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Abstract. The goal of aspect-oriented programming is to modularize
crosscutting concerns (or aspects) at the code level. These aspects can
be defined in either a general-purpose language or in a language that is
fine-tuned to a specific aspect in consideration. Aspect-specific languages
provide more concise and more readable aspect declarations but are lim-
ited to a specific domain. Moreover, multiple aspects may be needed in
a single application and composing aspects written in different aspect
languages is not an easy task.
To solve this composition problem, we represent both aspects and aspect
languages as modularized logic metaprograms. These logic modules can
be composed in flexible ways to achieve combinations of aspects written
in different aspect-specific languages. As such, the advantages of both
general-purpose and aspect-specific languages are combined.

1 Introduction

The idea of separation of concerns [16] is that the implementation of all con-
cerns in a software application should be cleanly modularized. Today’s existing
programming techniques have succeeded to support the separation of concerns
principle at the code level to a reasonable degree. However, some concerns can-
not be modularized using the existing modularizations and tend to crosscut with
other concerns. Common examples of such concerns are synchronisation, persis-
tence and error-handling. Aspect-oriented programming (AOP) [8] modularizes
such crosscutting concerns as aspects. These aspects are expressed in one or
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more aspect languages and they are composed with the rest of the program by
an aspect weaver.

An aspect language designed to express a specific kind of aspect is highly
desirable because it results in more concise and more intentional aspect declara-
tions, making it easier to read and write aspect code. A testament to this is the
fact that many of the first aspect languages were aspect-specific [6,10,11] and not
general purpose. On the other hand, aspect-specific languages are very powerful
within their specific scope but they can only be applied to the specific aspect
they were designed for. Because of this, many AOP-related techniques [1,7,15]
offer a general-purpose aspect language which allows to express many kinds
of aspects as well as combinations and interactions between them. The latter
becomes more complex when the aspects are implemented in different aspect-
specific languages. Our approach to AOP is based on logic metaprogramming
(LMP) [12,13,14,20,21]. In a previous paper [4], we explored the use of LMP as
an open and extensible aspect-weaver mechanism that facilitates the specializa-
tion of a general-purpose aspect language and, as such, facilitates the building
of aspect-specific languages (ASLs). In this paper we focus on the combinations
and interactions between aspects written in different ASLs. We extend the work
in [4] and introduce logic modules to encapsulate aspects and implementations
of ASLs. These logic modules provide a composition mechanism that allows us to
combine aspects or implement interactions between aspects written in different
ASLs. This is made possible because all our ASLs share the same Prolog-like
base language. In other words, we obtain a modular aspect-weaver mechanism
that offers the generality of a general-purpose aspect language without loosing
the ability and advantages of defining aspects in aspect-specific languages. In
addition, we offer a means of composing and regulating the interactions among
different aspect-specific languages. In section 2, we introduce a software applica-
tion that is used as a running example throughout the remainder of the paper.
In section 3, we describe what an aspect language embedded in a logic language
looks like and how it supports modularization of crosscutting concerns. Section
4 explains how ASLs are implemented and section 5 shows how aspect com-
position and interaction issues are handled. We briefly introduce a prototype
research tool for our approach in section 6. Sections 7 and 8 discuss future and
related work.

2 Case: The Conduit Simulator

2.1 Basic Functionality

Our running example is a conduit simulator, implemented in Smalltalk and which
allows to simulate the flow of fluid in a network of conduits. A conduit system
can be built using 4 types of conduits: pipes, sources, sinks and joins. An example
of a conduit-system is shown in figure 1 and a simplified class diagram of the
implementation is shown in figure 2.
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Fig. 1. A Conduit-system.
Fig. 2. Class diagram of the Conduit
Simulator.

Each type of conduit is implemented by a single class. A conduit-system is
built by linking each conduit to an incoming conduit from which it should receive
fluid1. The basic behaviour is implemented in two methods:

#drain: Each drainable conduit (source, pipe and join) understands the mes-
sage #drain: which can be used to drain an amount of fluid from it.

