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Abstract 

We investigated processing of numerical order information and its relation 
to mechanisms of numerical quantity processing. In two experiments, 
performance on a quantity-comparison task (e.g. 2 5; which is larger?) was 
compared with performance on a relative-order judgment task (e.g. 2 5; 
ascending or descending order?). The comparison task consistently produced the 
standard distance effect (faster judgments for far relative to close number pairs), 
but the distance effect was smaller for ascending (e.g. 2 5) compared to 
descending pairs (e.g. 5 2). The order task produced a pair-order effect (faster 
judgments for ascending pairs) and a reverse distance effect for consecutive 
pairs in ascending order. The reverse effect implies an order-specific process, 
such as serial search or direct recognition of order for successive numbers. Thus, 
numerical quantity and order judgments recruited different cognitive 
mechanisms. Nonetheless, the reduced distance effect for ascending pairs in the 
quantity task implies involvement of order-related processes in magnitude 
comparison. Accordingly, distance effects in the quantity-comparison task are 
not necessarily a process-pure measure of magnitude representation. 

1. Introduction 

Comparative judgment tasks have been extensively used to investigate 
the internal representation and processing of symbolic magnitudes (see Leth-
Steensen & Marley, 2000, for a recent review). In these tasks, people judge 
which of two stimuli (e.g. numbers) is the larger (or smaller) along a 
continuous magnitude dimension. One of the classic findings reported in 
symbolic comparison studies is the distance effect, which refers to the 
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decrease in response times as the difference between the stimuli to be 
compared increases (e.g. Moyer & Landauer, 1967). 

With respect to comparative judgments about numbers, the distance 
effect has been interpreted as evidence that numerals activate a magnitude 
representation analogous to a compressed number line (e.g. Dehaene, 1989, 
1992). Numbers farther apart on the internal magnitude representation are 
easier to discriminate, giving rise to the distance effect (see Verguts & Fias, 
2004; Zorzi, Stoianov, & Umiltà, 2004 for alternative models of magnitude 
representation and processing). However, numbers convey both quantity 
(e.g. three runners) and order information (e.g. the third runner) 
(Butterworth, 1999; Fuson, 1988; Wiese, 2003); consequently, numerical 
size judgments could be influenced by cognitive processes associated with 
numerical order (e.g. the verbal counting series). Indeed, the distance effect 
is also observed with non-quantitative ordered series (e.g. the letters of the 
alphabet; Jou & Aldridge, 1999). This suggests that the distance effect in 
numerical comparisons could also be mediated by order information (Wiese, 
2003; see also Tzelgov & Ganor-Stern, 2004), and the potential role of 
order-related processing in number comparison remains an open question 
(Fias & Fischer, 2004). This question is theoretically important because 
precise characteristics of distance effects in quantity judgements are crucial 
to evaluating alternative models of numerical magnitude representation and 
processing (cf. Zorzi et al., 2004). 

Number processing research has focused on the way quantity 
information is represented, processed and neurally implemented (see 
Dehaene, Piazza, Pinel, & Cohen, 2003, for a recent review), but we still 
know relatively little about the way numerical order information is processed 
(but see Tzelgov & Ganor-Stern, 2004). Studies of order processing with 
non-numerical sequences may be directly relevant, however (see Leth-
Steensen & Marley, 2000, for a recent review). These studies have typically 
used pairwise judgment tasks in which people were asked either to judge (1) 
which of two items(e.g. letters) came earlier or later in the (e.g. alphabetic) 
sequence (analogous to number comparison) (Jou & Aldridge, 1999; 
Parkman, 1971), or (2) whether a pair of items (e.g. B C) was presented in 
the conventional (e.g. alphabetic) or non-conventional order(Grenzebach & 
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McDonald, 1992; Hamilton & Sanford, 1978; Lovelace & Snodgrass,1971). 
A standard distance effect was found with both paradigms. In the relative-
order judgment task, however, two unique effects were also observed. First, 
pairs presented in the conventional, ascending order were processed faster 
when adjacent (e.g. B C) than non-adjacent (e.g. B D) in the sequence, thus 
presenting a reverse distance effect. Second, pair-order affected reaction 
times (RTs), which were faster for pairs presented in the conventional 
ascending order (e.g. B C) relative to the descending order (e.g. C 
B)(Grenzebach & McDonald, 1992; Hamilton & Sanford, 1978; Lovelace & 
Snodgrass,1971). 

