such as fk(a) = (ak )
2 for which early adopters coincide with low out-degree agents,

whereas all viral rules, as well as other persuasive rules (e.g., the Imitation rule), are not

contemplated in this result. The counterpart of (i) where ��(P�) > �
�(fP�), although more

intuitive, is not straightforward to show. Indeed Jackson and Rogers (2007) concentrate

on the SIS model and �nd support for such inequality if in addition to eP (k) FOSD P (k)
it also holds that 1

hki eP k eP (k) FOSD 1
hkiP

kP (k).

As for the second part of the proposition, note that, there are many adoption rules

that satisfy the condition provided therein . In particular, all viral adoption rules, as well

as a large number of persuasive rules (including the Imitation rule, among others) satisfy

15Note that, for viral adoption rules rk(�) =
Pk

a=0 f(a)
�
k
a

�
�a(1� �)(k�a) is increasing as a function of

k since f(a) is an increasing function of a.
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the convexity of k�+1fk(1). Here, we compare in�uence networks with the same average

out-degree but with di¤erent variance. We �nd that, for a large range of adoption rules,

the di¤usion threshold is lower for networks with larger variance.16

3.2.1 The Homogeneous-Visibility Case (� = 0)

In order to obtain further comparative statics results we have concentrated on the case

of � = 0 which is signi�cantly simpler than the remaining cases where 0 < � � 1. The
reason is that, in such a case, the value of � (probability of sampling an adopter) coincides

with the overall fraction of adopters in the population �, that is � = �. The di¤usion

threshold is simply

�� =
1P

k

kfk(1)P (k)

and, if fk(a) is a concave function of a, for every k, the endemic fraction of adopters �� is

the unique positive solution of the following �xed point equation

� =
X
k

P (k)
�rk(�)

1 + �rk(�)
.

All agents are now equally in�uential and thus heterogeneity among them is only due

to the amount of information they have about the behavior of others. The following

propositions explain the e¤ect on the di¤usion threshold of a FOSD shift and a MPS of

the out-degree distribution.

Proposition 4 Given two in�uence networks fP0 and P0, where eP (k) FOSD P (k), and

an adoption rule f , the following statements hold:

(i) if kfk(1) is increasing with respect to k then �
�(fP0) � ��(P0)

(ii) if kfk(1) is decreasing with respect to k then �
�(P0) � ��( eP0)

(iii) if kfk(1) is constant with respect to k then �
�(fP0) = ��(P0)

Proposition 5 Given two in�uence networks fP0 and P0, where eP (k) is a MPS of P (k),
and an adoption rule fk, the following statements hold:

(i) if kfk(1) is convex with respect to k then �
�(fP0) � ��(P0)

(ii) if kfk(1) is concave with respect to k then �
�(P0) � ��( eP0)

(iii) if kfk(1) is linear with respect to k then �
�(fP0) = ��(P0)

16The result that heterogeneity in the network enhances di¤usion can be considered as a generalization

of the main �nding in the mean-�eld model presented by Pastor-Satorrás and Vespignani (2001), who

focused on the SIS adoption rule and the case � = 1.
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Note that all viral adoption rules satisfy conditions (i) and (iii) in Propositions 4

and 5, respectively. Therefore, the higher the density of the in�uence network the lower

its di¤usion threshold. Moreover, two populations with the same average out-degree

but di¤erent variance have the same di¤usion threshold since �� = 1
f(1)hki . Regarding

persuasive adoption rules, further properties of the rule are necessary in order to determine

the results. For example, when fk(a) =
p
(a
k
), the higher the density of the network the

lower the di¤usion threshold whereas the opposite holds when fk(a) = (ak )
2. Furthermore,

for the adoption rule fk(a) =
p
(a
k
) the higher the variance, the higher the di¤usion

threshold whereas the opposite holds when fk(a) = (ak )
2.

In addition, we also analyze the e¤ect of varying the out-degree distribution on the

endemic state. To this end, denote by ��(P�) to the endemic fraction of adopters obtained

for a P��in�uence network .