#fill The #fill method of each conduit tries to fill the conduit by draining the
incoming conduit(s). A source conduit fills itself based on a profile.

All conduits simultaneously run a looping process that executes the #fill
method, i.e. conduits are active objects that continuously drain their incoming
conduit(s). As a result, fluid will flow from sources to sinks.

2.2 Crosscutting Functionality

Making the conduit simulator work correctly requires us to deal with some cross-
cutting concerns.

Synchronizing and Order of Execution. A conduit can only be drained
after each time it has been able to fill itself. Therefore, the #fill and #drain:
methods can only be executed in alternating order.

This can be done by inserting synchronisation code at the beginning and at
the end of both these methods. Obviously, this leads to tangled functional and
non-functional code. In the rest of the paper, we will refer to this aspect as the
‘order of execution’ aspect.

User Interface (UI). We also need to visualize the real-time simulation. There-
fore, we create views for each type of conduit and use an Observer design pattern
to couple them. The code for this pattern also crosscuts the implementation of
all conduit types.

1 Join conduits are linked to two incoming conduits.
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Logging. For debugging purposes, we want to log the execution of the #drain:
and #fill methods, which also amounts to the introduction of code in the
beginning and at the end of those methods. Once again, this would tangle logging
code with functional code. Also, this addition requires the insertion of very
similar code in many places. It is also important to note that writing to the log
should also be synchronized.

In the following section, we explain how to write the logging aspect in a
general-purpose aspect language (implemented using our LMP approach) and
we elaborate on building aspect-specific languages for all aspects of the conduit
simulator in section 4.

3 Aspects in a Logic Language

In LMP, we use a logic programming language to reason about object-oriented
base programs. The metalevel description of the base-language program consists
of logic facts and rules [20]. In the context of AOP, the logic language also
serves as the surrounding medium in which we embed our aspect languages.
This provides a general framework for declaring and implementing aspects.

3.1 Aspects as Logic Modules

An aspect language is specified as a set of logic predicates, as is shown in table 1
for a general-purpose ‘advice’ aspect language (similar to advices in AspectJ [7]).
An aspect in this aspect language is implemented as a set of logic declarations
of these predicates, contained in a logic module. An example aspect is shown in
figure 3 (this is only a first and simple version of the aspect that will be improved
in later sections). The logic inference engine becomes the weaver, which gathers
all the logic declarations that are present in such a module. The weaver (for
a particular aspect language) understands the declarations and knows how to
weave the aspect into the base program. In the code fragments, all predicates
that are part of an aspect language are shown in bold.

We first provide some details about the syntax of our logic language:

– We have a special logic term (delimited by curly braces: ‘{‘ and ‘}’) to embed
base program text in the logic declarations. This term can even contain logic
variables (their use is explained later, also see [4]).

– Logic variables start with a question mark (e.g. ?variable).
– The modules basically encapsulate logic declarations. Each logic declaration

belongs to a module and is only visible in the module where it is defined.
– Modules can be composed to use declarations of another module or to make

declarations in one module visible in another module. How this is done is
explained later.



114 J. Brichau, K. Mens, and K. De Volder

Table 1. A simple advice aspect-language (similar to advices in AspectJ).

Predicate Description
adviceBefore(?m,?c) Execute code fragment ?c before executing method ?m
adviceAfter(?m,?c) Execute code fragment ?c after executing method ?m

adviceBefore(method(Pipe,drain:),{ Logger log: 'Enter Pipe>>drain:' for: thisObject}).
adviceAfter(method(Pipe,drain:), { Logger log: 'Exit Pipe>>drain:' for: thisObject}).
adviceBefore(method(Pipe,fill),{ Logger log: 'Enter Pipe>>fill'for: thisObject}).
adviceAfter(method(Pipe,fill), { Logger log: 'Exit Pipe>>fill' for: thisObject}).
adviceBefore(method(Join,drain:),{ Logger log: 'Enter Join>>drain:' for: thisObject}).
adviceAfter(method(Join,drain:), { Logger log: 'Exit Join>>drain:' for: thisObject}).
adviceBefore(method(Join,fill),{ Logger log: 'Enter Join>>fill' for: thisObject}).
adviceAfter(method(Join,fill), { Logger log: 'Exit Join>>fill' for: thisObject}).

