
1

The Structure-in-5 as an Agent Architectural Pattern

Tung T. Do Stéphane Faulkner Manuel Kolp

IAG- School of Management, ISYS- Information Systems Research Unit,
University of Louvain, 1 Place des Doyens, Belgium, tel.: +32 10 47 83 95

{do, faulkner, kolp@isys.ucl.ac.be}

Abstract

The structure-in-5 is a model from organization theory used to describe the
internal structure of an organization. Since multi-agent systems (MAS) can be
structured as organizations of agents, this paper adopts and experiments the
structure-in-5 for the design of MAS architectures. We describe the structure-in-
5 as an organizational pattern, model it in terms of social and intentional
concepts using the i* organizational modeling framework, and give some semi-
formal specification using the Formal Tropos language. The paper also revisits
and formalizes, in social and intentional terms, conventional architectural
elements commonly used to describe system architectures. The structure-in-5 is
applied in the design of the architecture of an e-business example. Part of the
architecture is expressed in terms of the revisited architectural elements.

1. Introduction

An architectural pattern constitutes an intellectually manageable abstraction of system
structure that describes how system components interact and work together. System
architectural design has been the aim of proliferating research during the last fifteen years that
has produced well-established architectural patterns such as pipes-and-filters, control loop,
event-based, partitioning, layers, … [Gar93].

Architectures for MAS can be designed as organizations of agents that coordinate with each
other to pursue a set of agreed upon objectives. Taking real-world organizations as a
metaphor, architectural patterns for MAS can be based on models from organization theory as
described in [Fux01a, Kol01, Gio02].

The structure-in-5 is a well-understood idiom from organization theory detailing the internal
structure of an organization. In the paper, we propose to use it to design MAS architectures.
We first describe the structure-in-5 as an organizational pattern through the analysis of two
real world organizations. We then model it using the i* organizational modeling framework
[Yu95] and gives some semi-formal specifications in Formal Tropos language [Fux01].
Finally we apply it to the design of an e-business architecture. In addition, we relate (part of)
the e-business architecture to conventional architectural elements revisited in terms of social
and intentional primitives.

This research has been conducted within the context of the Tropos project [Cas02, Per01].
Tropos adopts ideas from MAS technologies and requirements engineering, where
agents/actors and intentions are used for early requirements analysis [Ant96, Dar93, Yu95].
Tropos is intended as a seamless methodology tailored to describe both the organizational
environment of a system and the system itself in terms of the same concepts. In particular,
Tropos is founded on the i* modeling framework which offers actors (agents, roles, or

2

positions), goals, and actor dependencies as primitive concepts for modeling an application
during early requirements analysis.

The paper is structured as follows. Section 2 introduces some basic notions from organization
theory and it describes the structure-in-5 through the overview of two business organizations.
It then models and give a semi-formal specification of a version of structure-in-5 with i* and
Formal Tropos, respectively. Section 3 introduces the main lower-level elements composing a
system architecture. It then models and formalizes them also in terms of social and intentional
concepts. Section 4 describes the application of the structure-in-5 to the design an e-business
architecture and expresses part of it in terms of the software components analyzed in Section
3. Finally, Section 5 summarizes the contributions and points to further work.

2. The Structure-in-5

An organization is a social entity with a clear boundary consisting of various types of
stakeholders (individuals, physical or social systems) that coordinate on a continuous basis to
pursue a set of agreed upon local and global goals [Yos95]. Organization theory (e.g.,
[Min92, Mor99, Sco98, Yos95]) is the discipline that studies both structure and design for
such social entities. To this end, since ancient times, schools of organization theorists have
proposed patterns such as the structure-in-5, the matrix, the chain of value and the like to
define recurring organizational structures and behaviors. In the following, we will focus on
Mintzberg’s structure-in-5. For further information about other organizational patterns we are
working on, see [Fux01, Kol01, Gio02].

