
A Comparative Cost/Security Analysis
of Fault Attack Countermeasures

Tal G. Malkin1, François-Xavier Standaert1,2, and Moti Yung1

1 Dept. of Computer Science, Columbia University
2 UCL Crypto Group, Université Catholique de Louvain

{tal, moti}@cs.columbia.edu, fstandae@dice.ucl.ac.be

Abstract. Deliberate injection of faults into cryptographic devices is
an effective cryptanalysis technique against symmetric and asymmetric
encryption algorithms. To protect cryptographic implementations (e.g.
of the recent AES which will be our running example) against these
attacks, a number of innovative countermeasures have been proposed,
usually based on the use of space and time redundancies (e.g. error de-
tection/correction techniques, repeated computations). In this paper, we
take the next natural step in engineering studies where alternative meth-
ods exist, namely, we take a comparative perspective. For this purpose,
we use unified security and efficiency metrics to evaluate various recent
protections against fault attacks. The comparative study reveals secu-
rity weaknesses in some of the countermeasures (e.g. intentional mali-
cious fault injection that are unrealistically modelled). The study also
demonstrates that, if fair performance evaluations are performed, many
countermeasures are not better than the naive solutions, namely dupli-
cation or repetition. We finally suggest certain design improvements for
some countermeasures, and further discuss security/efficiency tradeoffs.

Keywords: Attacks and countermeasures in hardware and software.

1 Introduction

Fault attacks consist of forcing a cryptographic device to perform some erroneous
operations, hoping that the result of that wrong behavior will leak information
about the secret parameters involved. These techniques have been increasingly
studied since the publication of Boneh, Demillo and Lipton in 1996 [9] in the
context of public key cryptosystems, and its extension to the private key setting
by Biham and Shamir [8]. They were improved thereafter by several different
authors in various contexts (e.g. [7,17,27]). Two survey papers have recently
described practical and algorithmic issues of these methods [3,13].

Countermeasures against fault attacks can be deployed in hardware or soft-
ware and generally help circuits to avoid, detect and/or correct faults. Certain
active protections use sensors and detectors to infer abnormal circuit behav-
iors. Passive protections such as randomization of the clock cycles or bus and
memory encryption [10,14] may also be used to increase the difficulty of suc-
cessfully attacking a device. However, in practice, most proposed schemes are

L. Breveglieri et al. (Eds.): FDTC 2006, LNCS 4236, pp. 159–172, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

160 T.G. Malkin, F.-X. Standaert, and M. Yung

based on classical error-detecting techniques using space or time redundancies
[5,6,16,20,19,21,22,23,32]. In this paper, we conduct a comparative study regard-
ing these latest techniques, assessing their security and efficiency. We believe that
while the original investigations are useful and inventive in many ways, the com-
parative perspective is valuable since it forces a more uniform and perhaps more
realistic view of the effectiveness of the countermeasures, from both security and
cost point of view. In particular, our findings underline that certain published
countermeasures may not be sufficient to counteract fault attacks due to lim-
ited modelling (e.g. intentional malicious fault injection that are unrealistically
modeled as random limited number of faults, more typical in non-malicious envi-
ronments). We also point out that, if fair performance evaluations are conducted,
many countermeasures are not better than the naive solutions, namely duplica-
tion or repetition. Finally, we discuss the resulting security vs. efficiency tradeoff
in the general context of hardware implementations that our study implies.

The rest of this paper is structured as follows. Section 2 investigates error de-
tection techniques based on the use of space redundancies, including parity checks
and other codes. We discuss limitations of security models in certain countermea-
sure designs which lead to attacks and, when overcome, lead to efficiency overhead.
Section 3 similarly discusses techniques based on repetition or duplication. We re-
veal certain design issues that need corrections and we essentially realize that these
schemes tend to resemble the naive countermeasures. Our conclusions, outlining
the usefulness of our comparative study are in Section 4.

2 Error Detection Techniques Using Space Redundancies

2.1 Description of a First Scheme

References [23,32] describe a solution for the low cost concurrent error detec-
tion in substitution-permutation networks. We briefly summarize the proposed
schemes in this section. For clarity purposes, we target the AES Rijndael [11].