Proposition 6 Given two in�uence networks fP0 and P0, where eP (k) FOSD P (k), and

a (weakly) concave adoption rule fk(a) with respect to a, for every k, the following state-

ments hold:

(i) If rk(�) is increasing with respect to k for any � 2 [0; 1] then ��(P0) � ��( eP0)
(ii) If rk(�) is decreasing with respect to k for any � 2 [0; 1] then ��(fP0) � ��(P0)
(iii) If rk(�) is constant with respect to k for any � 2 [0; 1] then ��( eP0) = ��(P0)

Proposition 7 Given two in�uence networks fP0 and P0, where eP (k) is a MPS of P (k),
and a (weakly) concave adoption rule fk(a) with respect to a, the following statements

hold:

(i) If �rk(�)
1+�rk(�)

is convex with respect to k for any � 2 [0; 1] then ��(P0) � ��( eP0)
(ii) If �rk(�)

1+�rk(�)
is concave with respect to k for any � 2 [0; 1] then ��(fP0) � ��(P0)

(iii) If �rk(�)
1+�rk(�)

is linear with respect to k for any � 2 [0; 1] then ��( eP0) = ��(P0) .
Viral adoption rules satisfy (i) in Proposition 6 and thus the higher the density of the

in�uence network, the higher the endemic fraction of adopters. Regarding the e¤ect of a

MPS of the out-degree distribution for viral adoption rules, the result is not conclusive

and depends on the further properties of the rule. Nevertheless, for the speci�c case of

the SIS rule it is straightforward to show that it satis�es (ii) in Proposition 7 and thus,

the higher the variance of the out-degree distribution, the lower the endemic fraction of

the adopters. Figure 2 summarizes the qualitative results obtained for the SIS rule, both

regarding the di¤usion threshold and the endemic fraction of adopters. The SIS rule

when � = 1 has been previously analyzed by Pastor-Satorrás and Vespignani (2001) and
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Jackson and Rogers (2007). If one compares the two extreme cases (� = 1 and � = 0), the

more striking di¤erence is that homogeneity in the out-degree distribution increases the

endemic fraction of adopters for all values of � when � = 0, whereas it, instead, decreases

the endemic fraction of adopters (at least for low range of values of �) when � = 1. The

intuition for such a result is the following. The SIS rule is such that (alike all viral rules)

agents with high out-degree are more easily in�uenced. In fact the rate of adoption at

any given moment in time rk(�) is increasing with k. Due to the concavity of rk(�) as

a function of k the e¤ect of having high out-degree exhibits decreasing returns to scale.

This leads to the result that a population where all agents have roughly the same average

degree helps di¤usion more than a more heterogeneous out-degree distribution. In the case

� = 1 the argument does not follow since agents with a high out-degree are particularly

valuable for spreading the product; not only they adopt early but also once they adopt,

they are very in�uential and spread the infection further. This second advantageous e¤ect

prevails and therefore degree distribution with high variance favor di¤usion.17

λ

)(* λρ

)(kP

)(~ kP

)(~ kP FOSD )(kP

)(kP

)(~ kP

)(~ kP MPS )(kP

λ

)(* λρ

Figure 2: The graphs plot the endemic fraction of adopters �� as a function of the spreading

rate �, focusing on the e¤ects of a FOSD shift (graph on the left) and a MPS (graph on the

right) of the degree distribution for the SIS adoption rule and � = 0.

4 Concluding Remarks

Nowadays, more complex in�uence structures have replaced traditional patterns generated

exclusively through standard personal interactions. We have proposed in this paper a
17These results resemble those found by Galeotti and Goyal (2009). For instance, analogously to

Propositions 4 and 5, they also �nd that if the adoption rate is an increasing (decreasing) function of

the out-degree a FOSD shift of the out-degree distribution would increase (decrease) the pro�ts of the

�rm wanting to spread the new product. Moreover, similarly to what we �nd in Propositions 6 and 7,

they �nd that if the adoption rate is convex (concave) with respect to out-degree, a MPS would increase

(decrease) the pro�ts of the �rm.
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stylized model to analyze some of the implications of such complexities. We have modeled

the in�uence structure by means of an explicit sampling process characterized by the

correlation between the out-degree (information level) and in-degree (visibility level) of

agents. Surprisingly, we have observed that an increase in such a correlation may favor or

harm di¤usion; the e¤ect actually depends on the speci�c details of the adoption process.

Two types of adoption rules can be singled out: those for which high out-degree agents

are the early adopters and those for which low out-degree agents are the early adopters.

In the former case, di¤usion is eased if the high out-degree are also in�uential, whereas

in the latter case, the opposite holds. We have also shown that an increase in both the

level and dispersion of information has a strong impact on the results, hence questioning

the hypothesis that more dense and heterogeneous networks always favor di¤usion.