The structure of an organization can be considered an aggregate of five sub-structures, as
described by Minztberg [Min92]. At the base level sits the Operational Core which carries
out the basic tasks and procedures directly linked to the production of products and services
(acquisition of inputs, transformation of inputs into outputs, distribution of outputs). At the
top lies the Strategic Apex which makes executive decisions ensuring that the organization
fulfils its mission in an effective way and defines the overall strategy of the organization in its
environment. The Middle Line establishes a hierarchy of authority between the Strategic Apex
and the Operational Core. It consists of managers responsible for supervising and
coordinating the activities of the Operational Core. The Technostructure and the Support are
separate from the main line of authority and influence the operating core only indirectly. The
Technostructure serves the organization by making the work of others more effective,
typically by standardizing work processes, outputs, and skills. It is also in charge of applying
analytical procedures to adapt the organization to its operational environment. The Support
provides specialized services, at various levels of the hierarchy, outside the basic operating
work flow (e.g., legal counsel, R&D, payroll, cafetaria).

To model and formalize the structure-in-5 as an organizational pattern, we first analyze two
case studies of organizations on which the pattern can be applied: Agate Ltd, an advertising
agency and the commercial structure of GMT, a company specialized in telecommunication
services.

Agate. Agate Ltd is an advertising agency located in Birmingham, UK, that employs about
fifty staff, as detailed in Figure 1 [Ben99]. The Direction – four directors responsible for the
main aspects of Agate’s Global Strategy (advertising campaigns, creative activities,
administration, and finances) – forms the Strategic Apex. The Middle Line, composed of the
Campaigns Management staff, is in charge of finding and coordinating advertising campaigns
(marketing, sales, edition, graphics, budget, …). It is supported in these tasks by the
Administration and Accounts and IT and Documentation departments. The Administration
and Accounts constitutes the Technostructure handling administrative tasks and policy,

3

Direction
1 Campaigns Director
1 Creative Director
1 Administrative Director
1 Finance Director

Campaigns Management
2 Campaign managers
3 Campaign marketers
1 Editor in Chief
1 Creative Manage

Graphics
6 Graphic designers
2 Photographers

Edition
2 Editors
4 Copy writers

Documentation
1 Media librarian
1 Resource librarian
1 Knowledge worker

Administration
3 Direction assistants
4 Manager Secretaries
2 Receptionists
2 Clerks/typists
1 Filing clerk

IT
1 IT manager
1 Network administrator
1 System administrator
1 Analyst
1 Computer technician

Accounts
1 Accountant manager
1 Credit controller
2 Accounts clerks
2 Purchasing assistants

Figure 1. Organization of Agate Ltd

paperwork, purchases and budgets. The Support groups the IT and Documentation
departments. It defines the IT policy of Agate, provides technical means required for the
management of campaigns, and ensures services for the management of campaigns, and
ensures services for system support as well as information retrieval (documentation
resources). The Operational Core includes the Graphics and Edition staff in charge of the
creative and artistic aspects of realizing campaign (texts, photographs, drawings, layout,
design, logos).

Figure 2. Agate in Structure-in-5

Figure 2 models the Agate structure-in-5 using the i* strategic dependency model. i* is a
modeling framework for early requirements analysis [Yu95], which offers goal- and actor-
based notions such as actor, agent, role, position, goal, softgoal, task, resource, belief and
different kinds of social dependency between actors. Its strategic dependency model describes
the network of social dependencies among actors. It is a graph, where each node represents an
actor and each link between two actors indicates that one actor depends on the other for some
goal to be attained. A dependency describes an “agreement” (called dependum) between two
actors: the depender and the dependee. The depender is the depending actor, and the

4

dependee, the actor who is depended upon. The type of the dependency describes the nature
of the agreement. Goal dependencies represent delegation of responsibility for fulfilling a
goal; softgoal dependencies are similar to goal dependencies, but their fulfillment cannot be
defined precisely (for instance, the appreciation is subjective or fulfillment is obtained only to
a given extent); task dependencies are used in situations where the dependee is required to
perform a given activity; and resource dependencies require the dependee to provide a
resource to the depender. As shown in Figure 2, actors are represented as circles; dependums
– goals, softgoals, tasks and resources – are represented as ovals, clouds, hexagons and
rectangles; respectively, and dependencies have the form depender → dependum →
dependee.