A round of an unprotected block cipher implementation is represented in Figure
1. S blocks, representing non-linear substitution boxes (i.e. SubBytes in Rijndael),
are followed by a linear diffusion layer (i.e. ShiftRows and MixColumns in Rijn-
dael) and a bitwise key addition. The basic purpose of the countermeasure is to
add a parity bit to the scheme in order to track errors during the execution of the

S S S S S S S S

LINEAR DIFFUSION LAYER

k k k k k k k k

Fig. 1. Block cipher round without error check

A Comparative Cost/Security Analysis of Fault Attack Countermeasures 161

S S S S S S S S

LINEAR DIFFUSION LAYER

k k k k k k k k P(K)

Pin=P(X)

P(X) P(Y)

x x x x x x x x

y y y y y y y y

z z z z z z z z

u u u u u u u u Pout

Fig. 2. Block cipher round with error check

algorithm. A single block cipher round with concurrent error check is represented
in Figure 2 and the different steps of the error check are as follows.

1. Computing the input parity. The parity of the 128-bit input, denoted as
Pin, is determined by a tree of XOR gates. This parity is computed once at
the beginning of the algorithm.

2. Parity modification according to the S-boxes. An output bit is added
to the S-boxes in order to implement the XOR of the parity of all S-boxes
input bits with the parity of all S-boxes output bits, denoted as P (X)⊕P (Y).
The value of this additional output bit can be determined from the truth
table of the original S-box. It is represented as a black box in Figure 2.

3. No parity modification according to the diffusion layer. As detailed
in [23,32], the linear substitution layer of Rijndael does not involve any
modification of the previously defined parity. It is obvious for ShiftRows
which only permutes the bytes of the state and does not affect their values.
For MixColumn, it is observed that, due to the linearity of the transform, it
does not alter the parity when the 32-bit columns are considered.

4. Parity modification according to the key addition. Since a 128-bit
round key is bitwise XORed with the output of the diffusion layer, the input
parity has to be modified by the parity P (K).

5. Output parity checking. The parity of the actual outputs finally has to
be compared with the modified input parity of the round.

According to the original paper, the proposed step-by-step parity modification
overcomes the high diffusion of faults in block ciphers. Namely, a local fault
detected within a processing step by parity checking of this processing step
outputs will also be detected by comparing the modified parity of the round
outputs. As an illustration of the technique, let us consider an input X with
correct parity P (X) and assume that a single bit fault occurs on this value of
X , producing new intermediate values X∗, Y ∗, Z∗, U∗.

162 T.G. Malkin, F.-X. Standaert, and M. Yung

First, the parity will be modified as follows:

Pout = P (X) ⊕ P (X∗) ⊕ P (Y ∗) ⊕ P (K)

Then, computing the output bits parity, we find:

P (U∗) = P (Z∗) ⊕ P (K) = P (Y ∗) ⊕ P (K)

It is clear that the parities will only be equal if P (X) = P (X∗), therefore allowing
to detect the fault at the end of the round. Similarly, a single bit fault introduced
after the S-boxes will cause:

Pout = P (X) ⊕ P (X) ⊕ P (Y) ⊕ P (K) = P (Y) ⊕ P (K)

This is because the parity P (Y) is computed independently of the value of Y .
Also, we have:

P (U∗) = P (Z∗) ⊕ P (K) = P (Y ∗) ⊕ P (K)

Again the output parities will allow to detect the fault, and so will be for faults
introduced after each processing unit of the block cipher. Although it is clear
that multiple faults of even order will not be detected by such a scheme, the
authors argue that, according to [26], the probability of 1-bit, 2-bit, 3-bit and 4-
bit errors is respectively approximated by 85%, 10%, 3% and 1% in combinatorial
logic circuits. It is therefore concluded that the error-correcting scheme allows
to prevent most practical attackers, with a low hardware overhead.