Simple Logging Aspect

Fig. 3. Logging aspect in the advice aspect language

The aspect shown in figure 3 implements the logging for the conduit-system
in the aspect language defined in table 1. The Logger class keeps a log for
each conduit. The logic declarations inform the weaver that some code frag-
ments must be executed before and after the methods #drain: and #fill in
the classes Pipe and Join. Technically, the weaver gathers all adviceBefore and
adviceAfter declarations and weaves the code fragments in the indicated meth-
ods. The thisObject keyword is understood by the weaver and is a reference to
the object in which the code fragment is executed.

3.2 Logic Pointcuts

An aspect describes where or when its functionality should be invoked in terms
of joinpoints. Pointcuts are sets of joinpoints. In our approach, joinpoints are
specific points in the base program’s code2.

The primitve example above expressed an aspect by directly applying advices
to individual joinpoints. Adequately expressing aspects also requires a mecha-
nism to abstract over sets of joinpoints (pointcuts) and factor out commonalities
between aspect code applied over all of them [3]. This involves (1) a pointcut
mechanism to characterize sets of joinpoints, (2) a mechanism of parameteri-
zation that allows the aspect’s code to have joinpoint-specific behavior. In the
LMP approach, both these mechanisms are supported through the use of logic
rules. We now discuss each mechanism in more detail.

Defining Pointcuts. Part of the implementation of the observer pattern (for
the UI-aspect) is the insertion of code at well defined joinpoints, that triggers the
observable’s update mechanism (hence, updating the UI). Defining a separate
2 Some experiments with dynamic joinpoints in LMP have been conducted in [5].
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advice fact for each of those joinpoints would result in a lot of code duplication,
because the advice is identical for each joinpoint. A better way to define the
UI-aspect is through the use of logic rules, which are a way to define a set of
similar of facts.

adviceAfter(?method,{ dependents do: [:each | each update] }) if
        changesState(?method).
    
changesState(method(?class,fill)) if
        subclass(Conduit,?class),
        classImplementsMethod(?class,fill).

User Interface Aspect

Fig. 4. Logic module implementing the UI-aspect.

The implementation of the ‘update’ part of the UI aspect is shown in figure 4.
The first logic rule declares adviceAfter facts for each joinpoint that is matched
by the pointcut defined by changesState declarations. The second logic rule
defines this pointcut as the #fill method of each subclass of Conduit. The
subclass and classImplementsMethod predicates are part of a predefined logic
library of predicates to reason about Smalltalk code (see [20]).

This example was particularly easy, because the code is identical for each
joinpoint of the pointcut. However, an aspect becomes significantly more complex
if the code requires variations dependent on the specific joinpoint.

Joinpoint-Dependent Variations. The logging aspect in figure 3 is an ex-
ample of an aspect that inserts a pattern of code containing joinpoint-dependent
variations, i.e. the name of class and selector. We can capture these variation
points using logic variables, embedded in the code pattern. Using this technique,
we can implement a more generic logging aspect, as is shown in figure 5.

    adviceBefore(method(?class,?selector), { Logger log: 'Enter ?class>>?selector' for: thisObject }) if
        logMethod(?class,?selector).
 
    adviceAfter(method(?class,?selector),{ Logger log: 'Exit ?class>>?selector' for: thisObject }) if
        logMethod(?class,?selector).
    
    logMethod(Pipe,drain:).
    logMethod(Pipe,fill).
    logMethod(Join,drain:).
    logMethod(Join,fill).

Improved Logging Aspect

Fig. 5. Logic module implementing the logging aspect.
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The code pattern in the adviceBefore and adviceAfter declarations is now
parameterized by logic variables ?class and ?selector. The weaver uses the
inference engine to substitute them with their specific bindings, dependent on
the joinpoint that the advice is woven into.

We have now explained what an aspect language embedded in a logic lan-
guage looks like and how it is suited to describe crosscutting concerns that
should be woven in the base program code. We now elaborate on the use and
composition of logic modules to implement and use aspect-specific languages.