GMT is a company specialized in telecom services in Belgium. Its lines of products and
services range from phones & fax, conferencing, line solutions, internet & e-business, mobile
solutions, and voice & data management. The structure of the commercial organization
follows the structure-in-5. An Executive Committee constitutes the Strategic Apex. It is
responsible for defining the general strategy of the organization. Five chief managers
(finances, operations, divisions management, marketing, and R&D) apply the specific aspects
of the general strategy in the area of their competence: Finances & Operations is in charge of
Budget and Sales Planning & Control, Divisions Management is responsible for
Implementing Sales Strategy, and Marketing and R&D define Sales Policy and Technological
Policy.

Figure 3. The Commercial Structure of GMT as Structure-in-5

The Divisions Management groups managers that coordinate all managerial aspects of
product and service sales. It relies on Finance & Operations for handling Planning and
Control of products and services, it depends on Marketing for accurate Market Studies and on
R&D for Technological Awareness.

5

The Finances & Operations departments constitute the technostructure in charge of
management control (financial and quality audit) and sales planning including scheduling and
resource management.

The Support involves the staff of Marketing and R&D. Both departments jointly define and
support the Sales Policy. The Marketing department coordinates Market Studies (customer
positionment and segmentation, pricing, sales incentive, …) and provides the Operational
Core with Documentation and Promotion services. The R&D staff is responsible for defining
the technological policy such as technological awareness services. It also assists Sales people
and Consultants with Expertise Support and Technology Training.

Finally, the Operational Core groups the Sales people and Line consultants under the
supervision and coordination of Divisions Managers. They are in charge of selling products
and services to actual and potential customers.

Figure 4 abstracts the structures explored in the case studies of Figures 2 and 3 as a Structure-
in-5 pattern composed of five actors. The case studies also suggested a number of constraints,
whose generality remains to be explored, to supplement the basic pattern:

• the dependencies between the Strategic Apex as depender and the Technostructure,
Middle Line and Support as dependees must be of type goal

• a softgoal dependency models the strategic dependence of the Technostructure,
Middle Line and Support on the Strategic Apex

• the relationships between the Middle Line and Technostructure and Support must be
of goal dependencies

• the Operational Core relies on the Technostructure and Support through task and
resource dependencies

• only task dependencies are permitted between the Middle Line (as depender or
dependee) and the Operational Core (as dependee or depender).

Figure 4. The Structure-in-5 Pattern

6

To specify the formal properties of the pattern, we use Formal Tropos [Fux01], which
extends the primitives of i* with a formal language similar to that of KAOS [Dar93].
Constraints on i* specifications are thus formalized in a first-order linear-time temporal logic.
Formal Tropos provides three basic types of metaclasses: actor, dependency, and entity
[Gio92]. The attributes of a Formal Tropos class denote relationships among different objects
being modeled.

In the following, we only present some semi-formal specification for the Strategic
Management and Operational Management dependencies. We are currently working on the
formalization of the other dependencies.

Metaclasses
 Actor := Actor name [attributes] [creation-properties]

[invar-properties] [actor-goal]

Dependency:= Dependency name Type name Mode name Depender name Dependee
name [attributes] [creation-properties] [invar-properties] [fulfill-properties]

 Entity:= Entity name [attribute] [creation-properties][invar-properties]

 Actor-Goals := (Goal|Softgoal) name mode FulFillment (actor-fulfill-property)

Classes: Classes are instances of Metaclasses.