2.2 Security of the Presented Scheme

Before discussing the presented countermeasure, let us first emphasize that, from
an algorithmic point of view, the number of faults necessary to mount a successful
attack has been dramatically reduced during the last years. In particular, it has
been shown in [27] that the AES Rijndael can be corrupted with only two faulty
ciphertexts. As a very straightforward consequence, a protection detecting only
85% of the injected faults is clearly not enough. Moreover, considering single-bit
faults only is certainly not a conservative approach, as multiple-bit faults start
to be a concern in very deep submicron technologies. Recent experiments have
notably shown that high-energy ions can energize two or more adjacent memory
cells in a circuit [15,28].

Anyway, in practice, it is unlikely that the mentioned experiments (i.e. evalu-
ations of fault occurrences due to radiations effects) correctly model the behavior
of a malicious insider. In particular, there are at least two parameters missing in
the previous analysis, namely time and space localization, that may enhance the
attacker capabilities to much more precision than unintended radiation effects.

Starting with time localization, it is clear that being able to induce a single-
bit fault twice during a round function will simply bypass the previous coun-
termeasure. Choosing the time at which the fault occur can be done by using
side-channel information to monitor the progress of the algorithm. As present

A Comparative Cost/Security Analysis of Fault Attack Countermeasures 163

pulse generators allow to deal with high frequencies, it is virtually possible to
insert a fault anytime during a cryptographic computation.

Similarly, being able to induce single faults in different nodes of an imple-
mentation also bypass a single-bit parity check. Choosing the location of the
fault can be done if light [31] or electromagnetic [29] induction are considered.
These techniques have been proven very efficient to force low cost faults in cryp-
tographic devices. More expensive techniques are susceptible to be even more
powerful.

As a consequence, the fault detection technique in Section 2.1 is practically
insecure as soon as real attacker capabilities are considered. This discussion also
suggests that resistance against faults attacks involve higher constraints than
usually required for integrated circuits. In particular, multiple bit faults have to
be taken into account, as well as space and time localization.

2.3 Description of Improved Schemes

From the previous descriptions, there are two basic reasons making the counter-
measure in [23,32] susceptible to multiple-bit faults: (1) only one parity bit is
used, (2) parity codes are linear. Both reasons involve simple extensions in order
to improve the detection capabilities of the method. In this section, we discuss
these improvements of the original scheme and their additional cost1.

1. Using more parity bits is suggested and implemented in [5] in order
to improve multiple-bit faults detection. Simple arguments allow to evaluate
the effect of such a countermeasure if the faults are uniformly distributed. For
example, let n be the number of parity bits used, the probability that a double
fault affects twice the same parity bit is:

P =
n(

n + 1
2

) =
2

n + 1
(1)

[5] proposes one parity bit per byte for Rijndael, which yields P = 0.12.
Again, from a simple probabilistic point of view, the proposed improvement

is not sufficient to reject all attackers. Moreover, it is likely that multiple faults
will not be uniformly distributed, as multiple-bit faults usually target adjacent
memory cells. As a consequence, the probability of masked errors (e.g. double
faults occurring in the same byte) will actually be higher than predicted.

Regarding the additional cost for AES implementations, the proposal involves
more hardware overhead as there are more parity bits, but also because the pari-
ties are now affected by MixColumn, which involves the need of parity predictors
for this transform as well. These overheads are summarized in Table 1.
1 Note that making the parity checks only once a round does not affect the fault

coverage. As suggested in Section 2.1, what is detectable inside the round is also
detectable at its output. As a consequence, the use of more parity checkers only
affects the detection latency and may not be considered as a relevant improvement.

164 T.G. Malkin, F.-X. Standaert, and M. Yung

Finally, let us remark that using pipelined implementations (i.e. dealing with
multiple inputs in parallel) is another solution to decrease the probability of (1).
Double masked errors then have to affect twice the same parity bit and text.

2. Using non linear robust codes is another solution proposed in [19,20,24] to
obtain good resistance against single and multiple fault errors. For this purpose,
the authors use a much more restricting fault model where faults are uniformly
distributed throughout the circuit and the expected number of faults (i.e. fault
multiplicities) is proportional to the number of gates in the circuit. Two proposals
are actually considered.

In the first one [19], the AES Rijndael is divided into two blocks: linear and
non-linear, where the non-linear block only consists in the multiplicative inverse
of the Rijndael S-box. The non-linear code is simply represented in Figure 3
and computes the product of two inverses X and Y . In order to reduce the area
overheads, it is proposed to check only a few bits (typically 2) of the result.
Then, for the linear-part, every column of the AES is associated with an 8-bit

inverse x

X

Y 01?