4 Aspect-Specific Languages

Aspect languages are implemented through logic rules in logic modules. These
rules define the meaning of an aspect language in terms of a more primitive
aspect language. This eases the implementation of ASLs because weavers for
them do not have to be implemented from scratch. Typically, we have a primitive
aspect weaver that implements a low-level, general-purpose aspect language on
which other aspect-specific languages can be built. In the following subsections,
we illustrate this with the construction of two aspect languages for logging and
‘order of execution’ in our conduit simulator. Both of these aspect languages are
defined in terms of the more general-purpose advice aspect language.

Table 2. A simple logging aspect language.

Predicate Description
logMethod(?c,?m) Log the execution of the method ?m in class ?c.

Logging Aspect Language. The logging aspect of figure 5 already defined
a simple aspect language for logging. The aspect language consists of a single
predicate and is shown in table 2. The first two rules in figure 5 define the
meaning of the logging aspect language in terms of the advice aspect language.
The remaining facts constitute the implementation of the aspect. But the logic
module in figure 5 contains both the logging aspect itself and the implementation
of the logging aspect language. To facilitate reuse of the implementation of the
aspect language, we prefer to separate the aspect implementation from the aspect
language’s implementation. To achieve this, we split this module in an aspect
language module and an aspect definition module and provide a composition
mechanism to compose both modules.

The logic rules that implement the logging aspect language are placed in
a separate aspect-language module. But now, these logic rules should gather
the required logMethod declarations in a separate aspect-definition module,
which depends on the particular application in which the aspect language is
used. Therefore, we parameterize the aspect-language module using a module-
variable, which can be bound to a specific aspect-definition module (containing
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logMethod facts) in the context of a particular application. In the code frag-
ments, all module-variables are shown in italic.

Logging Aspect Language

adviceBefore(method(?class,?selector),{Logger log: `Enter ?class>>?selector' for: thisObject}) if
        ?logaspect.logMethod(?class,?selector).
  
adviceAfter(method(?class,?selector),{Logger log: `Exit ?class>>?selector' for: thisObject}) if
        ?logaspect.logMethod(?class,?selector).

?logaspect

Fig. 6. Aspect-language module implementing the logging aspect language.

Figure 6 shows the aspect-definition module for the logging aspect language
implemented in terms of the advice aspect language. The logMethod declarations
will be gathered in the logic module that is bound to the ?logaspect module-
variable. Hence, the ?logaspect module-variable parameterizes this logic mod-
ule with another logic module. In the implementation of a particular application,
we can bind the module-variable with an aspect definition module implementing
a logging aspect, such as the one shown in figure 7.

logMethod(Pipe,drain:).

logMethod(Pipe,fill).

logMethod(Join,drain:).

logMethod(Join,fill).

Logging Aspect

Fig. 7. Logging aspect that is un-
derstood by the logging aspect lan-
guage implemented in figure 6.

executionOrder([method(Pipe,fill),method(Pipe,drain:)]).
executionOrder([method(Source,fill),method(Source,drain:)]).
executionOrder([method(Join,fill),method(Join,drain:)]).

'Order of Execution' Aspect

Fig. 8. ‘Order of execution’ aspect that
is understood by the ‘order of execution’
aspect language of table 3.

While this example is rather simple, the use of ASLs is particularly interest-
ing for aspects that can be reused in many different contexts (such as the more
technical aspects that implement non-functional requirements like synchroniza-
tion, distribution, . . . ) and where the code of the aspect is more complicated.
The ASL shields the developer from the burden of the implementation while still
enabling him to tailor the functionality of the aspect (to the extent that the ASL
allows it).

‘Order of Execution’ Aspect Language. The above logging aspect language
only allows to specify joinpoints for the logging aspect. The ‘order of execution’
aspect is much more interesting because the aspect language we constructed for it
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provides ‘hooks’ that allow us to add behaviour to the aspect. The logic module
shown in figure 8 is an aspect-definition module, implementing an aspect for
our conduit simulator in the ‘order of execution’ aspect language. This language
consists of three logic predicates, described in table 3. The last two predicates
define hooks that allow the user of the aspect language to specify additional code
that will be inserted in the implementation of the aspect.