Part of the Structure-in-5 pattern specification is in the following:

Actor StrategicApex

Actor MiddleLine

Actor Support

Actor Technostructure

Dependency Strategic Management
 Type SoftGoal
 Mode Achieve
 Depender Technostructure te, MiddleLine ml, Support su
 Dependee StrategicApex sa

Invariant cond1 ∧ cond2 ∧ cond3

cond1: The Strategic management softgoal must be consistent with all changes of the
organizational environment

cond2 : The Strategic management softgoal takes precedence over dependers’ decisions

cond3: Fulfilled(self) →
 [∀ dep: Dependency (dep.type = goal ∧ dep.depender = sa

 ∧ (dep.dependee = te ∨ dep.dependee = ml ∨ dep.dependee = su)
 → ♦ Fulfilled(plandep)]

[The Strategic management softgoal is fulfilled only if the goal dependencies between
the Middle Line, the Technostructure, and the Support as dependees, and the
Strategic Apex as depender have been achieved some time in the past]

7

Dependency Operational Management
Type Goal
Mode achieve
Depender StrategicApex sa

 Dependee MiddleLine ml
Invariant cond1 ∧ cond2 ∧ cond3

cond1: All goals of type Operational management must be consistent with the Strategic
Management softgoal

cond2 : ∃>= 1 co: Coordination (co.type = task ∧ co.dependee = ml ∧ co.depender =
OperationalCore ∧ ImplementedBy(self, co))

 [ImplementedBy (self,co) : verifies that the coordination task co is used to
implement the Operational Management goal]

cond3: Fulfilled(self) →
 [∀ plandep: Dependency (plandep.type = goal ∧ plandep.depender = ml

 ∧ plandep.dependee = Technostructure)
 → ♦ Fulfilled(plandep)]

[The Operational management goal is fulfilled only if all goal dependencies
between the Middle Line as depender and the Technostructure as dependee have
been achieved some time in the past]

In addition, the following structural (global) properties must be satisfied for the Structure-in-5
pattern:

There is a single instance of the Strategic Apex (the same constraint also holds for the Middle
Line, the Technostructure, the Support and the Operational Core)

 ∀ inst1, inst2 : StrategicApex → inst1 = inst2

Only softgoal dependencies are permitted between the Strategic Apex as dependee and the
Technostructure, the Middle Line, and the Support as dependers

 ∀ sa : StrategicApex , te: Technostructure , ma: Middle_Agency , su: Support,
dep : Dependency: [(dep.dependee = sa ∧ (dep.depender = te ∨ dep.depender = ma
∨ dep.depender = su)) → dep.type = softgoal]

Only goal dependencies are permitted between the Technostructure, the Middle Line, and
the Support as dependee, and the Stategic Apex as depender

 ∀ sa : StrategicApex , te: Technostructure , ma: Middle_Agency , su: Support,
dep : Dependency: [(dep.depender = sa ∧ (dep.dependee = te ∨ dep.dependee = ma ∨
dep.dependee = su) → dep.type = goal]

Only goal dependencies are permitted between the Middle Agency and the Support (the same
constraint also holds for the Technostructure)

 ∀ su : Support, ml: MiddleLine, dep : Dependency:
 [(dep.dependee = su ∧ dep.depender = ml)
 → dep.type = goal]

8

Only task dependencies are permitted between the Middle Agency and the Operational Core

 ∀ ml: MiddleLine , oc : OperationalCore, dep : Dependency :
 [(dep.dependee = ml ∧ dep.depender = oc) ∨ (dep.depende = oc ∧ dep.depender= ml)
 → dep.type = task]

Only resource or task dependencies are permitted between the Technostructure and the
Operational Core (the same constraint also holds for the Support)

 ∀ te : Technostructure, oc : OperationalCore, dep : Dependency :
 [dep.dependee = te ∧ dep.depender = oc
 → dep.type = task ∨ dep.type = resource]

No dependency is permitted between an external actor and the Middle Agency (the same
constraint also holds for the Operational Core)

 ∀ a : Actor, sa: StrategicApex, ml : MiddleLine, te : Technostructure, su : Support,
 oc: OperationalCore,
 ∃ dep: Dependency : [(dep.depender = ea ∧ dep.dependee = ml)

∨ (dep.dependee = ea ∧ dep.depender = ml)
 → a.type = sa ∨ a.type = te ∨ a.type = su ∨ a.type = oc]

3 System Architectural Components

In addition to patterns and constraints on these patterns, a system architecture involves the
description of elements from which systems are built and interactions among those elements.
These elements composing a system architecture are: element (component and connector),
interface, port, library, instance, iport, configuration, architecture, event, and operation
[Lic00].