Fig. 3. Multiplicative inverse with error check

parity, namely the XOR between the 4 bytes of the column. It yields a 32-bit
redundancy for the complete algorithm, which is computed independently, as the
S-boxes parities in Section 2.1. The fault coverage of this scheme is contrasted.
On the one hand, the non-linear part allows good detection of multiple faults,
while low-order faults can clearly be masked because of the 2-bit comparison. On
the other hand, the linear part suffers from the same problems as the previous
linear schemes for the detection of higher-order faults. Globally, it is conjec-
tured that the scheme only provides good error detection for faults with high
multiplicities. The hardware overheads of the proposal are again summarized
in Table 1. Note that [19] requires the S-box inverters and affine transforms
to be implemented independently, while hardware implementations frequently
combine both transforms in one single RAM block.

In the second proposal [20], a robust non-linear code is described, based on
the addition of two cubic networks, computing y(x) = x3 in GF (2)8, to the
previous linear scheme. The method allows to produce r-bit signatures to detect
errors. It is shown that the fraction of undetectable errors is proportional to 2−2r.
Although the proposal offers a good fault coverage, its actual implementation
is a real concern as the ratio throughput/area (a usual estimator of hardware
efficiency) is decreased by a factor of two. As a consequence, the solution cost is
somewhat comparable to duplication, which also has good non-linear properties

A Comparative Cost/Security Analysis of Fault Attack Countermeasures 165

and therefore provides good fault coverage. Note finally that non-linear robust
codes have been additionally discussed in [24] and the question to know if they
can lead to more efficient implementations is open.

2.4 Summary of the Results

We have investigated 5 recent countermeasures against fault attacks, based on
the use of space redundancies. Those are summarized in Table 1. The first two
ones use an unrealistic fault model, considering single faults only, and may not
be considered as sufficient to protect against a malicious attacker. [5] proposes
to use more parity bits to improve their fault coverage, but faults of even order
may still be masked with non-negligible probability.

Table 1. Space redundancy based techniques

Ref. Method Sin. fault Mul. fault Area Delay Thr. Thr./Area
detection detection overhead overhead overhead overhead

[23,32] single yes no +7.4% +6.4% - -
parity bit

[5] multiple yes double faults +20% - - -
parity bits masked with
(n = 16) P ∝ 2

n+1

[19] linear + weak good +35%∗ - - -
non-linear

codes
[20] non-linear good, good, +77% +15% -13% -51%

r-bit codes missed with missed with
(r = 28) P ∝ 2−2r P ∝ 2−2r

The last two ones use a much more restrictive fault model, but only [20]
provides good error detection properties against faults of all multiplicities. For
this last scheme, the hardware overhead is comparable to duplication, as the
ratio throughput/area has been divided by two. Remark that the objective of this
table is only to summarize the results, not to provide fair comparisons between
the different proposals. As a matter of fact, the area overhead is a function of
the hardware cost of the unprotected primitive and, for example, [19,20] are low
cost architectures compared to the ones used in the parity code papers. As a
consequence, their overhead in % are higher.

3 Error Detection Using Repetition and Duplication

The previous section underlined that error-detection techniques based on space
redundancies become as expensive as duplication if realistic attackers are consid-
ered. As a consequence, it is natural to investigate how codes based on repetition

166 T.G. Malkin, F.-X. Standaert, and M. Yung

or duplication can be used to improve the security of cryptographic devices. For
this purpose, we start with some precisions about our model.

(1) We consider a n-bit block cipher, with q rounds independently implemented.
(2) We assume that the error detection can be performed at three different levels:
algorithm-level, round-level or operation level. Working at one level involves that
the observed level is performed in at least one clock cycle, as its result has to
be stored and compared. (3) In operation level detection schemes, we denote
the number of operations considered per round as p. (4) The error detection
latency only depends on the detection level. (5) Depending on the detection
level, the codes have different non-linearity properties. However, as we perform
n-bit comparisons, we assume that the error miss rate is 2−n for all levels.