These studies therefore suggest the involvement of two qualitatively 
different cognitive processes in order judgments. The standard distance 
effect implies a size-based comparison mechanism, similar to that involved 
in numerical comparison tasks. In contrast, the reverse distance effect for 
conventionally ordered ascending pairs implies a serial search process in 
which the time taken to establish the order of two items is determined by the 
number of items intervening in the sequential series (Jou, 1997). Judgments 
of numerical order similarly can involve such serial-search processes. Jou 
(2003) reported a reverse distance effect in a multiple-number comparison 
task: when participants had to choose the middle number in a three- or five-
item array, their RTs were faster for arrays of consecutive numbers (e.g. 
choosing 5 in 4–5–6) relative to non-consecutive numbers (e.g. 3–5–7). 
These results raise the possibility that quantity judgments too, under some 
circumstances, could be mediated by order-related mechanisms (i.e. serial 
search). 

We addressed this issue in two experiments in which we compared 
performance in a number comparison task and in a relative-order judgment 
task, on the same number pairs. We examined distance effects to determine 
whether numerical quantity and order judgments recruited similar or 
different cognitive mechanisms, and whether potential order-specific 
processes (e.g. serial search) affected quantity judgments. In Experiment 1, 
we also included a size-congruity manipulation to investigate whether 
magnitude information is similarly activated in both quantity and order tasks. 
The Stroop-like size congruity effect is manifested by longer RTs for 
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incongruent pairs (numerical and physical size disagree; e.g. 5 2), and 
shorter RTs for congruent pairs (numerical and physical size agree; 5 2), 
relative to neutral pairs (e.g. 5 2) (e.g. Besner & Coltheart, 1979; Tzelgov, 
Meyer, & Henik, 1992). This effect is taken as evidence for the automatic 
activation of numerical magnitude representation (e.g. Henik & Tzelgov, 
1982). 

2. Experiment 1 

2.1. Method 

Twenty-four right-handed French-speaking volunteers (mean age 20.2 
years) performed two numerical Stroop tasks. In the quantity-comparison task, 
participants selected the numerically larger (or smaller) number of a pair. In 
the relative-order judgment task, they judged whether number pairs were in 
the “correct” (i.e. ascending left to right) or “incorrect” counting order. 

For both tasks, stimuli included eight different pairs of Arabic numerals: 
four close/consecutive pairs (2–3, 3–4, 6–7, 7–8) and four far pairs (2–5, 3–6, 
4–7, 5–8). Numerals appeared in two different font sizes (small or large), 
yielding three congruity conditions: congruent (the numerically larger number 
is also physically larger), neutral (both stimuli have the same, intermediate, 
physical size) and incongruent trials (the numerically larger number is the 
physically smaller). All pairs were presented in both ascending (e.g. 2 3) and 
descending (e.g. 3 2) order. Unanalysed filler pairs (1–2, 1–4, 6–9, 8–9) 
ensured that numerals used for the experimental pairs did not anchor the top 
and bottom of the range of numbers seen. To counterbalance and match the 
assignment of response-keys, each task was performed twice: once with 
“choose the smaller” instructions in the quantity task, and “Yes” responses 
assigned to the left-hand in the order task; once with “choose the larger” 
instructions and “Yes” responses assigned to the right-hand. Order of tasks 
(quantity first or order first) was counterbalanced also.1 
                                                      
1 Participants also performed an alphabetic order judgment task (deciding whether letter pairs were 
presented in the alphabetic order or not). The design was identical to the numerical order task, with each 
number replaced by its corresponding letter (B for 2, C for 3, and so on). The results replicated previous 
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Numbers appeared in black on a 145 X 85 mm white frame, at a viewing 
distance of 50 cm. All numbers were presented in Geneva font, size 64 for 
small numbers (approximate width by height 14 X 20 mm), size 68 for 
numbers in neutral trials and size 72 for large numbers (approximate width by 
height 15.5 X 22 mm). In each trial, a pair of numerals (2.288 apart) appeared 
at the centre of the screen for 105 ms, followed by a blank screen until a 
response was given. The next pair appeared 1500 ms after the response. 