Figure 5 shows a social and intentional meta-model of these architectural elements in terms of
i* diagrams. We have previously described the strategic dependency model. i* provides a
second model, the strategic rationale model allowing to determine, through a means-ends
analysis, how goals (including softgoals) can actually be decomposed and fulfilled through
the contributions of other actors. A strategic rationale model is a graph with four types of
nodes -- goal, task, resource, and softgoal -- and two types of links -- means-ends links and
process-decomposition links. For example, to fulfill the goal Architecture Design of
Architecture, the strategic rationale analysis postulates a task Build Architecture through
which it can be achieved. Tasks are partially ordered sequences of steps intended to
accomplish some goal. Tasks can be decomposed into goals and/or subtasks, whose collective
fulfillment completes the task. In the figure, Build Architecture is decomposed into four sub-
tasks. These decompositions also allow to identify actors that can accomplish a goal, carry out
a task, or deliver some resource needed by another actor. For instance, to be able to Build
Composite, the Architecture depends on the Configuration to be provided with Composite
Input.

9

Figure 5. Conventional Architectural Components

An Element is either a Component or a Connector. Components are the computational
elements of the architecture bound together by connectors. An Interface primarily defines a
set of Ports that ensure connection points through which an element interacts with other
elements. It also records element-type information. A Port represents a template for an
architectural connection point. A Library models the collection of elements and interfaces
defined within an architecture. It also maintains the relationship between an element and the
interface through which it interacts. An Instance represents an element that has been
instantiated from the template definition of a component or a connector. An IPort (Instance
Port) models the port of an Instance. Instantiating an element has the additional effect of
instantiating its port templates. This is necessary for distinguishing between the ports of
multiple instances of the same basic element. A Configuration is an interconnected set of
component and connector instances. The main objective of the configuration (Bind Instances)
is to connect component and connector instances to form a more complex construct that will
act like a single instance. The goal is fulfilled through a task of the same name, further
decomposed into two sub-tasks: Instantiate Element (make an instance by instantiating its
corresponding element) and Connect Instances. An Architecture models the full set of design
information defined within an architectural specification. It maintains the set of all of the
configurations that have been defined and implements configurations as elements (Build
Composite task). An Architecture has to find the right library, and add elements, interfaces
and configurations to the library. An event is a basic unit of element communication from one
point in the architecture to another through a connection. Components interact by initiating
and observing events. Ports, as the templates for connection points, handle events. An
Operation represents an “executable” command. The behavior of an element is specified as a
set of Operations that engage in a set of events in the context of a port.

10

Part of Figure 5 specification in Formal Tropos follows:

Actor Connector
Goal ConnectComponent

Actor Component
Goal ProcessComputation

Actor Element
Attribute constant handle : {Operation}
Invariant IsAComponent(self) XOR IsAConnector(self)

[An element is either a component or a connector]

Task ProcessOperations(e: Element, op: Operation)
PRE (op ∈ e.handle) ∧ NeedToBeProcessed(e, op))

∧ not (Processed(e, op))
 [An operation op belongs to the set of operations that an element e can
handle; op needs to be processed by e; op has not yet been processed by e]

POST Processed (e, op)
[op is processed by e]

Entity Operation
Attribute constant InvokedBy : {Event}

[Set of events that can invoke Operation]
Entity Event

Actor Port
Attribute constant ObservedEvents : {Event} [Set of events a port can observe]

InitiatedEvents : {Event} [Set of events a port can initiate]
Pt: PortType [type of a port]

Goal HandleEvent
Invariant ∀p1: Port, ∃p2: Port (p1 ≠ p2) ∧ port_map (p1, p2)

∀e: ElementType, ∃p: PortType export_map (e, p)
[port_map checks the legal combinations of port types that may interact
through an architectural connection]
[export_map checks the legal port types for a particular element type]