Table 3. ‘Order of Execution’ aspect language.

Predicate Description
executionOrder(?list) The ?list argument of this predicate is a list of methods that

should be executed in mutual exclusion and in order of oc-
curence in the list. After the last method in the list is executed,
the first method can again be executed.

onBlock(?m,?c) Execute code ?c when the method ?m is blocked by the syn-
chronisation guards.

onStart(?m,?c) Execute code ?c when the method ?m is given permission to
execute by the synchronisation guards.

The ‘order of execution’ aspect for our conduit simulator is shown in figure
8. In figure 9, we show part of the aspect-language module implementing the
‘order of execution’ ASL in terms of the advice language. Basically, the first two
rules respectively describe before advices and after advices that insert a simple
synchronization algorithm (using semaphores) on each of the methods given in
the executionOrder declarations. The auxiliary orderDependence rule is part
of the internal implementation of the ASL to compute which semaphores should
be used by that particular advice and to gather the additional code fragments
in the optional onBlock and onStart declarations.

adviceBefore(?jp,{ globalSema wait. (semaphores at: ?position) 
                                                                               waitAndExecute:[?onBlock. globalSema signal]. 
                                    ?startCode }) if
    orderDependence(?jp,?position,?nextPosition,?blockCode,?startCode).

adviceAfter(?jp,{ (semaphores at: ?nextPosition) signal }) if
    orderDependence(?jp,?position,?nextPosition,?blockCode,?startCode).

orderDependence(?jp,?currentPos,?nextPos,?blockCode,?startCode) if
    ?orderAspect.executionOrder(?list),
    computePositions(?list,<?jp,?currentPos,?nextPos,?blockCode,?startCode>).
    . . .

'Order of Execution' ASL

Fig. 9. Part of the aspect-language module implementing the ‘Order of Execution’
ASL.
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We have shown how to build aspect-specific languages on top of a more
general-purpose aspect language. These ASLs can be reused as black-box en-
tities in many different development contexts through the use of logic rules in
logic modules. We do not claim that the actual implementation of an ASL is a
simple process. One still has to design an appropriate language and implement
its semantics in terms of another (more low-level) aspect language. Also, the fact
that all ASLs in LMP remain embedded in the same logic language, obviously
bears some advantages as well as disadvantages. On the one hand, it ensures
a common medium to express the composition of all aspects in these aspect-
languages. On the other hand, no aspect-specific syntax is provided. However,
we feel that the advantage is far more greater than the disadvantage because
the combination of multiple aspects can raise many subtle and difficult issues
that should be tackled by the programmer [9,19]. Also, nothing prohibits us to
extend the approach to allow for aspect-specific syntax on top of the underlying
logic description. We are currently looking into that issue.

5 Composition and Interaction

Combining multiple aspects in a single application can raise problems that do not
exist when the aspects are considered in isolation. For example, in our conduit
simulator, combining the logging aspect with the ‘order of execution’ aspect
poses some complications:

A: Logging of methods that are ‘ordered’. How do we log methods that
may block because of the ‘order of execution’ aspect?

A1 Do we log entry to a method before or after checking the guards?
A2 How do we log the fact that a method blocks?

B: Reducing synchronisation overhead for logging. To synchronize the
Logger class, we use a synchronisation aspect. But the ‘order of execution’
aspect also synchronizes methods of each conduit and the log itself is different
for each conduit. This means that if logging is only executed in the critical
sections that are created by the ‘order of execution’ aspect, that it is safe to
omit a supplementary synchronisation aspect. On the other hand, in some
cases, we also might want to log other methods of a conduit than #drain:
and #fill. In those cases, we do need proper synchronisation for the log
aspect.

B1 How do we automatically apply a synchronisation aspect to the logging
aspect?

B2 How do we reduce the amount of synchronisation code to be executed,
based on interaction with the ‘order of execution’ aspect?