Each task started with 20 practice trials, followed by 168 experimental 
trials (144 test trials and 24 fillers) in a pseudo-random order (the same pair 
never appeared in consecutive trials, the same congruity condition, pair-order 
or response key were never repeated more than three times). SuperLab Pro 
(1.74) software was used to display stimuli and record reaction times. 

 

2.2. Results and discussion 

Mean of median correct reaction times (RTs) and error rate were computed 
for each condition. The mean error rate was equivalent in the quantity (4.2%) 
and order (4.7%) tasks. As mean error rates and mean RTs were positively 
correlated across cells [r(22) = .59, P < .002] we present detailed analyses of RT 
only. 

Our initial ANOVA included Task (quantity, order), Distance (1, 3), 
Congruity (congruent, neutral, incongruent) and Pair-order (ascending, 
descending) as within-subjects factors and Order of tasks (quantity first, order 
first) as a between-subjects variable. This omnibus analysis demonstrated that 
the order in which the tasks were performed (i.e. quantity task first or order task 
first) entered in a five-way interaction with Task, Distance, Congruity and Pair-
order that approached significance, F(2,44) = 2.68, MSE = 1415.61, P = .08. 
This indicates complex carryover effects from the task performed first that 
potentially modulated strategies and performance on the second task. 
Consequently, we focused on the first-task data only, which makes a task 
between-subjects variable. 

                                                                                                                             
research (e.g. Lovelace Snodgrass, 1971) and are not reported here. 
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Mean correct RTs for each Task X Distance X Pair-order X Congruity cell 
appear in Table 1. The source table for the corresponding ANOVA appears in 
Table 2. All main effects were significant. Mean correct RT was 136 ms faster 
for the quantity task (590 ms) than the order task (726 ms). This large difference 
is not surprising given that judging the relative order of two numbers requires 
not only identifying the smaller (or larger) number, as in the quantity task, but 
also to process its location (left or right side) in the pair. With respect to overall 
effects of Distance and Pair-order, far pairs (630 ms) were 35 ms faster on 
average compared to close pairs (665 ms), and conventional-order pairs (i.e. 
ascending left to right) were 35 ms faster (630 ms) than descending pairs (665 
ms). Size-congruent trials (602 ms) were fast compared to size-neutral trials 
(640 ms), which were faster than size-incongruent trials (702 ms). The 
experiment thus produced the standard effects of size congruity, but congruity 
was not involved in any significant interactions (see Table 2; but see Tzelgov, 
Yehene, Kotler, & Alon, 2000). The presence of a strong size-congruity effect in 
both tasks suggests that similar magnitude information was activated in the 
quantity and order judgments. 

 

Table 1. Mean correct RT (in ms) in the quantity and order tasks in Experiment 1 for each pair-
order (ascending, descending) x distance (close, far) x congruity (congruent, neutral, 
incongruent) condition. 

  Quantity task  Order task 

 
 Ascending 

order 
Descending 

order  Ascending 
order 

Descending 
order 

Congruity  Close 
pairs 

Far 
pairs 

Close 
pairs 

Far 
pairs  Close 

pairs 
Far 

pairs 
Close 
pairs 

Far 
pairs 

Congruent  553 529 557 516  635 675 746 694 

Neutral  590 566 611 547  675 671 784 726 

Incongruent  687 639 678 612  736 758 834 779 
 

Task interacted both with Distance and Pair-order (see Table 2). The Task X 
Distance interaction occurred because the distance effect for the quantity task 
was 44 ms (close 612 ms, far568 ms); about twice as large as the overall 18 ms 
distance effect for the order task (close 735 ms, far 717 ms). Numerical distance 
therefore had a smaller impact on order judgments than on quantity judgments. 
Conversely, the Task X Pair-order interaction occurred because there was no 
overall effect of pair-order for the quantity task (ascending 594 ms, descending 
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587 ms), whereas there was a 69 ms advantage for the conventional pair-order in 
the order judgment task (ascending 692 ms, descending 761 ms).Thus, 
conventional order facilitated order judgments, but had no overall effect on 
quantity judgments. 