Task InitiateEvent (e : event)
Actor Port p
PRE (e ∈ p.InitiatedEvents) ∧ (NeedToBeInitiated (p, e)) ∧ not (InitiatedBy (p, e))

[An event e belongs to the set of event that can be initiated by p, e needs to
be initiated; e has not yet been initiated by p]

POST InitiatedBy (p, e) [e is initiated by p]

Task ObserveEvent
Actor Port p
PRE ∃e: event (∃q: port (InitiatedBy (q, e) ∧ (e ∈ p.ObservedEvents)

∧ not (ObservedBy (p, e))
[There exists an event e initiated by some port q; e belongs to the set of
events that can be observed by p, and e has not yet been observed by p]

POST ObservedBy(p, e)
[e is observed by p]

[For each element, if one event is observed by its port, the operation corresponding to this
event will be eventually invoked]

11

Dependency OperationInvocation
Type Goal
Mode Achieve
Depender Element
Dependee Port
Fulfillment

Condition for depender ∀e: element, i: interface, p: port, ∃ev: event
(specified_by (e, i) ∧ interact_through (i, p)) ∧ (ev ∈ p.observedEvents)
∧ (ObservedBy(p, ev)
→ ∃op: operation (op ∈ e.handle) ∧ (ev ∈ op.invoked_by)
∧ ◊ BeInvoked(op)

[specified_by (e, i): boolean --- e is an element specified by an interface i]
[interact_through (i, p): boolean --- an interface i interacts with the external
environment through a port p]

 4 An E-business Example

This section overviews a typical e-commerce application. We apply the structure-in-5 pattern
defined in Section 2 to design the architecture and interpret part of it in terms of the
architectural concepts revisited in Section 3.

E-Media is a business-to-consumer system allowing on-line customers to buy different kinds
of media items such as books, newspapers, magazines, audio CDs, videotapes, ... on the
Internet. Customers can search the on-line store by either browsing the catalogue or querying
the database. An on-line search engine allows customers with particular items in mind to
search title, author/artist and description fields through keywords or full-text search.

Figure 6 suggests a possible assignment of system responsibilities for E-Media. The
architecture follows the structure-in-5 pattern. It is decomposed into five principal
components Store Front, Coordinator, Billing Processor, Back Store and Decision Maker.

Figure 6. The E-Media System Architecture in Structure-in-5

12

Store Front serves as the Operational Core. It interacts primarily with Customer and provides
her with a usable front-end web application for consulting and shopping media items. Back
Store constitutes the Support component. It manages the product database and communicates
to the Store Front relevant product information. It stores and backs up all web information
from the Store Front about customers, products, sales, orders and bills to produce statistical
information to the Coordinator. It provides the Decision Maker with strategic information
(analyses, historical charts and sales reports). The Billing Processor is in charge of handling
orders and bills for the Coordinator and implementing the corresponding procedures for the
Store Front. It also ensures the secure management of financial transactions for the Decision
Maker. As the Middle Line, the Coordinator assumes the central position of the architecture.
It ensures the coordination e-shopping services provided by the Operational Core including
the management of conflicts between itself, the Billing Processor, the Back Store and the
Store Front. To this end, it also handles and implements strategies to manage and prevent
security gaps and adaptability issues. The Decision Maker assumes the Strategic Apex role.
To this end, it defines the Strategic Behavior of the architecture ensuring that objectives and
responsibilities delegated to the Billing Processor, Coordinator and Back Store are consistent
with that global functionality.

In the following, we further detail Store Front. This actor is in charge of catalogue browsing
and item database searching. It provides on-line customers with detailed information about
media items. It is also responsible for supplying a customer with a web shopping cart to keep
track of items the customer is buying when using E-Media. Finally, Store Front also
initializes the kind of processing that will be done (by Billing Processor) for a given order.

As shown in Figure 7, to accommodate the responsibilities of the Store Front, Operational
Core of our structure-in-5 architecture, we decompose the actor into smaller concepts
corresponding to architectural components and connectors.