In general, the performance reduction in repetition or duplication schemes
has two parts. One corresponds to the comparators required to check the valid-
ity of intermediate values. It is inversely proportional to the detection latency,
as illustrated in Table 2, where τ denotes the timing function2. The other one
corresponds to the repetition or duplication itself and directly affects the im-
plementation throughput or area. Namely, repetition codes will cause a -50%
reduction of the throughput while duplication will require +100% additional
hardware. Regarding their detection properties, both solutions are not equiv-
alent, as repetition codes only allow to detect temporary (or soft) faults while
duplication also allows to detect permanent (or hard) faults.

Table 2. Latency vs. additional resources tradeoff

Latency Additional 1-bit comparators
τ (Algorithm) n

τ (Round) nq

τ (Operation) npq

While these solution may be straightforwardly implemented, the next sections
show that certain particular contexts allow to obtain the effects of repetition or
duplication for less than their usual cost.

3.1 Description of a First Scheme

Reference [16] describes a solution for the low cost concurrent error detection
in involutional block ciphers, exploiting the involution property to check if the
condition f(f(x)) = x is respected through the cipher. The authors argue that
the scheme achieves close to 0% time overhead. In this section, we show that:

1. The proposal can be improved by modifying the comparison scheme.
2. The proposal can be extended to non-involutional ciphers.
3. The proposal is actually a kind of repetition code.

2 Remark that the registers needed to store intermediate values are not considered as
hardware overhead. We show in the next section that, if well chosen, they can be
combined with the original implementation registers.

A Comparative Cost/Security Analysis of Fault Attack Countermeasures 167

mux

f

=?

in

out
error

Fig. 4. Concurrent error detection for involutional functions [16]

The original error correction principle is represented in Figure 4. Reference
[16] applies it to the Khazad block cipher [4], for which the non-linear and lin-
ear layer are involutional. First, let us observe that the area overhead can be
straightforwardly reduced by changing the comparison scheme. Indeed, by com-
paring the function f ’s output with its following register output in place of
with the multiplexor output, we can avoid the comparison register. It is repre-
sented in Figure 5, where we extend the scheme to a complete block cipher loop
architecture.

involutional S-boxes

=?

round input

S-boxes output

error

mux

involutional diffusion

=?

diffusion input

round output

error

mux

mux

input

Fig. 5. Improved concurrent error detection for involutional rounds

Now, let us investigate the real time overhead of the countermeasure. For
clarity purposes, we assumed that the work frequency was not affected by the
comparison scheme. In Figure 5, we represented the original round operations in
light grey and the overhead in dark gray. Removing the dark grey boxes, it is clear
that the round can be performed in two clock cycles. It is basically a pipelined
implementation dealing with two different plaintexts concurrently. Then, adding

168 T.G. Malkin, F.-X. Standaert, and M. Yung

the dark grey registers, the round operations (i.e. S-boxes and diffusion layer)
will be used half the clock cycles for encrypting, the other half for checking
the involution property. As a consequence, the proposed countermeasure will
cause a -50% throughput overhead. We show that the proposed countermeasure
is actually a repetition code, by extending it to non-involutional ciphers, as
illustrated in Figure 6. Looking at the light grey boxes, the round is again divided

S-boxes

input

mux

diffusion

=?error

=?error

Fig. 6. Similar concurrent error detection for non involutional ciphers

into two operations and pipelined. Let us imagine an encryption mode where the
same plaintext is encrypted twice and we add the comparison boxes. We can then
detect errors as in Figure 5. The repetition is now obvious. The only differences
between schemes 5 and 6 are:

1. The involutional scheme allows to detect permanent errors.
2. The involutional scheme needs two additional multiplexors.

At this point, it is not clear how the proposal can achieve a 0% time overhead and
actually, this assumption is not generally true. However, considering the context
of feedback encryption modes, the countermeasure of [16] becomes particularly
interesting, as the pipeline cannot be used to deal with different plaintexts3 but
still allows to ensure error-proofness. Compared to a non-pipeline loop architec-
ture, as usually required in feedback modes, we still require twice more clock
cycles for one encryption, but it is likely that the clock frequency will be im-
proved proportionally, so that the throughput will only slightly be affected. Note
that this latter point is not a particular quality of the proposed technique, but
a general rule in hardware design. A fair comparison of architectures for feed-
back encryption modes is represented in Figure 7, where we can clearly observe
the tradeoff between the number of cycles increase for one encryption and the
expected increase of clock frequency (because the critical path is reduced).