In the following subsections, we show how logic modules can be used to
implement the aspect-combination complications mentioned above.
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5.1 Combining Aspects

Aspects are combined using aspect-combination modules. A combination module
is a logic module that is parameterized with several other modules and contains
rules that describe how the functionality of these other modules is to be com-
bined. This composition mechanism can be used to compose aspect-definition
modules, as well as aspect-language modules. The aspect combination module
then acts as their composition and therefore it is the only module to be handed
to the weaver.

Dominates Combination Module. The aspect-composition problem A1 (or-
der of the aspects) could be solved by prioritizing the aspects. This is a general
solution which requires no domain-specific knowledge of the aspects themselves.
Therefore it can be handled by a general type of prioritization rule. Figure 10
shows part of the ‘dominates’ combination module that prioritizes the advices
generated by the aspect-language modules for logging and ‘order of execution’.
The rule that handles adviceAfter is identical. In figure 12, we show how the
‘dominates’ combination module is used to ensure that the ‘order of execution’
aspect (dominating aspect) is executed before the logging aspect (dominated
aspect). The actual composition of the modules, as depicted in figure 12, can
either be defined by a logic program or in a visual composition tool (see [2] for
a prototype of such a tool).

Dominates Combination Module

adviceBefore(method(?class,?method),{ ?domcode ?infcode }) if
    ?dominatedAspect.adviceBefore(method(?class,?method),?infcode),
    ?dominatingAspect.adviceBefore(method(?class,?method),?domcode).
...

?dominatedAspect ?dominatingAspect

Fig. 10. The Dominates combination module to prioritize an aspect.

Wrapper Combination Module. Another kind of aspect-combination mod-
ule is required for problem B1, where we merely want to wrap synchronisa-
tion code around the logging code. Using the previous ‘dominates’ combination
module, this would result in wrapping synchronisation code around the entire
method, instead of only around the logging code. Figure 11 shows part of a
‘wrapper’ combination module that produces the desired result. The rule fetches
the before and after advice of the ‘wrapper’ aspect for every before advice of
the ‘internal’ aspect and concludes a combined before advice. This combined
before advice contains the ‘internal’ aspect’s before advice, surrounded with the
‘wrapper’ aspect’s advices. In our particular case, the ‘wrapper’ aspect is the syn-
chronisation aspect and the ‘internal’ aspect is the logging aspect. Once again,
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rules that handle adviceAfter predicates are similar and are omitted. Also, for
simplicity, we do not include the implementation of this synchronisation aspect
here.

Wrapper Combination Module

adviceBefore(method(?class,?method),{ ?wrapbefore ?code ?wrapafter}) if
    ?internalAspect.adviceBefore(method(?class,?method),?code),
    ?wrapperAspect.adviceBefore(method(?class,?method),?wrapbefore),
    ?wrapperAspect.adviceAfter(method(?class,?method),?wrapafter).
. . .

?internalAspect ?wrapperAspect

Fig. 11. TheWrapper combination module to wrap an aspect’s advices around another
aspect’s advices.

Completely solving problem B and A2 requires some more interacting as-
pects. These are explained in the following section.

5.2 Interacting Aspects

Logging when a method blocks (problem A2), is conceptually more difficult, it
cannot be solved simply using the ‘dominates’ or ‘wrapper’ combination mod-
ule. It requires an explicit specialization of one of the aspects to adapt to the
other one. This requires knowledge about both aspects and is most easily ex-
pressed in aspect-specific terms. In our approach, we make use of such high-level
declarations and define intuitive logic rules that implement an interaction.

An aspect interaction module is implemented as a logic module, parameter-
ized with module-variables. The difference with combination modules is that
they do not combine several aspects in one aspect but implement a dependency
or interaction between aspects. In other words, they modularize a crosscutting
aspect. Interaction modules contain logic rules that are triggered by one aspect
and add logic declarations to the other aspect. Furthermore, interaction mod-
ules do not compose aspects. To succesfully compose aspects that require an
interaction, the interaction module should be used together with a combination
module, as shown in figure 13.