Figure 7. The Store Front Actor in Terms of Components and Connectors

The Customer Profiler, Catalogue Browser, Interface, Search Engine, Query Displayer and
Shopping Cart are architectural components. The Customer Profiler tracks customer data,
produces client profiles (personal data), verifies the customer’s login and password (grant
access), and records the customer Interface Preferences. The Catalogue Browser manages
catalogue navigation to provide the on-line customer with product information. The Interface
provides customers with different forms of information retrieval (boolean, keyword, full text,
indexed list, etc.). The Search Engine handles the search in database and gives the Query
Result that will be further formatted by Query Displayer. The Shopping Cart obtains the
Personal Data from Customer Profiler and selected items from Query Displayer.

13

The Search Engine Wrapper and Browser Wrapper are connectors that mediate the
interactions between the Interface and the Search Engine, and the Search Engine and the
Query Displayer respectively.

Each component and connector introduced in Figure 7 has its own interface and iports
associated with. Figure 8 shows the Search Engine Wrapper connector with its interface and
iports.
• IPort-In (boolean) is responsible for observing the BooleanConfirmedQuery event that

will be initiated by the Interface actor of Figure 7. The same can be defined for other
IPort-Ins.

• Iport-Out (SQL) is in charge of initiating the SQLTranslatedQuery event that will be
further observed by SearchEnginee actor of Figure 7.

Figure 8. The Search Engine Wrapper Actor in Terms of Interface and IPorts

5. Conclusions

Analysts and designers use idioms to structure models and architectures. Multi-agent systems
can be described and formalized as organizations of agents that interact to achieve a set of
upon agreed intentions. We are working towards the definition of a collection of architectural
patterns for multi-agent systems. To this end, the paper focuses on the structure-in-5 and
proposes to adapt it for multi-agent architectural design. The structure-in-5 is a well-
understood organizational pattern used by organization theorists to describe the structure of
real-world organizations. We model the pattern in term of intentional and social primitives
from case studies describing real world organizations and propose a semi-formal specification
for it. We interpret and formalize in the same intentional and social way the lower-level
conventional architectural elements involving (software) components, ports, connectors,
interfaces, libraries and configurations. We describe a typical e-business example and apply
the structure-in-5 to design its system architecture. Part of it is expressed in terms of the
conventional architectural elements we have socially reinterpreted.

Future research directions will extend and formalize precisely the catalogue of organizational
patterns and define the sense in which a particular architecture is an instance of such a pattern.
We also propose to compare and contrast them with classical software architectural patterns
proposed in the literature (pipes-and-filters, layers, event-based, …) using system qualities a
multi-agent architecture can or must support.

The organizational patterns should eventually constitute an architectural macro level. At a
micro level we will focus on the notion of social agent patterns such as the broker,
matchmaker, embassy, mediator, wrapper, mediator [Hay99, Woo99]. They will detail how
goals and dependencies identified in an organizational pattern can be refined and achieved.

14

References

[Ant96] A. I. Anton, “Goal-Based Requirements Analysis”, In Proceedings of the 2nd International
Conference on Requirements Analysis, ICRE’96, 1996.

[Bas98] L. Bass, P. Clements and R. Kazman. Software Architecture in Practice, Addison-Wesley,
1998.

[Ben99] S. Bennett, S. McRobb, and R. Farmer. Object-Oriented Systems Analysis and Design – using
UML. McGraw Hill, 1999.

[Bub93] J. A. Bubenko, “Next Generation Information Systems: an Organizational Perspective”,
Proceedigns of the International Workshop on Development of Intelligent Information Systems ,
Niagara-on-the-Lake, Ontario, Canada, April 1991.

[Cas02] J. Castro, M. Kolp and J. Mylopoulos. “Towards A Requirements-Driven Development
Methodology: The Tropos Project,” To appear in Information Systems, Elsevier, 2002.

[Chu00] L. K. Chung, B. A. Nixon, E. Yu and J. Mylopoulos. Non-Functional Requirements in
Software Engineering, Kluwer Publishing, 2000.