3 It is mandatory to complete one plaintext encryption before starting the next one.

A Comparative Cost/Security Analysis of Fault Attack Countermeasures 169

mux

round

half-round

half-round

mux

plaintext plaintext

error

=?

=?

error

Fig. 7. Encryption with feedback, without and with error detection

encrypt round 1

decrypt round r

=?encrypt round 2

decrypt round r-1

=?

encrypt round r

decrypt round 1

=?

plaintext

ciphertext

Fig. 8. Concurrent error detection using encryption/decryption designs

3.2 Another Proposal Equivalent to Repetition/Duplication

A very similar scheme has been presented in [21] for the concurrent error detec-
tion in symmetric block ciphers. It is based on exactly the same ideas as [16], in
the more general context of non-involutional ciphers.

Basically, as the involutional property is not available, it is replaced by a
design allowing to perform encryption and decryption. The error-detection prin-
ciple is illustrated in Figure 8 and can be viewed as (1) duplication if the encryp-
tion and decryption blocks are independently implemented, or (2) repetition if
the same hardware resources are used for encryption and decryption4. However,
as in the previous section, the proposal gain particular interest in certain specific
contexts. For example, if the cost of a decryption design is less than the one for

4 For most algorithms, only a part of the resources can be shared between encryption
and decryption. A perfect repetition scheme is only possible for involutional ciphers.

170 T.G. Malkin, F.-X. Standaert, and M. Yung

encryption5, the solution has a lower cost than duplication. Also, in applications
where encryption and decryption are necessary, but not concurrently, the ac-
tual performances will not be harmed by using the (otherwise unused) reverse
operation for error detection.

4 Discussion and Conclusions

In this paper, we reviewed a certain number of countermeasures against fault
attacks based on the use of space or time redundancies. It is shown that most
of these countermeasures are either insecure, due to an unrealistic fault model,
or their cost is close to duplication or repetition, excepted in certain particular
implementation contexts (e.g. encryption with feedback, encryption/decryption
designs). From an information theoretic point of view, this conclusion is close to
the one in [25], stating that most of efficient concurrent error detection schemes
exceed the cost of duplication. In general, improvements of these protections are
possible in two different directions.

First, restricting the fault model could allow to design more efficient solutions,
but it requires to consider the behavior of a malicious insider. Presently, only
a few works have been published about actual methods for fault injections and
more practical experiments are a preliminary step for such improvements. In
particular, it is not clear that attacker capabilities could reasonably be reduced
in terms of fault multiplicities or any other parameter. A conservative approach
therefore requires to provide an equal security for faults of any multiplicity, with
possible space and time localization.

Second, considering probabilistic fault detection is another usual alternative to
design schemes less expensive than duplication. However, regarding the require-
ments of present attacks (e.g. in [27], Rijndael is corrupted with only two faulty
ciphertexts), fault detection in cryptographic devices has particularly strong con-
straints. Therefore, this proposal has to be taken with care as faults have to be
detected with high probability.

More specifically, this work:

1. Points out the unrealistic fault model used in certain recently proposed coun-
termeasures [23,32].

2. Suggests that the actual cost of other countermeasures [19,20] are close to
duplication if fair comparisons are performed.

3. Improves the comparison scheme of [16] and generalizes it from involutional
block ciphers to all block ciphers.

4. Observes that countermeasures proposed in [16,21] are actual repetition
codes used in a specific context.

As a consequence of these observations, theoretical solutions to the problem of
fault attacks, as suggested in [12], no more appear as completely unpractical.
Also, due to their good detection properties, non-linear robust codes, such as
the ones in [19,20,24], would deserve further analysis to improve their hardware
cost and see how better they can compare with duplication.
5 This is very rarely the case in practice.