Log methods that block. The logic module in figure 14 is an aspect interac-
tion module that implements the desired interaction between the logging aspect
and ‘order of execution’ aspect to solve problem A2. The logic rule adapts the
‘order of execution’ aspect by adding an additional onBlock declaration to it for
each method that needs to be logged and ‘ordered’. This is specified by starting
the conclusion of the logic rule with a module variable, which will be bound to
the ‘order of execution’ aspect module. As such, the rule makes it’s conclusion
visible in this module. The rule in figure 14 adds an onBlock declaration to the
‘order of execution’ aspect if the method needs to be logged and ‘ordered’.
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Fig. 12. Combining Logging and Order of
Execution.

Fig. 13. Composing logic modules
to implement interactions between
aspects.

Interaction Module for Logging and 

'Order of Execution' Aspects

?orderaspect.onBlock(method(?class,?method),{ Logger log: '?class>>?method blocks'. }) if
    ?logaspect.logMethod(method(?class,?method)),
    ?orderaspect.executionOrder(?list),
    member(?list,method(?class,?method)).

?logaspect ?orderaspect

Fig. 14. Interaction to log methods when they block.

Synchronising the log. Another interaction module is required for problem
B. In this example, the synchronisation aspect does not include a pointcut def-
inition. Instead, it should fetch its pointcut definition from the logging aspect.
The following logic rule could be used to implement such an interaction:

?syncaspect.synchronize(?method) if
?logaspect.logMethod(?method).

However, the logic rule above is too simple to tackle problem B2, which
requires a more complex interaction module that also needs to interface with
the ‘order of execution’ aspect. Since the log is different for each conduit and
the ‘order of execution’ aspect synchronizes the #drain: and #fill of each
conduit, it is safe to omit the synchronisation code of the log if logging only
occurs in the critical sections of these methods. As we have seen in section 5.1,
in the combination aspect for the ‘order of execution’ and logging aspects, logging
code is ‘dominated’ by the ‘order of execution’ aspect’s code.

The interaction module implementing this functionality uses the rule shown
in figure 15. It specifies the pointcut of the synchronisation for the logging code.
This pointcut contains all methods that need to be logged under the condition
that all these methods are not a subset of the methods that are wrapped with
the ‘order of execution’ aspect. Indeed, if it would be a subset, the pointcut is
empty because in that case synchronisation of the log is already done by the
‘order of execution’ aspect.
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To completely solve problem B, the interaction module should also be used
with the dominates and the wrapper combination modules (from section 5.1),
using the composition structure as shown in figure 16.

Interaction Module for Logging,  Sync. and

'Order of Execution' Aspect Languages

?syncaspect.synchronize(method(?class,?method)) if
    ?logaspect.logMethod(method(?class,?method)),
    findall(?aMethod,?logaspect.logMethod(?class,?aMethod),?allLoggedMethods),   
    ?orderaspect.executionOrder(?orderedMethods),
    member(method(?class,?method),?orderedMethods),
    not(subset(?allLoggedMethods,?orderedMethods)).
...

?logaspect ?orderaspect?syncaspect

Fig. 15. Interaction to reduce synchronisation overhead.

Fig. 16. Composition of logic modules to solve problem B.

6 Tool Support

The Soul/Aop system [2] is a prototype aspect-weaver that implements our logic
metaprogramming approach to AOP in Smalltalk. It provides a hard-coded ba-
sic aspect language on which we can build our own ASLs using the techniques
explained in this paper. The experiment in this paper was conducted using
Soul/Aop.

The basic aspect language (table 4) supports wrapping of methods with as-
pect code as well as the definition of aspect-instance variables. Furthermore,
the aspect code (defined in wrap declarations) can contain two special keywords
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(original, thisObject) that respectively allow access to the wrapped method
and the executing object with which the aspect is woven.

The weaver itself consists of two parts: the logic inference engine and the
low-level (Smalltalk) weaver. This low-level weaver launches queries to gather
the logic declarations written in the basic aspect language and generates the
appropriate Smalltalk constructs to produce the required behaviour described
by these declarations. We can also say that the low-level weaver actually is the
kernel of the Soul/Aop aspect-weaver and that the logic inference engine weaves
the extensions described by the logic declarations in the various logic modules
together and transforms them into the basic aspect language.