[Dar93] A. Dardenne, A. van Lamsweerde, and S. Fickas, “Goal–directed Requirements Acquisition”,
Science of Computer Programming, 20, 1993.

[Dus99] P. Dussauge and B. Garrette, Cooperative Strategy: Competing Successfully Through
Strategic Alliances, Wiley and Sons, 1999.

[Fux01]A. Fuxman, M. Pistore, J. Mylopoulos, and P. Traverso. “Model Checking Early Requirements
Specification in Tropos”. In Proceedings of the 5th International Symposium on Requirements
Engineering, RE’01, Toronto, Canada, Aug. 2001.

[Fux01a] A. Fuxman, P. Giorgini, M. Kolp, and J. Mylopoulos. “Information systems as social
structures”. In Proceedings of the 2nd International Conference on Formal Ontologies for Information
Systems, FOIS’01, Ogunquit, USA, October 2001.

[Gar93] D. Garlan and M. Shaw. “An Introduction to Software Architectures”, in Advances in Software
Engineering and Knowledge Engineering, volume I, World Scientific, 1993.

[Gio02] P. Giorgini, M. Kolp and J. Mylopoulos. “Organizational Patterns for Early Requirements
Analysis” Submitted to the IEEE Joint International Requirements Engineering Conference 2002, RE
2002, August 2002, Essen, Germany.

[Gom96] B. Gomes-Casseres. The alliance revolution: the new shape of business rivalry, Cambridge,
Mass., Harvard University Press, 1996.

[Hay99] S. Hayden, C. Carrick, and Q. Yang. “Architectural Design Patterns for Multiagent
Coordination”. In Proc. of the 3rd Int. Conf. on Autonomous Agents, Agents’99, Seattle, USA, May
1999.

[Kol01] M. Kolp, P. Giorgini, and J. Mylopoulos. “An Organizational Perspective on Multi-agent
Architectures”. In Proceedings of the Eighth International Workshop on Agent Theories, architectures,
and languages, ATAL’01, Seattle, USA, August 2001.

[Min92] H. Mintzberg, Structure in fives : designing effective organizations, Englewood Cliffs, N.J.,
Prentice-Hall, 1992.

[Mor99] J. Morabito, I. Sack and A. Bhate. Organization modeling : innovative architectures for the
21st century, Upper Saddle River, N.J., Prentice Hall PTR, 1999.

[Par94] S. Parsons, “Some qualitative approaches to applying the Dempster-Shafer theory”. In
Information and Decision technologies, 19 (1994).

[Per01] A. Perini, P. Bresciani, F. Giunchiglia, P. Giorgini, and J. Mylopoulos. “A knowledge level
software engineering methodology for agent oriented programming”. In Proceedings of the 5th
International Conference on Autonomous Agents, Agents’01, Montreal, Canada, May 2001.

[Sco98] W. R. Scott. Organizations: rational, natural, and open systems , Upper Saddle River, N.J.,
Prentice Hall, 1998.

[Seg96] L. Segil. Intelligent business alliances : how to profit using today's most important strategic
tool, New York, Times Business, 1996.

15

[Sha96] Shaw, M., and Garlan, D. Software Architecture: Perspectives on an Emerging Discipline,
Upper Saddle River, N.J., Prentice Hall, 1996.

[Woo99] S. G. Woods and M. Barbacci. Architectural Evaluation of Collaborative Agent-Based
Systems. Technical Report, CMU/SEI-99-TR-025, Software Engineering Institute, Carnegie Mellon
University, PA, USA, 1999.

[Yos95] M.Y. Yoshino and U. Srinivasa Rangan. Strategic alliances : an entrepreneurial approach to
globalization, Boston, Mass., Harvard Business School Press, 1995.

[Yu93] E. Yu, “Modeling Organizations for Information Systems Requirements Engineering”,
Proceedings of the First IEEE International Symposium on Requirements Engineering, San Jose, USA,
January 1993.

[Yu95] E. Yu. Modeling Strategic Relationships for Process Reengineering, Ph.D. thesis, Department
of Computer Science, University of Toronto, Canada, 1995.