A Comparative Cost/Security Analysis of Fault Attack Countermeasures 171

References

1. R. Anderson, M. Kuhn, Tamper Resistance - a Cautionary Note, in the proceedings
of the USENIX Workshop on Electronic Commerce, pp 1-11, Oakland, CA, USA,
November 1996.

2. R. Anderson, M. Kuhn, Low Cost Attacks on Tamper Resistant Devices, in the pro-
ceedings of the 5th International Workshop on Security Protocols, Lecture Notes in
Computer Science, vol 1361, pp 125-136, Paris, France, April 1997, Springer-Verlag.

3. H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, C. Whelan, The Sor-
cerer’s Apprentice Guide to Fault Attacks, IACR e-print archive 2004/100,
http://eprint.iacr.org, 2004.

4. P.Barreto, V.Rijmen, The KHAZAD Legacy-Level Block Cipher, Submission to
NESSIE project, available from http://www.cosic.esat.kuleuven.ac.be/nessie/

5. G. Bertoni, L. Breveglieri, I. Koren, P. Maistri, V. Piuri, Error Analysis And De-
tection Procedures for a Hardware Implementation of the Advanced Encryption
Standard, IEEE Transactions on Computers, vol 52, num 4, pp 492-505, April
2003.

6. G. Bertoni, L. Breveglieri, I. Koren, P. Maistri, An Efficient Hardware-Based Fault
Diagnosis Scheme for AES: Performance and Cost, in the proceedings of DFT
2004, 9 pp, Cannes, France, October 2004.

7. I. Biehl, B. Meyer, V. Müller, Differential Fault Analysis on Elliptic Curve Cryp-
tosystems, in the proceedings of Crypto 2000, Lecture Notes in Computer Science,
vol 1880, pp 131-146, Santa Barbara, California, USA, August 2000.

8. E. Biham, A. Shamir, Differential Fault Analysis of Secret Key Cryptosystems, in
the proceedings of Crypto 1997, Lecture Notes in Computer Science, vol 1294, pp
513-525, Santa Barbara, CA, USA, August 1997, Springer-Verlag.

9. D. Boneh, R. DeMillo, R. Lipton, On the Importance of Checking Cryptographic
Protocols for Faults, in the proceedings of Eurocrypt 1997, Lecture Notes in Com-
puter Science, vol 1233, pp 37-51, Konstanz, Germany, May 1997, Springer-Verlag.

10. E. Brier, H. Handschuh, C. Tymen, Fast Primitives for Internal Data Scrambling
in Tamper Resistant Hardware, in the proceedings of CHES 2001, Lecture Notes
in Computer Science, vol 2162, pp 16-27, Paris, France, May 2001.

11. J. Daemen, V. Rijmen, “The Design of Rijndael. AES – The Advanced Encryption
Standard,” Springer-Verlag, 2001.

12. R. Gennaro, A. Lysyanskaya, T. Malkin, S. Micali, T. Rabin, Algorithmic Tamper-
Proof Security: Theoretical Foundations for Security Against Hardware Tampering,
in the proceedings of TCC 2004, Lecture Notes in Computer Science, vol 2951, pp
258-277, Cambridge, MA, USA, February 2004, Springer-Verlag.

13. C. Giraud, H; Thiebauld, A Survey on Fault Attacks, in the proceedings of CARDIS
2004, Toulouse, France, August 2004.

14. J.D. Golic, DeKaRT: A New Paradigm for Key-Dependent Reversible Circuits, in
the proceedings of CHES 2003, Lecture Notes in Computer Science, vol 2779, pp
98-112, Cologne, Germany, September 2003.

15. K. Johansson, M. Ohlsson, N. Blomgren, P. Renberg, Neutron Induced Single-Word
Multiple-Bit Upset in SRAM, in IEEE Transactions on Nuclear Science, vol 46, num
7, pp 1427-1433, December 1999.

16. N. Joshi, K. Wu, R. Karry, Concurrent Error Detection Schemes for Involution
Ciphers, in the proceedings of CHES 2004, Lecture Notes in Computer Science,
vol 3156, pp 400-412, Cambridge, Massachusset, USA, August 2004.