The current work could contribute to gain further insight into the dynamics of social

processes, pointing out possible directions for empirical studies of value for understanding

di¤usion in the real world. In�uence networks, however, are not formed completely at

random. Therefore, one might consider enriching our model to account for clustering

and community structures. There has already been signi�cant work analyzing network

formation in a semi-random framework.18 The study of di¤usion on such more realistic

networks seems to be a fertile and promising area of research.
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6 Appendix

Proof of Lemma 1: The probability that any agent samples another agent with out-

degree k is equal, by assumption, to

k�P (k)P
h

h�P (h)
:

Note that P (h)
P (k)

determines the relative size of the population of agents with out-degree

h with respect to the population of agents with out-degree k. For example, P (h)
P (k)

= 2

means that the size of the population with out-degree h is twice as large as the size of

the population with out-degree k. Therefore, the expected number of links an agent with

out-degree k receives from agents with out-degree 1 is

k�P (k)P
h

h�P (h)
1
P (1)

P (k)
:

Analogously, the expected number of links an agent with out-degree k receives from agents

with out-degree 2 is
k�P (k)X
h

h�P (h)
2
P (2)

P (k)

and so on and so forth.

Thus, the expected number of links pointing to an agent with out-degree k equalsX
l

k�P (k)X
h

h�P (h)
l
P (l)

P (k)
=
k�hhi
hh�i .

This lemma is used in the proof of the following theorem.

Proof of Theorem 1: If an active agent is observed by another agent in an in�uence

network, we say that there is an active link between them. It is not di¢ cult to show

(with the help of Lemma 1) that the expected number of new active links generated by

an initial active link is given byX
k

kP (k)

hki �fk(1)
1

�

k�

hk�ihki

where kP (k)
hki is the probability that an agent, say j, sampling an initial adopter has out-

degree k and �fk(1) is the rate at which this agent adopts. While this agent is active

(i.e., during an interval of time equal to 1
�
) the number of new active links generated on
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average is k�

hk�ihki, which is the average number of individuals sampling agent j since j
has out-degree k. Therefore, the number of new active links originated by one active link

is greater than 1 if and only if

� >
hk�iP

k

k�+1P (k)fk(1)
(6)

To complete the proof let us show that di¤usion occurs if and only if condition (8) holds.

Consider the discrete approximation of the dynamics. Let us show that if there is di¤usion

then condition (8) must hold, or analogously, that if condition (8) does not hold there is

no di¤usion. Assume that initially there is a �nite number of adopters N0 and let i be

one of them. Let ri0 be the number of individuals in�uenced by this initial adopter (i.e., in

period 0). Note that ri0 is also the number of active links generated by this initial adopter.

If condition (8) does not hold then the expected number of active links generated by i

decreases with time. In a discrete version of the dynamics this implies that the number

of active links in period 1 generated by i is such that ri0 > ri1. The same argument is

valid to show that ri1 > r
i
2, and so on. Therefore, there must exist a period ti above which

the number of active links is zero (i.e., rit = 0 for all t � ti). Thus, for t > maxi2N0ftig
it holds that �t = 0 and thus �� = 0. A similar reasoning can be used to show the

reverse implication; if condition (8) holds then �� 6= 0. In this case the sequence fritgt�0
is increasing and thus converges to in�nity.

Proof of Theorem 2: In order to �nd the stationary fraction of active agents �� one

must �rst �nd the stationary values of the parameter �, denoted by ��. Indeed, �� 6= 0 if
and only if �� 6= 0. It is straightforward to show that 0 � H(�) < 1 for all � 2 [0; 1]. We
also have that H(0) = 0 which implies that � = 0 is a stationary state of the dynamics

for all values of �. Let us now determine the values of � for which there also exists a

non-null stationary state. To this end, let us �rst show that H is increasing and concave.