 

Table 2. Four-way analysis of variance of mean correct RT in Experiment 1 with task (quantity, 
order) as a between-subjects factor and distance (close, far), pair-order (ascending, 
descending) and congruity (size congruent, neutral, incongruent) as within-subjects variables. 

Source df F 

 Between subjects 
Task (T) 1 9.71** 

MSE 22 (136871.64) 
 Within subjects: Distance 

Distance (D) 1 56.49*** 
T x D 1 10.71** 
MSE 22 (1215.10) 

 Within subjects: Pair-order 
Pair-order (P) 1 19.77*** 

T x P 1 30.21*** 
MSE 22 (3469.39) 

 Within subjects: Congruity 
Congruity (C) 2 138.75*** 

T x C 2 2.09 
MSE 44 (2288.82) 

 Within subjects: Distance x Pair-order 
D x P 1 15.80*** 

T x D x P 1 3.92a 
MSE 22 (2816.14) 

 Within subjects: Distance x Congruity 
D x C 2 2.47 

T x D x C 2 1.03 
MSE 44 (1291.27) 

 Within subjects: Pair-order x Congruity 
P x C 2 1.71 

T x P x C 2 0.12 
MSE 44 (1840.74) 

 Within subjects: Distance x Pair-order x Congruity 
D x P x C 2 0.70 

T x D x P x C 2 0.90 
MSE 44 (1576.06) 

Note. Values enclosed in parentheses represent mean square. *p < 0.05; **p < 0.01; ***p < .001.  
a p = 0.060 
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These two, two-way interactions, as well as the Distance X Pair-order 
interaction, were qualified, however, by evidence of a three-way interaction 
among Task, Distance, and Pair-order (P=.06)2, which is depicted in Figure 1. 
As Figure 1 shows, the quantity group produced the standard distance effect (i.e. 
slower RTs for close than far pairs) both for ascending and descending pair-
order, but the distance effect for ascending (32 ms) was smaller than for 
descending pairs (57 ms) [F(1,11) = 6.28, MSE = 890.98, P = .03 for the 
Quantity group’s Distance X Pair-order effect]. In contrast, for the order group, 
descending pairs produced a standard distance effect of 55 ms, but, as we 
anticipated, for ascending pairs there was a reverse distance effect of K20 ms 
[F(1,11) = 10.53, MSE = 4741.3, P = .008 for the Order group’s Distance X 
Pair-order effect] that approached significance by a one-tailed test [t(11) = 1.67, 
P = .06]. Separate analyses of ascending and descending conditions confirmed 
the Task X Distance interaction for ascending pairs [F(1,22) = 11.19, MSE = 
2147.28, P < .003], whereas the distance effect was equivalent when processing 
either quantity or order for descending pairs (F < 1). Hence, the evidence of a 
reverse distance effect for conventionally ordered pairs in order judgments 
suggests that these might be mediated by the counting sequence. 

 

 
Figure 1. Mean correct RT by task (quantity, order), distance (close, far), and pair-order 
(ascending, descending) in Experiment 1. 

                                                      
2 The Distance X Pair-order interaction, as well as the crucial three-way interaction among Task, 
Distance, and Pair-order were significant in the ANOVA that included task-order as a factor (i.e. 
including Task as a within-subjects variable): F(1,22) = 29.34, MSE = 2050.83, P < .0001 and F(1,22) = 
5.80, MSE = 2116.44, P < .025, respectively. 
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3. Experiment 2 

In Experiment 2, we further tested the hypothesis that numerical order 
judgments could be based on a serial search mechanism. Because of the 
potential importance of the reverse distance effect, this was investigated in 
more detail by examining pair-distances of 1–4. 

 

3.1. Method 

Forty-eight French-speaking volunteers (six left-handed; mean age 24.2 
years) performed either the quantity or the order task (24 subjects in each 
group). Both tasks were identical to those of Experiment 1, with two 
exceptions: (1) pair-distances of 2 and 4 were also included in the 
experiment, and (2) all numbers had the same physical size because size 
congruity did not differentially affect quantity and order processing in 
Experiment 1. 