172 T.G. Malkin, F.-X. Standaert, and M. Yung

17. M. Joye, A.K. Lenstra, J.-J. Quisquater, Chinese Remaindering Based Cryptosys-
tems in the Presence of Faults, Journal of Cryptology, vol 12, num 4, pp 241-246,
1999, Springer-Verlag.

18. T. Karnik, P. Hazucha, J. Patel, Characterization of Soft Errors Caused by Single
Event Upsets in CMOS Processes, IEEE Transactions on Secure and Dependable
Computing, vol 1, num 2, April 2004.

19. M. Karpovsky, K.J. Kulikowski, A. Taubin, Differential Fault Analysis Attack Re-
sistant Architectures For The Advanced Encryption Standard, in the proceedings
of CARDIS 2004, Toulouse, France, August 2004.

20. M. Karpovsky, K.J. Kulikowski, A. Taubin, Robust Protection against Fault Injec-
tion Attacks on Smart Cards Implementing the Advanced Encryption Standard, in
the proceedings of DSN 2004, 9pp, Florence, Italy, June 2004.

21. R. Karri, K. Wu, P. Mishra, Y. Kim, Concurrent Error Detection Schemes for
Fault-Based Side-Channel Cryptanalysis of Symmetric Block Ciphers, in IEEE
Transactions on Computer-Aided Design, vol 21, num 12, pp 1509-1517, December
2002.

22. R. Karri, M. Gössel, Parity-Based Concurrent Error Detection in Symmetric Block
Ciphers, in the proceedings of ITC 2003, pp 919-926, Charlotte, USA, September
2003/

23. R. Karri, G. Kuznetsov, M. Gössel, Parity-Based Concurrent Error Detection of
Substitution-Permutation Network Block Ciphers, in the proceedings of CHES 2003,
Lecture Notes in Computer Science, vol 2779, pp 113-124, Cologne, Germany,
September 2003.

24. K.J. Kulikowski, M.Karpovsky, A. Taubin, Robust Codes for Fault Attack Resistant
Cryptographic Hardware, in the proceedings of FDTC 2005, pp 2-12, Edinburgh,
Scotland, September 2005.

25. S. Mitra, E.J. McCluskey, Which Concurrent Error Detection Scheme ro Choose,
in the proceedings of the International Test Conference 2000, pp 985-994, October
2000, Atlantic City, NJ, USA.

26. V. Moshanin, V. Otscheretnij, A. Dmitriev, The Impact of Logic Optimization on
Concurrent Error Detection, in the proceedings of the 4th IEEE International On-
Line Testing Workshop, pp 81-84, July 1998.

27. G. Piret, J.-J. Quisquater, A Differential Fault Attack Technique Against SPN
Structures, With Applications to the AES and Khazad, in the proceedings of CHES
2003, Lecture Notes in Computer Science, vol 2779, pp 77-88, Cologn, Germany,
September 2003.

28. R. Reed, Heavy Ion and Proton Induced Single Event Multiple Upsets, in the pro-
ceedings of the IEEE Nuclear and Space Radiation Effects Conference, July 1997.

29. D. Samyde, S. Skorobogatov, R. Anderson, J.-J. Quisquater, On a New Way to
Read Data from Memory, in the proceedings of the IEEE Security in Storage Work-
shop 2002, pp 65-69, Greenbelt, Maryland, USA, December 2002.

30. P. Shirvani, Fault Tolerant Computing for Radiation Environments, PhD Thesis,
Center for Reliable Computing, Stanford University, June 2001.

31. S. Skorobogatov, R. Anderson, Optical Fault Induction Attacks, in the proceedings
of CHES 2002, Lecture Notes in Computer Science, vol 2523, pp 2-12, Redwood
City, CA, USA, August 2002, Springer-Verlag.

32. K. Wu, R. Karri, G. Kuznetsov, M. Goessel, Low Cost Error Detection for the
Advanced Encryption Standard, in the proceedings of ITC 2004, Oct 2004.

	Introduction
	Error Detection Techniques Using Space Redundancies
	Description of a First Scheme
	Security of the Presented Scheme
	Description of Improved Schemes
	Summary of the Results

	Error Detection Using Repetition and Duplication
	Description of a First Scheme
	Another Proposal Equivalent to Repetition/Duplication

	Discussion and Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