Table 4. Basic SOUL/Aop aspect language.

Predicate Description
wrap(?m,?code) Wrap/shadow the method ?m with ?code
instvars(?list,?scope) Declares a list ?list of aspect-instance variables of which the

scope is defined as ?scope. How this scope is specified is out of
the scope of this paper (see [2]).

7 Future Work

Although the experiment with the conduit simulator is rather small, it was cho-
sen specifically to illustrate how the LMP approach can be used to implement
composable ASLs. This approach will now be used to investigate the many com-
plex and interesting problems that can arise when combining aspects as well as
aspect languages.

For the reason above, the logic modules have a flexible composition mecha-
nism, which could even be more flexible when we extend it with the ability to
override predicates in a logic module. For now, the ability to express interaction
issues between ASLs is limited in terms of the expressiveness of the ASLs them-
selves. For example, the interaction to solve problem A2 relies on the onBlock
predicate of the ‘order of execution’ ASL. Overriding of predicates would allow
an interaction aspect to change the implementation of the ASL itself. As such,
an interaction module itself could also have added the onBlock predicate to the
‘order of execution’ ASL.

Furthermore, the LMP approach presented in this paper uses static join-
points, which are locations in the source code. LMP has also been used to express
crosscutting on a dynamic joinpoint model [5]. The issue remains open wether
this joinpoint model can be easily merged with the LMP approach we discussed.
We also envision more fine-grained weaving than method-level wrapping as one
of the future improvements of the Soul/Aop aspect-weaver.
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8 Related Work

In [4], we explained how to use logic metaprogramming as a technology to im-
plement extensible aspect weavers. However, no means for modularization of
aspects and aspect languages was discussed, nor did we address the combination
and interaction of aspects and aspect languages.

AspectJ [7] is an aspect-oriented extension to Java. Aspects are written like
normal java classes, extended with pointcuts and advices. The dominates key-
word accomplishes the same as our dominates combination. However, a combi-
nation such as the wrapper combination is harder to achieve because pointcuts
cannot refer to advices. The modularization of interactions between aspects (or
crosscutting aspects) is not yet supported. AspectJ also features the definition
of abstract aspects through the use of abstract methods and abstract pointcuts.
This allows to write aspects that can be reused and adapted and hide much of
the implementation from the reuser. This is somewhat similar to what ASLs ac-
complish. But all combinations and interactions in AspectJ need to be expressed
in general-purpose terms and not in more intuitive, aspect-specific terms.

An approach to validate combinations of aspects is presented in [9]. Aspects
are augmented with specifications that describe the mutual exclusiveness or de-
pendencies with other aspects. This allows to detect or prevent some faulty
combinations of aspects. The approach provides a conflict-detection mechanism,
but does not discuss how conflicting aspects could be combined.

In JAC (Java Aspect Components) [17], aspects can be wrapped around
objects at run time. The precedence of wrapping is addressed by an explicit
composition aspect written in a general-purpose language. Other adaptations to
aspects, such as the interactions we discussed, are not addressed in this tech-
nique. An advantage is that the composition aspect can use dynamic information
to decide on the composition.

In [18], a number of approaches to modularize crosscutting concerns are com-
bined in a hybrid system. This system allows a developer to use the most appli-
cable approach for the implementation of a given concern. Interactions between
the different concerns are possible because the different approaches have been
integrated in a (general-purpose) object-oriented approach.

9 Conclusion

In this paper we explained how aspect-specific languages can be implemented
and combined using a logic metaprogramming approach. Logic metaprogram-
ming provides a uniform and intuitive mechanism that reconciles the ability to
build aspect-specific languages with the ability to compose aspects. The common
logic medium facilitates the combination and interaction of aspects written in
different aspect-specific languages. Furthermore, the logic modules that govern
the interactions and combinations can use aspect-specific terms, which allows an
intuitive description of the desired combination and interaction of the aspects
involved.
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