The same 15 pairs of Arabic numerals were presented in each task: eight 
pairs for Distances 1 and 3, that were the same as in Experiment 1, four pairs 
for Distance 2 (2–4, 3–5, 5–7, 6–8) and three pairs for Distance 4 (2–6, 3–7, 
4–8). Individual pairs were presented three times each for Distances 1, 2 and 
3, and four times each for Distance 4, so that the overall number of pairs to 
be processed was the same for all distances. All pairs were presented in both 
ascending and descending order. Unanalysed filler pairs were also included 
(1–2, 1–3, 1–4, 1–5, 5–9, 6–9, 7–9, 8–9). Stimulus presentation and design 
were the same as in Experiment 1, with the exception that all numbers had 
the same, intermediate, physical size (Geneva font, size 68). 

 

3.2. Results and discussion 

The mean error rate was larger in the order (5%) than in the quantity task 
(2.2%) [t(47) = K3.58, P < .001]. As mean error rates and mean RTs were 
positively correlated across cells [r(14) = .73, P < .001] we present detailed 
analyses of RT only.  
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Mean of median correct RTs received a repeated-measures ANOVA 
with Distance (1–4) and Pair-order (ascending, descending) as within-
subjects factors and Task (quantity, order) as a between-subjects variable. 
The mean RTs appear in Figure 2 and the source table for the ANOVA 
appears in Table 3. All main effects were significant and replicated those of 
Experiment 1. Specifically, mean correct RT was 172 ms faster for the 
quantity task (485 ms) than the order task (657 ms). Consecutive pairs 
(Distance 1, 601 ms) were processed slower than all other pairs (Distance 2, 
576 ms; Distance 3, 555 ms; Distance 4, 551 ms; all Ps < .002) and 
conventionally ordered pairs were 32 ms faster (555 ms) than descending 
pairs (587 ms). 

 

 
Figure 2. Mean correct RT by task (quantity, order), distance (D1, D2, D3, D4), and pair-order 
(ascending, descending) in Experiment 2. 

 

Task interacted with Pair-order: as in Experiment 1, there was no overall 
effect of pair-order in the quantity task (ascending 482 ms; descending 487 
ms), whereas there was a 59 ms advantage for the conventional pair-order in 
the order judgment task (ascending 627 ms, descending 686 ms; F(1,23) = 
42.24, MSE = 3931.78, P < .0001). Furthermore, the Task X Pair-order 
interaction was modulated by pair-distance, producing a triple interaction 
(see Table 3). To decompose the three-way effect, we performed separate 
Pair-order X Distance analyses for each task. 
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Table 3. Three-way analysis of variance of mean correct RT in Experiment 2 with task (quantity, 
order) as a between-subjects factor and distance (1, 2, 3, 4) and pair-order (ascending, 
descending) as within-subjects variables. 

Source df F 

 Between subjects 
Task (T) 1 54.93*** 

MSE 46 (51665.99) 
 Within subjects: Distance 

Distance (D) 3 34.36*** 
T x D 3 0.27 
MSE 138 (2170.96) 

 Within subjects: Pair-order 
Pair-order (P) 1 42.41*** 

T x P 1 30.13*** 
MSE 46 (2305.84) 

 Within subjects: Distance x Pair-order 
D x P 3 26.19*** 

T x D x P 3 17.32*** 
MSE 138 (1041.07) 

Note. Values enclosed in parentheses represent mean square. *p < 0.05; **p < 0.01; ***p < .001.  
 

For the quantity-task group, there was a Pair-order X Distance 
interaction [F(3,69) = 4.02, MSE = 1456.90, P = .011], which occurred 
because the distance effect was smaller for ascending [33 ms for Distances 
1–4; F(3,69) = 11.84, MSE = 1005.06, P < .0001] than descending pairs [58 
ms; F(3,69) = 27.47, MSE = 870.24, P < .0001]. All distances were 
significantly different from one another for descending pairs (Distance 1, 
520 ms, Distance 2, 492 ms, Distance 3, 476 ms, Distance 4, 462 ms; all Ps 
< .012). For ascending pairs, there was no significant difference between 
Distance 1 (504 ms) and Distance 2 (489 ms), nor between Distance 3 (466 
ms) and Distance 4 (471 ms), but other distances significantly differed from 
one another (all Ps < .023). The interaction between Pair-order and Distance 
was thus largely attributable to processing of consecutive pairs, which were 
processed faster in conventional order (504 ms) than in descending order 
(520 ms; t(23) = K2.042, P < .027). 