Note that
dH(�)

d�
=

1

hk�i
X
k

k�P (k)
�drk(�)

d�

(1 + �rk(�))2
,

where

drk(�)

d�
=

kX
a=0

fk(a)
�
k
a

�
(a�(1� �)(k�a) � �(k � a)(1� �)(k�a�1))

=
k�1X
a=0

((a+ 1)f(k; a+ 1)
�
k
a+1

�
� (k � a)fk(a)

�
k
a

�
)�(1� �)(k�a�1) (7)

and since
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(a+ 1)
�
k
a+1

�
= (k � a)

�
k
a

�
=

k!

a!(k � a� 1)! ,

then
drk(�)

d�
=

k�1X
a=0

k!

a!(k � a� 1)!(f(k; a+ 1)� fk(a))�(1� �)
(k�a�1)

which is non-negative given condition (1) imposed on the adoption rule f . Therefore H(�)

is non-decreasing. To show that H(�) is concave we must take the second derivative of

H(�). That is

d2H(�)

d2�
=

1

hk�i
X
k

k�P (k)
�2 d

2rk(�)
d2�

(1 + �rk(�))� 2(�drk(�)d�
)2

(1 + �rk(�))3
,

where

d2rk(�)

d2�
=

k�1X
a=0

k!

a!(k � a� 1)!(f(k; a+ 1)� fk(a))

(a�(1� �)(k�a�1) � �(k � a� 1)(1� �)(k�a�2))

or equivalently

d2rk(�)

d2�
=

k�2X
a=0

k!(a+ 1)

(a+ 1)!(k � a� 2)!(f(k; a+ 2)� f(k; a+ 1))�(1� �)
(k�a�2)

� k!(k � a� 1)
a!(k � a� 1)!(f(k; a+ 1)� fk(a))�(1� �)

(k�a�2)

=
k�2X
a=0

((fk(a+ 2)� f(k; a+ 1))� (f(k; a+ 1)� fk(a)))

k!

a!(k � a� 2)!�(1� �)
(k�a�2):

Since fk(a) is concave with respect to a then
d2rk(�)
d2�

� 0 which in turn shows that H(�)
is concave. Finally, notice that, if H(�) is non-decreasing and concave, there exists a

(unique) non-null stationary state of the dynamics if and only if

dH(�)

d�
c�=0 > 1,

and
dH(�)

d�
c�=0 = �

1

hk�i
X
k�1

k�P (k)fk(1) > 1, � > �� =
hk�iP

k�1
k�P (k)fk(1)

.

Moreover, if � � ��the unique stationary value for � is 0.
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Proof of Proposition 1: It is straightforward to show that ��(�) is a continuous and

derivable function of �. We then demonstrate that if kf(1; k) is an increasing (decreasing)

function of k then d��(�)
d�

� 0
�
d��(�)
d�

� 0
�
and that if kf(1; k) is constant then d��(�)

d�
= 0.

Note that

d��(�)

d�
=
hk�(log k)ihk�+1f(1; k)i � hk�ihk�+1f(1; k)(log k)i

hk�+1f(1; k)i2

where for ease of notation we use hg(k)i to be
P

k g(k)P (k) for any function g(k). Let us

characterize the sign of hk�(log k)ihk�+1f(1; k)i � hk�ihk�+1f(1; k)(log k)i. It is straight-
forward to show that for any given k, the coe¢ cient (multiplying) P (k)2 in the expression

hk�(log k)ihk�+1f(1; k)i�hk�ihk�+1f(1; k)(log k)i is 0. Let us now compute the coe¢ cient
of P (k)P (k) for any k 6= k. Assume without loss of generality that k < k, the coe¢ cient
is

k�(log k)k
�+1
f(1; k) + k

�
(log k)k�+1f(1; k)� k�k�+1f(1; k)(log k)� k�k�+1f(1; k)(log k)

which simpli�es to

(k�k
�+1
f(1; k)� k�k�+1f(1; k))(log k � log k):

The sign of the above expression coincides with the sign of

kf(1; k)� kf(1; k)

which completes the proof.

Proof of Proposition 2: The following �xed point equation determines the endemic

value of �

� =
1

hk�i
X
k

k�P (k)
�rk(�)

1 + �rk(�)
:

The endemic state for � depends on the value of �. To show the monotonicity of

the �xed point value ��(�) (taken as �xed all other primitives of the model) one must

evaluate the monotonicity of 1
hk�i

P
k k

�P (k) �rk(�)
1+�rk(�)

as a function of �. Note that if
1

hk�i
P

k k
�P (k) �rk(�)

1+�rk(�)
is increasing (decreasing) as a function of � (for all � 2 [0; 1]) then

��(�)must be increasing (decreasing) as well. The monotonicity of 1
hk�i

P
k k

�P (k) �rk(�)
1+�rk(�)

is determined by the sign of the following expression

hk�(log k) �rk(�)