The order task also produced a significant Pair-order X Distance 
interaction [F(3,69) = 25.5, MSE = 1719.34, P < .0001]. There was a 
standard distance effect for descending pairs [F(3,69) = 26.70, MSE = 
3980.17, P < .0001], with longer RTs for consecutive (764 ms) than more 
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distant pairs (Distance 2, 678 ms, Distance 3, 647 ms, Distance 4, 655 ms; 
all Ps < .0001). In contrast, for ascending pairs, there was also a main effect 
of Distance [F(3,69) = 3.69, MSE = 1248.45, P < .016], but consecutive 
numbers (Distance 1, 615 ms) were processed 30 ms faster on average than 
pairs with a Distance of 2 (645 ms; one-tailed t(23) = K2.63, P < .008), and 
16 ms faster than pairs with a Distance of 3 (631 ms; one-tailed t(23) = 
K1.52, P < .07), while farthest pairs (Distance 4, 618 ms) were answered 
equally fast relative to consecutive pairs (see Figure 2). 

The results of Experiment 2 replicated and reinforced those of 
Experiment 1. The quantity distance effect was again modulated by pair-
order; specifically, RTs were faster to process consecutive pairs when 
presented in the ascending relative to the descending order. For order 
judgments, a reverse distance effect for consecutive pairs in the ascending 
order was confirmed relative to Distance 2, with some evidence that 
consecutive pairs were faster than Distance 3, but not Distance 4. In Section 
4 we outline two possible explanations for the reverse distance effect 
observed here. 

4. General discussion and conclusion 

Because numerical quantity information hierarchically implies order 
information, either deciding which is the larger (or smaller) of a pair of 
numerals (e.g. 5 8), or deciding if the pair is in ascending order, could entail 
identical number processing. For example, the order task could be performed 
by identifying the smaller (or larger) number, and then determining if its 
location relative to the other numeral is in the conventional or the reverse 
order. In this case, we would expect the order and quantity tasks to present 
equivalent effects of pair distance, because both tasks hypothetically involve 
the same magnitude comparison process. The present results, however, 
clearly show that quantity and order judgments recruited distinct cognitive 
mechanisms, as indicated by task-specific effects of pair-distance, as well as 
pair-order. 

In both Experiments 1 and 2, the quantity task consistently produced the 
standard distance effect: close pairs were processed slower than far pairs. 
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This effect is usually explained by a comparison process operating on 
information retrieved from a continuous magnitude representation (Dehaene, 
1992). The closer two numbers are on the continuum, the more their 
magnitude-related activation overlaps and the longer it takes to discriminate 
them (see Zorzi et al., 2004, for alternative approaches to the standard 
distance effect). There was no overall effect of pair-order in the quantity 
task, but pair-order modulated the standard distance effect, which was 
smaller for ascending than descending number pairs. 

In contrast, the order-judgment task produced a standard distance effect 
when pairs were presented in descending order, but a distance effect in the 
reverse direction for consecutive pairs in ascending order. This implies 
different cognitive processes for the order task depending on pair-order. The 
standard distance effect for descending pairs suggests a magnitude 
comparison strategy; thus, a similar cognitive mechanism was recruited for 
processing quantity and order for descending pairs. Conversely, order 
judgments on conventionally ordered pairs (i.e. ascending left to right) 
tended to be faster when numbers were close than farther apart. Two 
explanations for the reverse distance effect observed here suggest 
themselves. 

Authors have generally accounted for the reverse distance effect in order 
judgments in terms of a serial search or sequence-recitation strategy (e.g. 
Jou, 1997, 2003; Lovelace & Snodgrass, 1971). For ascending pairs, this 
process should generate a monotonic increase in response times with 
increasing pair distance. This pattern was not observed in the present 
experiment nor in previous studies of order processing (e.g. Grenzebach & 
McDonald, 1992; Jou, 2003); instead response times for well-ordered (i.e. 
ascending) pairs were shown to increase significantly only from Distance 1 
(i.e. successive items) to Distance 2. Nonetheless, the results potentially are 
consistent with a serial search mechanism. It is possible that, for distances 
greater than 1, magnitude comparison becomes more salient and efficient 
and supercedes serial search. This might be expected in the number domain 
because consecutive pairs in the forward counting sequence would have the 
strongest associations. As distance increases, the efficacy of counting-based 
performance relative to magnitude-based performance would shift in favor 
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of magnitude comparison (as suggested by the standard distance effect for 
pair distances of 2–4), and the probability that counting mediates order 
judgments would decrease. Participants would thus use a mixture of both 
strategies (serial search and comparison) for order construction, with the 
adoption of each mode probabilistically determined on each trial according 
to pair-distance (see also Jou, 1997). 

Nonetheless, the restriction of the reverse distance effect to consecutive 
ascending pairs invites a second interpretation. Well-ordered successive 
items might have a special status because they are more familiar and more 
frequently associated in the language than non-successive (but still well-
ordered) stimuli. For example, given their familiarity, participants might be 
able to directly recognize ascending successive pairs, or to use a quick 
sequence recitation strategy. In contrast, determining the order of non-
successive well-ordered items might depend on a different mechanism, 
possibly comparison, as suggested by the data pattern of Experiment 2 (i.e. a 
standard distance effect for Distances 2–4). 

In summary, the occurrence of a reverse distance effect in the order task 
for consecutive relative to Distance 2 pairs is consistent with either (1) the 
hypothesis of a serial search process that is evident at Distance 1 but 
gradually masked by magnitude comparison processes, or (2) the hypothesis 
that order judgments are generally based on a magnitude comparison 
mechanism, but this is superceded in the special case of ascending 
successive pairs, which are processed through a special mechanism (e.g. 
direct recognition of order). Overall, order judgments were substantially 
faster when numbers were conventionally ordered relative to when they were 
in descending order. This pair-order effect is consistent with order 
processing studies of non-numerical sequences (e.g. Grenzebach & 
McDonald, 1992; Lovelace & Snodgrass, 1971). The conventional order 
apparently allows people to exploit acquired or canonical representations or 
processes that facilitate performance. For example, faster order judgments 
for ascending number pairs might be explained by congruity with the 
forward counting sequence, or that conventionally ordered pairs can be more 
directly mapped to an internal number line ordered from left to right 
(Brysbaert, 1995; Dehaene, 1992). 
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For the quantity task, the smaller distance effect for ascending relative to 
descending pairs raises the possibility that serial search sometimes mediated 
quantity judgments. Because serial search trials tend to produce a negative 
distance effect, they would reduce the standard distance effect in quantity 
judgments for ascending pairs. Order information may be automatically 
activated (cf. Gevers, Reynvoet, & Fias, 2003), which would sometimes 
allow quantity judgments based on serial search to supercede performance 
based on direct magnitude comparison. This is supported in Experiment 2 by 
faster quantity judgments of consecutive pairs when presented in the 
conventional, relative to the non-conventional, order, thus reinforcing the 
assumption that the reverse distance effect for the order task and the 
modulated distance effect for the quantity task might reflect the same 
mechanism. An important implication is that quantity judgments made on 
pairs of numbers do not necessarily provide a pure measure of magnitude 
processing, but rather measure a mixture of magnitude and order processing. 
As current theories of number processing place particular emphasis on 
accounting for the distribution of RTs (e.g. the standard distance effect) in 
comparative judgments of numerical magnitudes (see Zorzi et al., 2004), 
they require precise behavioural indices of magnitude effects. Thus, it is 
important for researchers to recognize that distance effects in quantity 
judgments sometimes reflect multiple, counteracting influences. 

Finally, the present data suggest that judging quantity or numerical order 
could involve activation of the same internal magnitude representation, as 
reflected by a strong size-congruity effect in both tasks and by equivalent 
distance effects for descending pairs in the two tasks in Experiment 1, but 
that different processing strategies can ensue depending upon task demands 
and other mechanisms or information activated by the stimulus. 
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