1 + �rk(�)
ihk�i � hk� �rk(�)

1 + �rk(�)
ihk�(log k)i (8)
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It is straightforward to show that for any given k, the coe¢ cient (multiplying) P (k)2

in the expression (8) is 0. Let us now compute the coe¢ cient of P (k)P (k) for any k 6= k.
Assume without loss of generality that k < k, the coe¢ cient is

k�(log k)
�rk(�)

1 + �rk(�)
k
�
+k

�
(log k

�
)
�rk(�)

1 + �rk(�)
k��k� �rk(�)

1 + �rk(�)
k
�
(log k)�k� �rk(�)

1 + �rk(�)
k�(log k)

which simpli�es to

k�k
�
�

�rk(�)

1 + �rk(�)
� �rk(�)

1 + �rk(�)

�
(log k � log k).

The sign of the above expression coincides with the sign of

�rk(�)

1 + �rk(�)
� �rk(�)

1 + �rk(�)

or analogously with the sign of

rk(�)� rk(�)

which completes the proof.

Proof of Proposition 3: Notice that if eP (k) FOSD P (k) then for any increasing function
u(k) we have that X

k

u(k)P (k) �
X
k

u(k) eP (k).
Since k� is increasing then

P
k

k�P (k) �
P
k

k� eP (k). By assumption k�+1fk(1) is de-
creasing and therefore

P
k

k�+1P (k)fk(1) �
P
k

k�+1 eP (k)fk(1). Both inequalities together
imply that ��(P�) � �(fP�) which completes the �rst part of the proof.
Regarding the second part of the proof, it is the case that if eP is a MPS of P then for

any concave function u(k) X
k

u(k) eP (k) �X
k

u(k)P (k):

Notice that if k�+1fk(1) is convex thenX
k

k�+1P (k)fk(1) �
X
k

k�+1 eP (k)fk(1)
and since k� is concave then X

k

k� eP (k) �X
k

k�P (k):
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These two inequalities together imply that ��( eP�) � ��(P�).
Proof of Proposition 4: It is immediate to show that the di¤usion threshold equals

�� =
1P

k

kP (k)fk(1)

for a P0-random network. Note that, if kfk(1) is increasing then
P
k

kP (k)fk(1) �P
k

k eP (k)fk(1) which implies that ��( eP�) � ��(P�). If kfk(1) is decreasing thenP
k

kP (k)fk(1) �P
k

k eP (k)fk(1) which implies that ��(P�) � ��( eP�). FinallyP
k

kP (k)fk(1) =
P
k

k eP (k)fk(1)
if kfk(1) is constant and thus �

�(P�) = �
�( eP�) in such a case.

Proof of Proposition 5: If kfk(1) is convex then
P
k

kP (k)fk(1) �
P
k

k eP (k)fk(1) which
implies that ��(P�) � ��( eP�). If kfk(1) is concave then P

k

kP (k)fk(1) �
P
k

k eP (k)fk(1)
which implies that ��(P�) � ��( eP�). Finally, P

k

kP (k)fk(1) =
P
k

k eP (k)fk(1) if kfk(1) is
a linear function of k and thus ��(P�) = �

�( eP�) in such a case.
Proof of Proposition 6: The fraction of adopters �� is computed as the solution of

equation

� =
X
k

P (k)
�rk(�)

1 + �rk(�)
. (9)

Note that if rk(�) is increasing as a function of k for all � then
�rk(�)
1+�rk(�)

is also an increasing

function of k for all �. Therefore,X
k

P (k)
�rk(�)

1 + �rk(�)
�
X
k

eP (k) �rk(�)

1 + �rk(�)

for all �, which in particular implies that the value of � that solves equation (10) is smaller

or equal for the out-degree distribution P (k) than for eP (k). The proofs of (ii) and (iii)
go along the same lines.

Proof of Proposition 7: If �rk(�)
1+�rk(�)

is a convex function of k for all � then

X
k

P (k)
�rk(�)

1 + �rk(�)
�
X
k

eP (k) �rk(�)

1 + �rk(�)

for all �, which in particular implies that the value of � that solves equation (10) is smaller

or equal for the out-degree distribution P (k) than for eP (k). The proofs of (ii) and (iii)
go along the same lines.
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